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Abstract Data gathered from real world processes include several undesired effects,
like the noise in the process, the bias of the sensors and the presence of hysteresis,
among other undesirable uncertainty sources. Learning models using the so called
Low Quality Data (LQD) is a difficult task which has been barely studied. In a
previous study, a method for learning white box models in the presence of LQD
that makes use of Multi Objective Simulated Annealing hybridized with genetic
operators method for learning models was proposed. This research studies the role
of the tree generation methods when learning LQD. The results of this study show
the relevance of the role of tree generation methods in the obtained results.

1 Introduction

With the scarce energy sources and the worsening environmental pollution, how to
use the existing energy is becoming a very important challenge in various fields
of modern engineering [10, 6, 19]. For example, notorious efforts have been made
within the area of lighting control systems included in building automation in order
to improve the energy efficiency. The aim of lighting control systems is to control
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the electrical power consumption for the ballast in the installation so the luminance
complies with the regulations.

In [20, 21, 22] a lighting control system was considered to show the relevance of
the uncertainty for an efficient energy use. The typical control loop includes a light
sensor, the light ballasts and a light controller. The sensors measure the amount of
light in a room, but they have some drawbacks: they operate with hysteresis and
saturation [6] and their measurements depend on the light sensor unit. In the studied
literature, when obtaining models for simulation, only crisp values are regarded as
the measurements from light sensors. Obviously, the inputs and outputs of the light
sensor models obtained are also crisp variables. But several studies have presented
the decrease in the performance of crisp algorithms as data uncertainty increases
[8].

It is worth noting that all the sensors and industrial instrumentation can be re-
garded as Low Quality Data (hereinafter LQD). In our opinion, one of the most
successful researches in soft computing [2, 3, 4] dealing with LQD is detailed in
[5, 12]. In these works the mathematical basis for designing vague data awareness
genetic fuzzy systems -both classifiers and models- is shown. The LQD are assumed
as fuzzy data, where each α−cut represents an interval value for each data. It should
be noticed that the fitness functions to train classifiers and models are also fuzzy
valued functions when faced with LQD. Hence the learning algorithms should be
adapted to such fitness functions [15]. The ideas and principles previously shown
have been used in several applications with LQD, both with realistic and real world
data sets [13, 14, 18].

An approach for learning white box models when LQD is available is presented
in [22], where the variables are assumed with an unknown uncertainty value mod-
elled as a fuzzy number. A Multi Objective Simulated Annealing algorithm hy-
bridized with genetic operators is proposed (hereinafter, SAP), and a random tree
generation algorithm to create the individuals is carried out in the evolutionary al-
gorithm.

Nevertheless, the role that the tree generation algorithms play in the learning of
SAP when LQD is given has not been studied yet. This research compares different
tree generation algorithms to study the performance evolution. The remainder of
this manuscript is as follows. Firstly, a light description of the SAP approach for
learning white box models with LQD is included. Then, the different tree generation
methods employed in this comparison are detailed. The experiments and the results
are discussed next, while in the last section the conclusions are drawn and the future
work is proposed.

2 White Box Models SAP Learning With LQD

Soft Computing includes the set of techniques that allow learning models using hte
knowledge in the data [1, 4, 16, 23]. There are several uncertainty sources in data
gathered from real processes [7]. In this study, we adopt the study of data which has
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been gathered as crisp data but that are highly imprecise, i.e., the data gathered from
light sensors [6, 21, 20]. In [22] a SAP approach for learning white box models from
this kind of data is presented.

In that study, the representation of the vagueness in a GP model is represented by
two constants C− and C+ assigned to each imprecise variable which evolves in the
learning process. These constants represent the limits of a triangular membership
function for an α-cut= 0 which is associated with each imprecise variable. Let us
suppose the training data set being the set {d j

i }, with i = {0, . . . ,D} for each of the
D variables Xi and j = {1, . . . ,N} and N the number of examples in the data set.
Then, whenever an imprecise variable Xi is evaluated for the example j, a fuzzy
number with a triangular fuzzy membership defined through the three following
values [d j

i −C−,d j
i ,d

j
i +C+] is returned. If symmetrical membership functions are

considered, only one constant per imprecise variable is needed. As in classical fuzzy
logic literature, crisp values from constants or from crisp variables are extended to
fuzzy singletons, so only operations with fuzzy numbers are required. In order to
reduce the computational cost, the solution presented in [18] is used, and evaluations
are calculated only for certain predefined α-cuts.

