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Abstract. The price of electrical energy in Spain has not been regulated
by the government since 1998, but determined by the supply from the
generators in a competitive market, the so-called “electrical pool”.
En este trabajo se presenta un modo basado en algoritmos genicos que
nos permite simular situaciones de equilibrio a la Cournot en el pool
eltrico espaol suponiendo un comportamiento oligopoltico perfecto de
los agentes. Mediante el modelo genico anterior calcularemos las curvas
de generacin ptimas individuales de los agentes competidores.

1 Introduction

The cost of production of electrical energy depends on the type of generator:
one MW produced by a nuclear plant costs less than one MW produced by a
thermal plant. The most economical plants are in operation most of the time
while the more expensive ones connect to the electrical system only when the
former cannot cover demand. Consequently, the cost of energy is higher during
peak consumption and lower during the hours of less demand, for instance at
night.

Many other factors intervene in the selection of the power plants that connect
to the system at any given time, such as geographic location, which affects the
loss of energy in the transport lines, or the precipitation rate with regard to
the operation of hydraulic plants. In spite of this, the basic principle that ”the
cheaper power plants connect first” explains the majority of the fluctuations in
the cost of energy.

The relationship between the cost of production and the selling price is not
direct. Production cost determines price in a regulated market, such as the one
that existed in Spain before 1998 and continues to exist in other European
Community countries. This is not so in a competitive market. Before 1998, prices
in Spain were fixed by a public agency that was also in charge of elaborating
a list of the power plants that should connect at any given time. This list was
calculated by means of numeric optimization algorithms, which minimized the
global cost of the production necessary to cover domestic demand.

In the modern model, based on free competition among the different compa-
nies [?], the Market Operator (MO), a neutral agent appointed by the State to



regulate competition, calculates the energy prices for every hour, starting from
the supply of the generators and the demand of the consumers, this process is
called “casation procedure”.

The procedure by which production is planned again is based on the principle
that ”the cheapest power plants connect first”. In this case, however, ”cheapest”
does not mean ”low cost”, but ”low selling price”, because each agent is free to
choose the price it wants to charge for its power. It is interesting to note that
the law stipulates that all power plants are to receive the same payment for
each MW of energy sold, as occurred in the non-competitive model, and not the
payment they asked for in their strategy. The second principle of the competitive
market is ”the most costly power plant connected marks the price”.

En el presente trabajo proponemos una nueva herramienta que nos permite
estimar la ofertas de equilibrio, suponiendo un comportamiento oligopolista per-
fecto de los agentes. Para ello nos basaremos en una estimacin de las demandas
horarias de energ ascomo en las horas de consumo, la temperatura del aire y
el d de la semana. Este modelo de estimacin nos permite simular el compor-
tamiento de un pool cuando se aplican modificaciones sensible en las estrategias
que compiten en .

En nuestro trabajo [?], propusimos una herramienta inteligente de anisis
datos capaz de estimar las ofertas pasadas de los agentes de un pool basdonos
en los precios de la energ y las horas de consumo. Este otro modelo slo nos permit
simular ligeras variaciones de las estrategias, ya que se trataba de un modelo de
regresin.

1.1 Sumario

The remainder of this paper is arranged as follows: In Section 2, the problem to
solve is explained. The “casation process” in term of Games Theory is described
in Section 3. Our methodology is described in Section 4. In Section 5, a simple
problem is solved to illustrate the use of the method proposed here and regres-
sion method and equilibrium method, applied to a semi-synthetic problem, are
compared. El trabajo finaliza con el apartado de conclusiones y trabajos futuros.

2 Planteamiento del problema

2.1 El problema de Cournot

La competencia perfecta es un mecanismo de asignacin de recursos descen-
tralizado, electricidad en nuestro caso, en el que los agentes -generadores y
comercializadores- consideran los precios como datos y tos transmiten toda la
informacin necesaria para que los agentes tomen sus decisiones de optimizacin
-maximizacin de utilidad y de beneficio, respectivamente- de forma simultanea
y mutuamente compatible, [?]. Las empresas, en general, tiene inter en que un
mercado no funcione en forma competitiva. Parece bastante obvio que un agente
cualquiera esten no ser un competidor que acte paramricamente respecto a los



precios de los bienes que vende o compra, porque siempre preferirser monopo-
lista en ambos mercados. El extremo contrario a un mercado de competencia
perfecta es un mercado monopolista. Y en una tercera estructura de mercado,
podrmos decir intermedia, estel oligopolio.

