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Abstract. In this work we develop and compare multi-parent crossover opera-
tors based on the extraction of characteristics from the best individuals in the 
population (average, median, standard deviation and quantiles). These statistics 
evolve in parallel with the algorithm. The proposed operators are used in com-
bination with a real-coded genetic algorithm for the evolution of polynomial 
functions to solve microbial growth problems. Their performance is compared 
to other crossover operators for real-coded genetic algorithms. Both the predic-
tion errors made in the modelling of systems and the objectivity and speed in 
the identification of models show the viability of this type of models that mix 
base functions with evolutionary computation. 

1   Introduction 

Nowadays, the modelling of systems is one of the most interesting problems in many 
scientific branches. The resolution of this problem has been classically approached by 
using regression techniques in order to minimize an error function, over a model type 
previously established by the researcher. Most often the functional model to apply is 
non-linear and it usually presents a high dimensionality, making the process consid-
erably more complicate, as there is scarce additional information, or none at all. 

The most common approximation functions are linear and generalized linear mod-
els, flattened hyperplanes, response surfaces, artificial neural networks, Fourier series, 
wave functions, decision trees and flattened kernel functions. All of them provide 
explicit models for the relationship between the predictive variables x and the re-
sponse variable y [2] (only one in our case). 

In this work we present an methodology for the estimation of Response Surface 
(RS) polynomial models through Real-Coded Genetic Algorithms (RCGA) using 
specific real-coded crossover operators: BLX-α [3], an adaptation of BLX-α, and the 
recently developed multi-parent crossovers CIXL and CIXL2 [4]. 

In Section 2 we introduce multiparent crossover operators. Section 3 presents a 
general approach to the evolution of RS models with RCGAs and a crossover operator 
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adapted from BLX-α. Section 4 shows the results of a equality of means test over two 
factors: grade of the initial RS and type of crossover used. Conclusions are drawn and 
presented in Section 5. 

2   Crossover Algorithms Based on Confidence Intervals 

In the resolution of RS polynomial models, the multi-parent crossover operators give 
to the RCGA the additional value of being able to use information from several indi-
viduals to create a new one, with a better fitness if possible. We present in this section 
a type of multi-parent crossover algorithm based on the location and dispersion char-
acteristics of the genes from the best individuals in the population. These characteris-
tics will be used to build virtual parents that inherit the traits associated to the previ-
ous estimators. 

The aforementioned idea leads to the definition of two crossover operators based 
on Confidence Intervals using the norms L2 (CIXL2) and L1 (CIXL1), whose equilib-
rium between exploration and exploitation seems to be very suitable for this type of 
problems. Their performance in model identification problems has been made clear in 
[6], where they have been applied to non-linear regression problems taken from "the 
Statistical Reference Datasets Projects (STRDP)" which can be consulted in 
http://www.nist.gov/itl/div898/strn/nls. 

2.1   Intervals Associated to Median and Mean  
as Location Parameters of the Genes 

Let ß be the set of the n individuals in the population and let ß*⊂ ß be the set formed 
by the best n individuals (the ones with highest fitness). If we consider that the genes 
βi of the chromosomes ß* are independent random variables following a continuous 

distribution function H (βi), with a location parameter 
iβµ , then we have the model βi 

=
iβµ + ei, being ei a random variable, for each i=1,... p. 

If we suppose, for each i, that the best n individuals actually form a simple random 
sample (βi1, βi2, ... βin) of the βi distribution then the model takes the form 

βij = iβµ  + eij,  for j=1,..., n (1) 

Now, from the model proposed in (1), if we consider the norm L1, given by 

∑
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function of the βi, then we have that the negative gradient estimator of the location 
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parameter through the norm L1 is the median of the βi distribution. That is, 
iβµ� = 

i
Mβ  being its distribution binomial with parameters n and ½. From this distribution 

we can already build confidence intervals for the location parameter, populational 
median, whose estimator is the sample median 

i
Mβ  of the genes of the n better indi-

viduals, for a generic sample of size n, with a confidence coefficient 1-α. In this case 
we apply the Neyman method for calculating confidence intervals and we have that 

I1-α(
iβµ )= [βi(k+1), βi (n-k)],   (2) 

being βi(k+1) and βi(n-k) the values of the genes associated to the position k+1 and n-
k when the sample has been sorted, and where the k value is determined from the 
underlying binomial distribution.  