An individual in this study is a compound of the equation representation, the
constants vector and the specification of the uncertainty, which is provided with
the number of constants used to represent the uncertainty and the list of indexes of
the input variables in the dataset that are supposed to manage LQD. As in Genetic
Programming hybridized with Genetic Algorithms (hereinafter, GAP) models, the
equation representation consists of a nodes tree, each internal node corresponds with
a valid operator, and the leaf nodes correspond with a variable or a constant index.
The number of constants is predefined, so the constant vector in all individuals has
the same size. The first group of constants in the constant vector is assigned to the
uncertainty management. The generation of a nodes tree is the well-known random
strategy given by the GROW method [9].

Evolving GAP individuals introduce four genetic operators, two come from GP
evolution (the GP crossover and mutation) and two come from GA (GA crossover
and mutation). The GP operators introduce variability in the structure of the model,
in other words, the equation itself. The GA operators modify the vector of constants.
In all the cases, there is a predefined probability of carrying out each of these genetic
operators. In each run, the type of operation to carry out is chosen, that is only GP
or GA operations can take place, but never both in the same run. The fitness of an
individual is calculated as the mean squared error, which in fact is a fuzzy number.
To reduce the width of the intervals and to obtain models that include the desired
output crisp data two more objectives have also been considered, so multi-objective
techniques are needed. The evolutionary algorithm is the multi-objective simulated
annealing proposed in [14, 18].
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3 Tree-Generation Algorithms

Tree-creation plays an important role in GP algorithms since a good random tree-
creation is needed to create the number of trees that will compose the initial pop-
ulation and the subtrees used in subtree mutation. Besides, as stated in [11], tree
creation is also related with tree bloat, that is, the tendency of GP trees to grow
during the evolutionary process [17] which causes the slowdown of the evolution-
ary process by making individuals more resistant to change. This section discusses
the role of the tree generation methods when learning LQD. The above mentioned
SAP approach is used for learning models with such kind of data, and two different
techniques for tree generation are compared: the GROW and the PTC1 methods.

In [9] the so-called GROW GP tree-generation algorithm is described (see al-
gorithm 1). It has been widely used since its formulation despite having several
weaknesses. Although originally not designed to control the depth and the size of
the tree, it can be easily extended to do so. To generate a tree, the algorithm chooses
a node type with equal probability. The choice of a node includes the terminal and
non-terminal nodes. Once a node has been chosen, and attending to the arity of the
node, the algorithm moves to each of its operands and is executed recursively. This
process continues either until all the leaf nodes are terminal nodes, or either the
depth limit or the tree size limit is reached. In these two latter cases, the tree is filled
with terminal nodes.

Algorithm 1 Grow Algorithm
Initialize P0
Evaluate P0
while not stop criterion do

parents← selectParents (Pt)
offspring← variation (parents)
evaluate offspring (and if necessary Pt )
select the new population Pt+1 from Pt and offspring
t = t +1

end while

On the other hand, [11] offers an alternative tree-creation algorithm, the Prob-
abilistic Tree Creation 1 (PTC1). This algorithm gives the user control over the
expected tree size Etree, a method parameter. Instead of attempting to generate com-
pletely uniformly distributed tree structures, PTC1 allows user-defined probabilities
of appearance of functions within the tree plus a desired maximum depth D, pro-
viding in addition, very low computational complexity. However, PTC1 does not
provide any control over the variance in tree size generated, which limits its useful-
ness.

The PTC1, as described in [11] is as follows (see algorithm 2). The set of func-
tions F is divided into two disjoint subsets: terminals nodes set T , each one with
probability qt , and non-terminals nodes N, each one with probability qt . The recur-
sive method chooses between terminal and non-terminal nodes type for the current
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node with probability p (see Eq. 1), where bn is the arity of non-terminal n. When
a terminal node type is chosen, variable or constant is decided according to qt . In
case of non-terminal nodes, the node type will be selected according to qn. Each of
its operators is chosen recursively. Both {qt} and {qn} are given by the user.

p =
1− 1

Etree

∑n∈N qnbn
(1)

Algorithm 2 PTC1 Algorithm
PTC1 (depth d, probability p, maximum depth D)
Returns: a tree of depht ≤ D−d
if d = D then

return a terminal from T (by qt probabilities)
else if probability p then

Choose a non-terminal n from N (by qn probabilities)
for each argument a of n do

Fill a with PTC1 (d +1, p, D)
Return n with filled arguments

end for
else

Return a terminal from T (by qt probabilities)
end if

4 Experimentation and results

In the experimentation stage, the performance of GROW and PTC1 algorithms when
learning models with LQD is compared when both regression and time series prob-
lems are faced. Several different synthetic data set are generated, obviously, all of
them are LQD. In order to obtain such LQD, a two step procedure has been carried
out: firstly, the crisp data sets have been generated; secondly, the uncertainty have
been introduced to the data.