En la estructura de mercado oligopolista las empresas tienen el poder de
determinar los precios, lo que diferencia al oligopolio de la competencia. Como
adem, existe m de una empresa, cada una de ellas tomarsus decisiones bajo
hiptesis respecto a cmo actuar sus competidoras o a cmo reaccionar las mismas
cuando se comporte de una determinada forma, [?].

El supuesto de Cournot consiste en un duopolio basado en cantidades, en el
que las empresas consideran nula la reaccin de sus competidores si ellas varn sus
cantidades ofertadas. Esto lleva la competicin a una situacin de equilibrio, tambi
denominada equilibrio de Cournot en el que las firmas no presentan incentivos
para ofertar nada mejor. La solucin clica al problema original de Cournot se
puede efectuar por modos analicos ya que las ofertas de los competidores son
constantes y la curva de demanda es una nica recta. En cambio el equilibrio
econmico de mercados eltricos oligopolistas reales no puede calcularse por modo
analicos, [?], [?], por ello ha venido aproximando mediante modelos lineales.
Las aproximaciones lineales son tiles para estudiar el comportamiento de un
mercado eltrico cerca de su punto de equilibrio. De modo que estos modelos slo
permitirn estudiar la respuesta del mercado bajo ligeros cambios del mismo, ya
que introduce gran imprecisin cuando se estudian policas de generacin completas,
las cuales son en general no-lineales. En este trabajo proponemos un modelo
genico que permite estudiar la respuesta del mercado ante cambios bruscos en
las estrategias de competicin.

2.2 Formulacin genica

En este trabajo, queremos estimar las ofertas de generacin individuales ptimas
de los agentes que compiten en el pool eltrico a partir de un archivo de curvas
de demanda. La estimacin se realizaren el supuesto de que las empresas se com-
portan como un oligopolio a la Cournot. To do this, a coevolutionary genetic
algorithm is used.

Briefly, a genetic algorithm works as follows: first, we define as many pop-
ulations of strategies as players. To score a strategy, we will simulate a game,
making this strategy compete with una seleccin de pools de estrategias del resto
de jugadores. La estrategia recibirsu puntuacin basada en dos criterios:

– La puntuacin m alta resultante de los juegos calculados.
– The unit profits obtained by each player are similar.

Observe that genetic algorithms have been applied to solve economic prob-
lems similar to the one considered int this paper (see [?], [?], [?], [?], [?], [?])
and a market model that shares some of the characteristics of this one has been
related to a coevolutionary genetic programming-based model above [?]. Unfor-
tunately, in our opinion, none of these approaches can be extended to solve the
precise problem we pose here.



3 Formulacin del proceso de casacin en tminos de la teor
de juegos

Given that preliminary data are insufficient to carry out a statistical analysis, it
is necessary to make conjectures regarding the results. This work assumes that
the agents are intelligent and that the market is fair, such that the unit profits
(euros/MW) are approximately the same for all the competitors.

With this hypothesis, if we know the cost of production of the agents (and
we can estimate that using data prior to 1998), it is possible to simplify market
operation and abstract it to a game, which can be explained as follows. Let us
assume that a certain amount of energy is to be bought from several generators.
None of them is capable of supplying the total amount and the amount supplied
by all of them exceeds the needs.

Each player (one of the generators) gives a referee (the MO) a closed envelope
with its sales strategy. It consists of a pair ”quantity supplied - price demanded
per unit”. The referee opens the envelopes, arranges the strategies and chooses
the cheapest ones until demand is covered. Each player selected is then paid for
the amount it sells at the price of the most expensive strategy that was accepted.