If we take into consideration the norm L2, defined as ∑
=

=
n

j
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2
2

ββ , it can be 

proved that the negative gradient estimator of the location parameter through the 
norm L2 is the average of the distribution βi. Assuming that the distribution of the 

genes H(βi) is normal, the confidence interval is calculated as:  

I1-α(µβi)=[ β i -tn-1,α/2× i
Sβ / n ; βi+tn-1,α/2× i

Sβ / n ] (3) 

where tn-1 is a Student t distribution with n-1 degrees of freedom.  
From the previous confidence intervals we build 3 virtual parents: one formed by 

all the lower limits (CILL), other formed by all the upper limits (CIUL) and a third 
one (CIM) formed by the average (if using CIXL2) or median (if using CIXL1) values 
of the confidence intervals of each gene. The CILL and CIUL individuals divide the 

domain of each gene, Di, into 3 subintervals L
iI , IC

iI and R
iI , such that 

R
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R
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being ai and bi the lower and upper limits of the domain Di 
The crossover operators will create a single offspring βs from the individual 

β∈fβ , the individuals CILL, CIUL and CIM, and their fitnesses, in the following 

way: 

• If L
i

f
i I∈β  then, if the fitness of βf is bigger than that of CILL, then 

( ) f
ii

f
i

s
i CILLr βββ +−= , else ( ) i

f
ii

s
i CILLCILLr +−= ββ ; 

• If IC
i

f
i I∈β  then, if the fitness of βf is bigger than that of CIM ,then 

( ) f
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f
i

s
i CIMr βββ +−= , else ( ) i

f
ii

s
i CIMCIMr +−= ββ ; 

• If R
i

f
i I∈β  then, if the fitness of βf is bigger than that of CIUL, then 

( ) f
ii

f
i

s
i CIULr βββ +−= , else ( ) i

f
ii

s
i CIULCIULr +−= ββ , 

where r is a random number in the interval [0,1]. 
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3   Estimation and Design of Polynomial Base Functions  
with RCGA 

In general, the modelling of a system whose equation is known is a problem of con-
ventional regression. In this type of problems there is a functional relationship be-
tween a series of independent variables xi and a dependent variable y, in the form: 

y = f(β0, β1,..., βm,  x1,..., xn) (4) 

where βi are the coefficients to be adjusted in order to minimize the sum of squared 
residuals. This optimization problem can be solved with a classical algorithm, or with 
a genetic algorithm. If we opt for the second option we would codify the individual as 
a set of genes, each one representing a coefficient.  

3.1   Response Surface Models and Genetic Algorithms 

Response surface models explain a large variety of phenomena. The expression that 
defines them is a grade G polynomial in each variable [5][8]. Therefore they are func-
tions following the form 
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(5) 

where G is the grade of the model, xi are the independent variables, n is the number of 

independent variables and βi are the coefficients.  

If we want to model the structure of a phenomenon by using the aforementioned 
model, we will codify individuals with as many genes as the coefficients in the model 
that we pretend to develop. This number of coefficients depends on the number of 
variables and the grade of the model in question but, as we already mentioned, the 
interpretability of the models is a very desirable characteristic in every type of model-
ing, and that leads us to seek simple models. The codification of an individual uses 
one gene for each coefficient of the model. However, this gene has two well-
differentiated parts. On one hand, there is an allele which indicates the presence or 
absence of the corresponding term (monomial) in the model; and on the other hand 
there is another allele to codify the value of the coefficient in question. 

Figure 1 shows an individual that represents a grade 2 RS with 3 variables, adapted 
to this method. To obtain expressions with the minimum number of terms, we include 
one term in the fitness function that rewards the smaller (i.e. simpler) models. In this 
way, our problem turns into a problem with two objectives: on one hand, it is conven-
ient that the error is minimum, but, on the other hand, it is also interesting to obtain 
models with a small number of coefficients. 