Up to four different problems are proposed, three of them correspond with re-
gression problems and one problem belongs to time series problems. One of the
differences among the two types of the problem is that in regression problems the
model can not be a function of the output variable, while in the time series problems
this variable can be included in the equations. Obviously, should the output variable
be included in an equation then it is mandatory that it has to be affected with one
delay operator at least. Nevertheless, the main difference between regression prob-
lems and time series problems relies on that the time series problems models should
be evaluated recursively, that is, the output at time t should be calculated using the
previously calculated values of the output variable.
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The regression problems are defined through f1, f2 and f3 in Table 1, while f4
is the equation of the output variable and represents a time series problem. In all
the cases, four input variables are considered ({x0,x1,x2,x3} in Table 1). Recall that
the time, represented as t, is not an input variable of the data sets but is used to
calculate the values of the examples {xi,∀i}. Therefore, all example in each data set
includes the four above-mentioned variables and the output variable calculated with
the corresponding formulae fi.

The second step for generating the LQD data sets is the aggregation of uncer-
tainty to the data. Uncertainty is generated as follows: for each variable in an exam-
ple, a random values in the range [−1e−4,2e−4] is added. All the involved variables
in a data set are affected, including the output variable. In all the problems, the
variables are parameterized as imprecise.

Table 1 Formulae for the data sets generation.

f1 = x1 + x0 ∗ (x2−0.5) t = {1, . . . ,100}
f2 = 2∗ x1 ∗ x2 x0 = abs(cos(t))
f3 = cos(x0)∗ (x2− x1) x1 = abs(sin(t))
f4 = 2∗ x2 ∗delay( f4) x2 = abs(cos(t)∗ sin(t))

x3 = random in the range [0,1]

The parameters to be used are presented in Table 2. The number of iterations
is relatively small for this kind of problems in order to determine if the algorithms
are able to find good models in the whole search space when the temperature in the
Simulated Annealing is still high. It is worth noting that the total number of gener-
ations is fixed to 1000 and that each experiment is artificially stopped at a certain
iteration. This is due to the use of simulated annealing and its temperature evolution
parameter: if a reduced number of iterations is fixed then the whole temperature
variation will be covered, thus the variability of models in the SA will be penalized.
The aim of this is to evaluate how the algorithms improves when the temperature is
still high.

Results from experiments are shown in Table 3 and Table 4. In the former, the
results of the individual with lower mean squared error (MSE) is shown. In the
latter, the MSE of the individual closer to the point (0,0,0) is shown. From results
it can easily be extracted that both methods are valid for evolving SAP models.
Even though the initial individual is initialized far enough from the suboptimal, the
ability of the generation methods to find models in the whole search space seems to
be guaranteed. The main drawback of GROW is that it needs more iterations, while
the PTC1 will probably have a somewhat lower error level. This is mainly due to the
knowledge of the domain expressed as the operators probability. But besides, this
benefit is twofold: if the probability distribution is not suitable the obtained error of
the method will be higher.
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Table 2 Parameters used in the experimentation stage. When LQD is assumed, all the variables
are set as imprecise variables. In all the cases symmetrical triangular membership functions are
used, so only one constant in the GA constants vector is needed per variable. Whenever time series
learning is carried out the models are evaluated recursively.

Parameter Value Parameter Value
α−cut 0.95 population size 50

Constants range [-10,10] GP mutation prob. 0.25
C− ==C+ range [0, 0.01] % GP crossover prob. 1

SA ∆ value 0.1 GA mutation prob. 0.5
SA initial temperature 1 GP crossover prob. 1
SA final temperature 0 stop generation {50, 100, 300}
PTC1 Constant prob. 0.3 generations 1000

PTC1 Operators probability + 0.145 - 0.145 * 0.145 / 0.145 max 0.08
min 0.08 delay 0.1 sin 0.08 cos 0.08

Fitness functions
MSE + number of Maximum depth

5covered examples +
mean output width

No of GA constants 7 Maximum size 5

Table 3 Experimentation results: comparison of lower MSE values found. Results shown should
be multiplied by 10−3. DS and Itera stand for data set and number of iterations carried out, respec-
tively.

