
896

Hybrid Real-Coded Genetic Algorithms with Female and Male
Differentiation

C. Garcia-Martinez
Computer Science and Al Department
University of Granada, Granada 18071

cgarcia(d,decsai.ugr.es

Abstract- Parent-centric real-parameter crossover
operators create the offspring in the neighborhood of
one of the parents, the female parent, using a
probability distribution. The other parent, the male
one, defines the range of this probability distribution.
The female and male differentiation process determines
the individuals in the population that may become
female or/and male parents. An important property of
this process is that it makes possible the design of two
kinds of real-coded genetic algorithms: ones that
promote global search and ones that are effective local
searchers. In this paper, we study the performance of a
hybridization of these real-coded genetic algorithms
when tackling the test problems proposed for the
Special Session on Real-Parameter Optimization of the
IEEE Congress on Evolutionary Computation 2005.

1 Introduction

The crossover operator has always been regarded as one
of the main search operator in GAs, because it exploits the
available information in previous samples to influence
future searches. This is why most real-coded genetic
algorithm (RCGA) research has been focused on
developing effective real-parameter crossover operators,
and as a result, many different possibilities have been
proposed ([DebOl, Her98, HerO3]). Parent-centric
crossover operators (PCCOs) is a family of real-parameter
crossover operators that has currently received special
attention. In general, these operators use a probability
distribution for creating offspring in a restricted search
space around the region marked by one of the parent, the
female parent. The range of this probability distribution
depends on the distance between the female parent and the
other parent involved in the crossover, the male parent.

So far, PCCO practitioners have assumed that every
chromosome in the population may become either a
female parent or a male parent. However, it is very
important to emphasize that female and male parents have
two differentiated roles:

* Female parents point at the search areas that will
receive sampling points, whereas,

* Male parents are used to determine the extent of these
areas.
At this point, it is reasonable to think that some

chromosomes may be well-suited to act either as female

M. Lozano
Computer Science and Al Department
University of Granada, Granada 18071

lozano(a,decsai.ugr.es

parents or as male parents. Thus, a promising way to
improve the behavior of PCCOs involves the introduction
of a female and male differentiation (FMD) process for
the application of these operators. A such process was
proposed in [GarO5]:

* The population of the RCGA contains two different
groups: 1) GF with NF chromosomes that can be
female parents, and 2) GM with NM male parents (NF
and NM are tunable parameters).

* The RCGA uses a specific selection mechanism in
order to select the female parents from GF.

* A different selection mechanism is performed to
choose the male parents from GM.
In [GarO5], it is indicated that adjusting NF and NM we

may design local RCGAs, which offer accuracy, and
global RCGAs, which provide reliability. Furthermore, in
order to obtain robust behavior, in [GarO5], the authors
combined a global RCGA and a local RCGA, producing a
hybrid RCGA.

In this paper, this hybrid RCGA is tested on the test
suite proposed for the Real-Parameter Optimization
Session of the IEEE Congress on Evolutionary
Computation ([SugO5]) (using the Java version provided
to all participants).

We set up the paper as follows. In Section 2, we
describe the pseudo-code of the hybrid RCGA. In Section
3, we presents the results obtained by this algorithm on the
test suite when Dimension=10. The results with
Dimension=30 appear in Section 4. In Section 5, we study
the computational costs of the algorithm, and, in Section
6, we list its associated parameters. In Section 7, we
analyze the results obtained. Finally, we draw some
conclusions in Section 8.

2 The Hybrid RCGA with the FMD Process

This section is aimed to introduce the hybrid RCGA. It
consists on the hybridization of a global RCGA and a
local RGGA. They are steady-state RCGAs based on a
FMD process and that apply the replace worst strategy. In
addition, the global RCGA uses the PBX-a crossover
operator ([LozO4]) and the local RCGA uses the PCX
crossover operator ([DebO2]).

In section 2.1, we describe the two PCCOs used by the
algorithm. In section 2.2, the FMD process is introduced.
Global and local RCGAs are presented in section 2.3.
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each function, seem similar to those ones when D =
10.

* Global Optimum in the Initialization Range Vs Global
Optimum outside of the Initialization Range
(Functions 24 and 25): When D = 10, the results for
both functions are similar. Curiously, when D = 30,
the results for function 24 deteriorate and those for
function 25 are improved. We think that the algorithm
is not affected by this characteristic.

* Unimodal Functions (Functions 1-5): When D = 10,
the performance of the algorithm seems good in every
function except for function 3. However, when D =
30, the performance deteriorates except for functions
I and 2. It could be due to that the range of values of
the fitness function 3, 4 and 5 is very wide.

* Multi-modal Functions (Functions 6-25): We think
that the algorithm perform well on this type of
problems, taking into account that other instances of
the algorithm returned poorer results. In addition, the
algorithm is not usually so much affect by the use of
higher dimensions.

* Functions with Global Optimum outside of the
Initialization Range (Functions 7 and 25): We think
that the algorithm is able to go through the fitness
landscape looking for the best regions. In [GarO5] the
algorithm shows good results when using this kind of
functions. In addition, it seems to perform well in the
functions 7 and 25.

* Functions with Global Optimum on Bounds
(Functions 5, 8 and 20): We think that function 8 is
not a good one in order to measure the quality of an
Evolutionary Algorithm, because, looking at the
fitness landscape, there is no relation between the
location of the global optimum and the information of
the location of other solutions and their fitness values.
So we will concentrate our comments on functions 5
and 20.
The algorithm seems to be not affected by the location
of the global optimum on bounds. The results for
function 5 when D = 10 are very good. And it seems
to perform well on function 20 when D = 10.
However, when D = 30, the results for both functions
deteriorate.

8 Conclusions

We have applied the hybrid RCGA presented in [GarO5]
to the test suite for the Special Session on Real-Parameter
Optimization of the IEEE Congress on Evolutionary
Computation 2005. The results have let us to draw some
characteristics of this algorithm when tackling problems
with different properties.

For future works, we will be interested on improving
this algorithm in order to increase the quality of its results
for some type of functions, such as high conditioned
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