 

Fig. 1. Individual that represents a response surface of order 2 with 3 independent variables. 
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Since the number of objectives is very reduced, we did not consider a multi-
objective algorithm and to simplify we chose a fitness function that calculates a linear 
combination of them, weighing up their importance with a coefficient.  

3.2   Microbian Growth Models 

In this work we develop a model for the growth prediction of the altering microorgan-
ism Leuconostoc mesenteroides ssp. mesenteroides [9], which has been frequently 
isolated as a responsible for the alteration of different types of meat products. The 
available data have been 210 signal-time curves of Leuconostoc Mesenteroides 
growth under different conditions of temperature T (10.5, 14, 17.5, 21 and 24º C), pH 
(5.5, 6, 6.5, 7 and 7.5), sodium chloride concentration NaCl (0.25, 1.75, 3.25, 4.75 
and 6.25%) and sodium nitrite concentration NaNO2 (0, 50, 100, 150 and 200 ppm). 
These 210 curves correspond to 30 different experimental conditions chosen accord-
ing to a Composite Central Design1 of experiments. From each one of these 30 condi-
tions, 7 experiment replicas were conducted. Five of the experimental results sets 
were chosen at random to form the training set, and the remaining two formed the 
generalization set. Thus the training set is composed of 150 curves and the generaliza-
tion (or test) one by 60. 

Next, these resultant values of absorbancy, considered throughout the time, were 
adjusted by means of an exponential Baranyi and Roberts-type model [1] with the 
help of the DMFit 1.0 program (József Baranyi, Institute of Food Research, Norwich 
Research Park, Norwich NR4 7UA, UK). The results were the training and generali-
zation values of the kinetic growth parameters lnlag, grate and yend (the logarithm of 
the adaptation phase, the growth rate and the maximum density) of the microorganism 
for each experimental condition. 

3.3   Genetic Algorithm 

Table 1 summarizes the parameters used for the genetic algorithm. The fitness func-
tion presents two terms; the first one represents the error term (according to the mini-
mization of the squared residuals sum) and the second one represents the complexity 
term of the model (according to the minimization of the number of coefficients). 

The first term is a transformation of the standard error of prediction (%SEP), an 
adimensional coefficient of the form: 

 ( )
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i iyiy

ySEP
∑
=
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100

, 

(6) 

where iy  represents the value of the function in this point, iy�  is the estimated value 

and, y  the mean value of all the iy . The second term modulates linearly the number 
of terms in the expression, growing as the number nT of terms decreases. In this way, 
the fitness expression would be: 
                                                           
1 This type of experiments design focuses the sampling on the central values of the experimen-

tal variables. 
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where the coefficients nTm and nTM represent respectively the minimum and maximum 
number of coefficients that the model can represent, and the constant K, whose values 
(1≤K<∞) are obtained heuristically, modulates the SEP value to weight the differ-
ences among patterns in order to get equilibrium between the two objectives. 

Table 1. Parameters used in the genetic algorithms for the modelling of the response surfaces. 

GENERAL ASPECTS OF THE ALGORITHM 

Population size 500 individuals 

Duplication p
d
=0.2 Tournament selection 

Crossover p
c
=0.6 

Tournament selection 
BLX-α (α=0.5)   

CIXL1 and CIXL2 (1-α= 0.7, n=5) 
 

Mutation p
m
=0.2 

Random selection 
Non uniform mutation (parameter b= 5) 

Stop criterium 500 generations 

 
This nondecreasing fitness function takes a maximum value of 1, which could be 

possible only if the standard error of prediction was null and the model had tm terms. 
The number of genes forming each individual of the population will depend on the 

grade of the chosen RS for the model. The crossover operators used in the genetic 
algorithm have been the BLX-α crossover [3], three adaptations of this crossover to 
this problem, and the multi-parent crossovers CIXL1 and CIXL2 [4]. The mutation 
operator has been the Non Uniform. These operators, specific for the real coding, 
have been adapted to be able to work with the double codification previously ex-
plained. 