DS Itera Initial MSE Lower MSE found
GROW PTC1 GROW PTC1

f1

50 [3.348, 3.353] [2.097, 2.123] [0.2763, 0.2940] [ 0.2743, 0.2760]
100 [4.175, 4.186] [115.2, 119.3] [0.2635, 0.2875] [0.2660, 0.2821]
300 [9.351, 9.781] [3.725, 3.840] [0.2707, 0.2779] [0.2051, 0.2412]

f2

50 [1.204, 1.246] [2.409, 2.541] [0.226, 0.230] [0.357, 0.360]
100 [1.506, 1.521] [13.379, 13.699] [0.227, 0.232] [0.165, 0.188]
300 [5741.45, 137350] [1952.27, 696342] [0.210, 0.246] [0.210, 0.210]

f3

50 [10.432, 10.642] [3.173, 3.234] [0.0085, 0.0132] [ 0.0064, 0.0167]
100 [10.431, 10.641 ] [4.570, 4.600] [0.0085, 0.0132] [0.0104, 0.0109]
300 [16.951, 20.167] [8.669, 8.825] [0.0093, 0.0122] [0.0065, 0.0165]

f4

50 [8.508, 8.551] [6.068, 6.307] [0.779, 0.857] [0.668, 0.681]
100 [10.073, 10.332] [ 2024.89, 1439640] [0.811, 0.823] [0.807, 0.854]
300 [4.849, 4.870] [7.483, 7.627] [0.669, 0.714] [0.644, 0.657]

5 Conclusions and future work

The relevance of the tree generation algorithms in SAP learning problems with
LQD has been studied. A SAP approach that makes use of fuzzy fitness functions is
proposed. The Multi-Objective Simulated Annealing algorithm is used as the SAP
learning evolutionary strategy. Consequently, the relevance of the tree generation
methods is focused on the first generations due to the temperature grading and the
need to search in the whole variables space. Two algorithms have been compared,
the GROW and the PTC1, and both of them behave in a similar way. The PTC1 has
slightly lower error values than the GROW but needs a-priori knowledge in setting
the operators probability distribution. Future work includes the study of statistics
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Table 4 Experimentation results: comparison of MSE values when all the fitness values have the
same relevance and the nearest to the origin individual found is chosen. Results shown should be
multiplied by 10−3. DS and Itera stands for data set and number of iterations carried out, respec-
tively.

DS Itera Initial MSE Lower MSE found
GROW PTC1 GROW PTC1

f1

50 [3.348, 3.353] [2.097, 2.123] [1.578, 1.595] [0.301, 0.302]
100 [4.175, 4.186] [115.2, 119.3] [0.264, 0.287] [0.266, 0.282]
300 [9.351, 9.781] [3.725, 3.840] [0.301, 0.302] [0.272,0.278]

f2

50 [1.204, 1.246] [2.409, 2.541] [1.804, 1.820] [0.693, 0.751]
100 [1.506, 1.521] [13.379, 13.699] [0.227, 0.232] [0.535, 0.591]
300 [5741.45, 137350] [1952.27, 696342] [1.570, 1.585] [0.924, 1.015]

f3

50 [10.432, 10.642] [3.173, 3.234] [1.785, 1.786] [2.482, 2.484]
100 [10.431, 10.641 ] [4.570, 4.600] [1.784, 1.786] [1.678, 1.679]
300 [16.951, 20.167] [8.669, 8.825] [1.126, 1.359] [0.0065, 0.0165]

f4

50 [8.508, 8.551] [6.068, 6.307] [1.313, 1.346] [1.853, 1.894]
100 [10.073, 10.332] [ 2024.89, 1439640] [4.462, 4.472] [1.776, 1.781]
300 [4.849, 4.870] [7.483, 7.627] [1.338, 1.338] [1.253, 1.258]

with fuzzy fitness functions, so the typical cross validations test could be carried
out. Also, the study of the evolution of the diversity that each of the tree genera-
tion algorithms induces through the temperature evolution in the MOSA learning
process, should be considered.
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