Each player receives the difference between the price paid and their unit cost,
multiplied by the energy units sold.

The actual number of players is several hundred (one player per electrical
power plant). To simplify calculations, we group the price-quantity pairs of all
the power plants belonging to the same company into a single total quantity
produced-unit price curve. In this way, we reduce several hundred strategies to
four aggregate supply curves (there are four large electrical companies in Spain).
The same is done with costs: each of the four participants in the simplified game
will have a curve that relates the negotiated MW with their production cost. The
mechanism of this new game is a bit more complex: each player gives the referee
an aggregate supply curve. The referee adds up all the curves and intersects
the results with a demand curve. The cross point determines the market price.
Given the price and the supply curves furnished by the agents, the revenue of
each player is calculated.

Finally, the net profit of each player is calculated using the difference between
the income received and the value of its cost curve at the point corresponding
to the amount negotiated.

4 Metodolog

The algorithm studied in this work serves to obtain the optimal (in Cournot
terms) supply curves of the companies competing in the market using demand
curve of several previous markets. Dado que el objetivo de nuestro algoritmo es
el cculo de las curvas de equilibrio, los nicos datos de entrada que necesitaremos
ser la demanda para cada mercado del perdo estudiado y los costes de generacin
de las empresas que compiten. Con estos datos podremos calcular los beneficios
del juego de competicin para cada mercado.



Each supply curve represents a market strategy and the companies elaborate
them based on their assumptions with regard to the evolution of demand and
the strategies of the other competitors.

4.1 Definicin de la curva de generacin

Strategic Planning Departments take into consideration the day of the week,
the hour of the day, the season, the weather forecast (rain, temperature) and
some other indicators before posting prices to the Market Operator. Our analysis
would be very imprecise if we did not consider some of these factors. Following
our own experience, three features should be considered: the hour (which is
related to the amount of energy negotiated, depending on labor hours and day-
light), the day of the week (the dependence between labor hours and demand
changes on weekends and holidays) and the season (electrical cooling or heating,
affects both previous dependencies).

Given this information, we decided to stay in an intermediate position be-
tween (a) assuming that the supply curve is always the same for each agent, and
(b) assuming a different curve for every market. Since (a) is too imprecise and
(b) is intractable, in this work we will allow each agent to select its curve from
a restricted set of choices, depending on the values of the features mentioned
before. In other words, a strategy comprises:

– a rule-based classification system, that produces a segmentation of the mar-
ket points into a certain number of classes depending on hour, day of the
week and type of day, and

– as many supply curves as market segments.

That is, each individual is a set of rules whose antecedents are assertions with
regard to market characteristics and whose consequents are the supply curves
that the player can use. We shall call these consequents ”prototype strategies”.

The simplest representation of a prototype strategy is a straight line. Linear
models can approximate the behavior of a competitive electrical market in the
neighborhood of its equilibrium point. Unfortunately, in spite of this kind of
simplification, which is valid for studying the response of the market under small
changes, it is not accurate enough to estimate complete supply curves of the
agents, which are highly non linear. We have decided to use piecewise linear
supply curves instead (see Figure 1.) The number of their segments will be a
compromise between the accuracy of the model and the amount of available
data (three segments in most of the experiments in this paper.)

4.2 Representacin genica

Each individual in the coevolutionary approach [?], [?] codifies a possible set
of strategies (i.e., a fuzzy-rule-based classifier system and a set of prototype
strategies) of one of the agents; we will keep as many populations of individuals



Fig. 1. Actual (left), linear (center) and polygonal supply curves (right). Representa-
tion by a polygonal line is closer to reality than the linear supply and does not depend
on an excessive number of parameters.

as agents exist. Fitness is not assigned to an individual but to a combination of
individuals extracted from all populations [?] [?].

An individual in the coevolutionary approach will be codified with a chain
of numbers. This chain comprises two real numbers to define every segment in a
prototype, plus a list containing the numerical parameters on which the linguistic
terms in the antecedents of the classifier depend.