All the algorithms have been implemented in Java using Sun Microsystems Java 
Development Kit version 1.3.1, and the JCLEC class library for evolutionary compu-
tation [10]. The analysis of variance for the comparison of means has been performed 
using the statistics software SPSS version 11.0. 

3.4   Adaptation of the BLXα Crossover 

We have designed an adaptation of the BLX-α operator (even though it could have 
been any other arity-2 crossover designed for RCGA). Let  { ),..., ( 1 

1 1 
1 1 c s = β ,

 
 } ) , ( ),..., , ( 1 11 1 

p pi i c sc s  and { }),(),...,,(),...,,( 22222
1

2
1

2
ppii cscscs=β  be two parents chosen 

for crossover, with p genes each one and representing two RS models with p coeffi-
cients. Each gene corresponds to a monomial in the corresponding RS, and each allele 
represents, respectively a selector that indicates the presence or absence of the mono-
mial in the model and the value of the coefficient associated to the term. These two 
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parents will generate two offsprings { }),(),...,,(),...,,( 11111
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else apt1 ! fitness of parent β1 ; apt2 ! fitness of parent β2  
n1 and n2 ! two random integers with a probability 
apt1/(apt1+apt2) of taking value 1 and probability apt2/(apt1+apt2) 
of taking value 2 
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EndIf 

That is, the generated offspring will inherit the terms existing in both parents and 
the BLXα crossover will be applied to the coefficients of these terms. When the terms 
exist only in one of the parents, the more fit this parent is compared to the other, the 
more possibilities of passing to the offspring they will have. 

4   Results 

We have searched for an optimal topology as well as the coefficients of the model 
using RS of grades 2 to 5, so as to check if our methodology is able to find models for 
different topologies previously used. It means that the size of the weight space to 
estimate increases exponentially with the grade of the starting polynomial. For each 
one of the 3 growth parameters we have analyzed if there are significative differences 
in the mean values of the generalization SEP according to the grade of the polynomial 
(RS2 to RS5) and according to the four types of crossover operators used (BLXα, 
BLXαAD1, CIXL1 and CIXL2). An test for equality of means has been performed, 
taking into account both intrapopulation variances and interpopulation variances. For 
each cell of the ANOVAII model, 30 runs were performed2, using the parameters 
discussed in the previous section, and we can affirm with a significance level of 99% 
that for the three performed analysis, one for each parameter of the growth curves: 

1. There are significative differences in the variances associated to each cell 
(Sig=0.000). There are significative differences in the averages: according to the 
interaction between the grade of the starting polynomial and the type of crossover 
used (Sig=0.000), according to the polynomial grade (Sig=0.000) and according to 
the crossover type (Sig=0.000). There are not significant differences when starting 
with RS2 or RS3, but they appear when starting with RS4 or RS5. 

 
                                                           
2 Currently, more tests are being executed to confirm the results. 
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Table 2. Statistic results summary (Mean, Standard Deviation) in the three experiments. 

Parameter/SR lnlag / SR3 grate / SR2 yend / SR2 
Crossover Mean StdDev Mean StdDev Mean StdDev 

BLX-alfa 7.92 0.52 15.51 4.01 15.71 0.51 
BLXAD1 8.15 1.51 15.62 2.19 15.87 0.69 

CIXL1 7.25 0.55 11.79 2.11 15.58 0.39 
CIXL2 12.55 2.59 21.17 6.67 21.32 8.88 

lnlag =  1.8585 -0.2366(T) -0.0938(pH) +0.273(NaCl) +0.1029(NaNO
2
)+0.0374(pH)2  

            -0.1294(pH)(NaCl)-0.0569(pH)(NaNO
2
)-0.0923(pH)(NaCl)(NaNO

2
)             (8) 

Grate =  0.1802 +0.0718(T)+0.0250(T)2 +0.0206(NaCl)2 -1.9315(T)2 (NaNO
2
) 

           -10.4226(pH)2(NaNO
2
) +0.0071(pH)(NaCl)2 -0.0102(NaCl)3  

           +12.3471(NaCl)2(NaNO
2
)                                                                                 

(9) 

yend =  -0.6844+0.1522(T)-0.2222(NaCl)-0.2437(NaNO
2
)+0.0591(pH)(NaCl) 

             -0.0427(NaCl)2+0.1510(T)2(pH) +4.3559(T)2(NaCl) +0.0301(pH)(NaNO
2
)    

             +0.0186(pH)3 +5.2791(pH)2(NaCl) -0.017(pH)(NaCl)(NaNO
2
)  

             -9.6772 (NaCl) (NaNO
2
)2                                                                                 

(10) 

  
2. In the models where the dependent variable is lnlag: 
− The RS of grade 3 produces the best total results (for the six crossovers) in mean 

(8.97). The means and variances are shown in Table3. 
− There are no significative differences in mean between the crossovers BLX and 

CIXL1. But there are between them and the crossover CIXL2. The CIXL1 cross-
over is the one that produces the best results in mean starting with a grade 2 poly-
nomial and especially grade 3. These differences are significant if we eliminate the 
results of the crossovers CIXL2. 

− We concluded using polynomials of grade 3 and the CIXL1 crossover. In this way 
the statistic results of the 30 proofs are shown in Table 3. The best model chosen 
according to %SEP and smaller number of parameters is shown in equation 8. 

3. In the models where the dependent variable is grate: 
− The RS of grade 2 produces the best total results (for the six crossovers) in mean 

(16.02). The means and variances are shown in Table 3. 
− There are no differences in mean between the crossovers BLX and CIXL1. But 

there are between them and the crossover CIXL2. The CIXL1 crossover is the one 
that produces the best results in mean starting with a grade 2 polynomial, being 
these differences significant if we eliminate the results of the crossover CIXL2 

− We concluded using polynomials of grade 2 and CIXL1 crossover. In this way, the 
statistic results of the 30 proofs are shown in Table 3. The best model chosen ac-
cording to %SEP and smaller number of parameters is shown in equation 9. 

Table 3. Data of the best models obtained in the three experiments with CIXL1. 

    Lnlag    grate    yend 
%SEP Training 7.17 8.51 -11.88 

%SEP Test 7.05 9.22 -13.49 
Num. coefficients 9 9 13 

Fitness 0.69 0.65 0.48 
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4. In the models where the dependent variable is yend: 
− The RS of grade 2 produces the best total results (for the six crossovers) in mean 

(17.12). The means and variances of the %SEP for RS2 and the 6 crossovers are 
shown in Table 3. 

− There are no differences in mean between the crossovers BLX and CIXL1. But 
there are between them and the crossover CIXL2. The crossover CIXL1 is the one 
that produces the best results in mean  starting with a grade 2, but these differences 
are not significant even though we eliminate the results of the crossover CIXL2. 

− We concluded using polynomials of grade 2 and CIXL1 crossover. In this way, the 
statistic results of the 30 proofs are shown in Table 3. The best model chosen ac-
cording to %SEP and smaller number of parameters is shown in equation 30. 

5   Conclusions 

We have experimentally demonstrated how, starting from overdimensionated re-
sponse surface models, our methodology finds the model fitting the phenomenon’s 
response. A fitness function has been proposed that considers the quadratic relative 
errors and weights up the simplicity of the model as well. This makes the expressions 
evolve until they present a minimum size, improving their interpretability through the 
decrease of the number of terms in the polynomial function and their capacity of gen-
eralization. A specialized genetic algorithm has been implemented, using a double 
codification and specifically adapted operators. These operators, CIXL1 and CIXL2, 
make possible to extract the adaptive statistic characteristics of the best individuals 
and to use them to lead the search in the most effective way. In particular we checked 
that with the CIXL1 crossover operator we obtained better results, proposing its use in 
this type of algorithm. This procedure represents an advantage over the use of statistic 
tests to eliminate coefficients and identify the model exactly, much more tedious and, 
in some cases, biased by the subjective appreciations of the investigator. We also 
checked that with this algorithm it is possible to reach better results than the ones 
obtained with non-linear regression. 
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