To clarify the codification of an individual, let us consider the example in
Figure 2. Let us suppose we have tree input variables, called “energy level”
(fuzzy), “type of day” (crisp) and “temperature” (fuzzy).

Fig. 2. Polygonal supply curve comprising three segments and a classifier with three
variables that segments the markets into 8 clusters; (top left) genetic representation,
(bottom left) classifier variable values, (right) graphical representation.

The first variable can take values from 0 to 23 that represent the level energy
order relative to the day, is used instead hour of the day, because ”energy level”
is not cyclic and can take linguistic values ’high’ and ’low’, the second one can



take two linguistic values, “labor” and ”holiday” and “temperature”, also can
take linguistic values, “cold” and ”warm”.

The antecedents of the rules that compound the strategy must span all values
of the input variables; we discretize all continuous variables into linguistic terms
first, and then enumerate all possibilities.

En el ejemplo de la figura 2 top left) el par (c1, c2) representa el soporte de
la funcin de pertenencia de los valores simblicos de la variable difusa “energy
level” (ver figura 2 bottom left), y el par (c3, c4) lo mismo para la variable
“temperature”. La variable “type of day” al ser nido simblico estimplito y por
lo tanto no tiene representacin genica.

if high and labor and cold
then prototype=(a00,b00,a01,b01,a02,b02,a03,b03)

if high and labor and warm
then prototype=(a10,b10,a11,b11,a12,b12,a13,b13)

if high and holiday and cold
then prototype=(a20,b20,a21,b21,a22,b22,a23,b23)

if high and holiday and warm
then prototype=(a30,b30,a31,b31,a32,b32,a33,b33)

if low and labor and cold
then prototype=(a40,b40,a41,b41,a42,b42,a43,b43)

if low and labor and warm
then prototype=(a50,b50,a51,b51,a52,b52,a53,b53)

if low and holiday and cold
then prototype=(a60,b60,a61,b61,a62,b62,a63,b63)

if low and holiday and warm
then prototype=(a70,b70,a71,b71,a72,b72,a73,b73)

and it can be codified by a chain of 68 numbers. Since each prototype strategy
depends on eight values, we need 8× 8 parameters to define all consequents and
four more numbers to define the values of (c1, c2, c3, c4). The antecedents need
not to be codified, because they are implicit in the sorting of the rules.

In general, a strategy depending on n input variables, taking ni different
values each, will be codified by a chain of 8

∏n
i=1 ni + C, where C is the number

of parameters defining the classifier.

4.3 Definicin de los operadores genicos

Individuals in the coevolutionary approach are represented by chains of real
numbers, thus there is no need to define custom genetic operators. However,
the relative sizes of the subchain codifying the consequents and the subchain
codifying the list of parameters of the classifier are very different. We have opted
to let only one of these parts be modified in every genetic operation, thus we
can manually balance the evolution of both and speed up the evolution of the
classifier part. This is the only difference between our operators and the standard
versions of uniform arithmetic crossover and mutation [?][?]. Observe that the
offspring is always valid, because:



– The consequents produced by the either the mutation or the crossover oper-
ators are weighted sums of monotonic functions, which are also monotonic
functions.

– The classifier arising from crossover or mutation is checked, and repaired if
needed, so that all parameters defining it are constrained to their respective
ranges.

Fig. 3. Crossover operations in coevolutionary (top) and evolutionary (bottom) rep-
resentations. Evolutionary crossover consists of selecting one agent at random and
performing the coevolutionary crossover over the corresponding parts.

When two individuals are to be crossed, a coin is tossed to decide whether
we select from each of them (a) the subchain codifying the classifier definition
or (b) one subchain that codifies the definition of one of the prototypes (the
consequent of a single rule is modified after applying crossover.) The selected
subchains are recombined by means of standard arithmetic crossover, but the
remaining part of the individual remains untouched (see Figure 3 top.)

The mutation operator is defined as the crossing of an individual with another
one, generated at random.

4.4 Definicin de la funcin de fitness

Hemos definido el problema de Cournot como un mercado competitivo donde
todas las firma envn al mercado simulteamente su produccin siendo la demanda
del mercado la que determinarel precio en funcin las cantidades producidas.
Esto siempre supeditado a que cada firma tenga como objetivo maximizar su
beneficio. Para estimar las estrategias de generacin que alcanzan el equilibrio de
Cournot en funcin de un archivo de demandas definiremos un fitness que simule
el comportamiento de los jugadores en el supuesto de Cournot.

We have mentioned that we needed to assume that the unitary profits of all
firms are the same in order to obtain a good model. This decision implies that
we need to rank strategies according to two different criteria:

a strategy is scored, after being combined with the strategies of the remaining
players, (a) an strategy of firm f1 is better than firm f2 one when the best



aggregated profit of the remaining players for f1 games if better than for f2
games,i.e. a kind of min-max strategy, (b) similar unitary profits are achieved
by all players –where “unitary profit” is defined as the difference between cost
and income, divided by the number of MWs sold. The first goal measures the
worst situation for a firm, and the second one measures the degree of fulfillment
of the restriction “all unitary profits are the same.” We will use the profit of
the strategy to quantify the first objective, and the mean of the variances of the
unitary profits to quantify the second one.

Different methods exist for mapping multi-objective fitness into scalar fitness
[?]. We have studied the weighted average of values (a) and (b), but, according
to our experiments ,[?], there is a significant improvement if we use a multi-
objective approach instead [?][?][?][?].

5 Numerical Results

A simple problem is presented here for the sake of illustrating the basic aspects
of the proposed methodology. This example models 10 repetitions of a game
(Cournot equilibrium search) in which we know each player, four players like
Spanish Market, always uses the same supply curve, thus we do not need the
classifier. Supplies are straight lines, each depending on two parameters.

Table 1. Equilibrium Market Point Calculated by Analitical Method

Market 0 1 2 3 4 5 6 7 8 9

price 3,3 4,1 4,9 5,71 6,5 7,4 8,2 9,1 10,0 10,8

energy 1720,71925,72115,22292,32459,32617,62768,52912,93051,73185,4

The inputs for this problem are:

1. The cost functions. q is the quantity of energy produced, C0 to C3 are the
prices demanded: Ci(q)& = &(4 + i)e− 6q3

2. The market scenario, a series of 10 demand functions (Dm) with the same
elasticity (i.e., the same steepness):

Dm(p) = −1000p + (5000 + 1000m), for m in 0 . . . 9

3. The set of Cournot Market Equilibrium points in table 1, (pricei, quantityi).
They were generated from the intersections of the demand functions (Di)
and the aggregate strategy of the equilibrium individual strategies.

4. Y por ltimo, las estrategias de equilibrio, calculadas analicamente, con las
que compararemos la salida de nuestro algoritmo son las de la tabla 2.

Now, estimated equilibrium individual strategies were obtained after run-
ning the coevolutionary algorithm with four populations with the size of 1000,



Table 2. Equilibrium Curves calculated by Analitical Method for 10 Market Points

Market Firm0 Firm1 Firm2 Firm3

0 150,43p 134,58p 115,46p 124,25p
1 135,57p 121,27p 103,92p 111,87p
2 124,26p 111,13p 95,16p 102,46p
3 115,29p 103,11p 88,22p 95,00p
4 107,96p 96,55p 82,56p 88,92p
5 101,84p 91,06p 77,83p 83,84p
6 96,62p 86,39p 73,80p 79,51p
7 92,10p 82,36p 70,32p 75,77p
8 88,15p 78,82p 67,28p 72,50p
9 84,66p 75,69p 64,59p 69,61p

Cournot multicriteria fitness, 400 generations, tournament selection (size 4) and
linear descending crossover probability, from 100% to 0%. The output of our
method is:

q′
0(p) = 67.1636p + 226.987

q′
1(p) = 56.4915p + 234.217

q′
2(p) = 45.5331p + 272.999

q′
3(p) = 41.5025p + 258.445

Donde cada estrategia se aplicarpara los 10 mercados del problema, Dm.

Fig. 4. Curva de oferta agregada de equilibrio resultante de aplicar CGM con fitness
Cournot a conjunto de 10 mercados



En la figura 4 se representan los puntos de equilibrio calculados analicamente
(ver tabla 1) y la curva agregada de equilibrio estimada con nuestro algoritmo.
Observamos la buena aproximacin de la solucin obtenida mediante estrategias
lineales a la nube de puntos no-colineales. En concreto el error medio de los
puntos de equilibrio estimados respecto a los puntos de equilibrio reales ha sido
de 2.65361% por mercado y firma respecto a la dimensin cantidad. The mean
percentage error of estimated individual quantity for each market was 5.93207%
and the mean percentage error of estimated energy share in each market was
1.11367%.

5.1 Semi-synthetic problem

This section describes the application of our method to a semi-synthetic problem
componed by 40 market points. This problem was designed to reproduce current
scenarios in the Spanish electrical market, while being originated by theoretical
supply curves, thus we can quantify the accuracy of regression and equilibrium
methods and compare its results. From now on, methods proposed will be called
“ “Equilibrium Coevolutionary Genetic Model” (ECGM) and “Regression Co-
evolutionary Genetic Model” (RCGM).

En la tabla 3 se recogen los resultados de aplicar los modos RCGM y ECGM
al problema semi-sintico.

El pool recabado mediante el modelo RCGM a partir de los 40 puntos de
mercado (price, energy, energy level, type of day, temperature) obtuvo un ito
del 100% de acierto al hacer un matching lingütico de las reglas individuales
tericas, y los errores porcentuales medios de estimacin de cantidades individuales
y cuotas de mercado fueron de 2.92% y 0.69% respectivamente.

Si comparamos los resultados de la competicin de ambos pools (ver tabla 3),
podemos ver que el pool ECGM a costa de generar un 16.716% menos de energ
podr obtener un 159.852% m de beneficio que el modelo RCGM. Lo cual nos
permite concluir que las estrategias que han generado los puntos de mercado de
estudio son muy mejorables.

Table 3. Energy and Profit Comparison for RCGM and ECGM Resulting Pools

Firm 0 Firm 1 Firm 2 Firm 3

ECGM Pool Profit 198143 197669 195047 252652
RCGM Pool Profit 125191 156961 85585.2 135626
% Profit Variation -36.818 -20.5943 -56.1208 -46.3189

% Global Profit Variation -159.852

ECGM Pool Energy 140347 148200 145383 193681
RCGM Pool Energy 98210.3 196062 141886 226314
% Energy Variation -30.0231 +32.2956 -2.40524 +16.8487

% Global Energy Variation +16.716



6 Concluding Remarks and Future Work

Coevolutionary genetic models are usually used to simulate natural systems with
multiple agents of independent behavior, where mathematical models are too
complex to be applied. Here, we have experimentally shown that a coevolutionary
genetic model can achieve the Cournot equilibrium for a set of electrical markets
(a market is a demand curve) with a only a linear curve without classifier per
player (ECGM). Also we have extended the application of the ECGM to a set of
markets characterized with three variables: “energy level”, “type of the day” and
“temperature”. In this second case we incorporate fuzzy classifier, depending of
the variables, to the individual supply strategies. After that, we defined prices
for all the markets and run RCGM to recover fuzzy individual supply strategies,
and then run ECGM to calculate equilibrium fuzzy individual supply strategies.
We show that equilibrium individual supply strategies (ECGM) improves profit
RCGM strategies in 159.852%.

From the point of view of a firm that manages our equilibrium model, this
method allows it simulate a large changes in its supply curves, given a certain
market situation. This way, a firm can adjust its strategy and improve its profits.

From the Market Operator’s point of view, it is useful to know the Cournot
equilibrium strategies for a set of market points in a perfect oligopolistic situa-
tion, which is a non-linear extension to the Cournot problem [?]. This informa-
tion serves to estimate the difference between the real profit of the pool and the
theoretical maximum profit if competition is perfect, therefore detecting illegal
agreements between generators.


