
An Study of the Tree Generation Algorithms in
Equation Based Model Learning with Low

Quality Data

Alba Berzosa1, José R. Villar2, Javier Sedano1, Marco Garćıa-Tamargo2, and
Enrique de la Cal2

1 Instituto Tecnológico de Castilla y León, Lopez Bravo 70, Pol.Ind.Villalonquéjar
09001 Burgos (SPAIN) {alba.berzosa, javier.sedano}@itcl.es

2 Computer Science Department, University of Oviedo, Campus de Viesques s/n
33204 Gijón (SPAIN) {villarjose, marco, delacal}@uniovi.es

Abstract. The undesired effects of data gathered from real world can
be produced by the noise in the process, the bias of the sensors and
the presence of hysteresis, among other uncertainty sources. In previous
works the learning models using the so-called Low Quality Data (LQD)
has been studied in order to analyze the way to represent the uncertainty.
It makes use of genetic programming and the multiobjective simmulated
annealing heuristic, which has been hybridized with genetic operators.
The role of the tree generation methods when learning LQD was studied
in that paper. The present work deals with the analysis of the generation
methods relevance in depth and provides with statistical studies on the
obtained results.

Keywords: Genetic Programming, Genetic Algorithm and Program-
ming, Low Quality Data, Multiobjective Simulated Annealing

1 Introduction

With the scarce energy sources and the worsening environmental pollution, how
to use the existing energy is becoming a very important challenge in various
fields of modern engineering [?,?,?]. For example, notorious efforts have been
made within the area of lighting control systems, whose aim is to control the
electrical power consumption for the ballast in the installation so the luminance
complies with the regulations. In [?,?] a lighting control system was considered
to show the relevance of the uncertainty for an efficient energy use. The typi-
cal control loop includes a light sensor, the light ballasts and a light controller.
The sensors measure the amount of light in a room, but they have some draw-
backs: they operate with hysteresis and saturation [?] and their measurements
depend on the light sensor unit. In the studied literature, when obtaining models
for simulation, only crisp values are regarded as the measurements from light
sensors. Obviously, the inputs and outputs of the light sensor models obtained
are also crisp variables. But several studies have presented the decrease in the
performance of crisp algorithms as data uncertainty increases [?].



An approach for learning white box models when LQD is available is pre-
sented in [?,?], where the variables are assumed with an unknown uncertainty
value modelled as a fuzzy number. The white box models include an equation
-represented as a nodes tree- setting the relationship of the output variable with
the feature space and a set of constants. Some of the constants are use to model
the vagueness of the variables and others are used as terminal nodes in the
equation. A genetic programming hybridized with Genetic Algorithm (hereafter
GAP) which is evolved by means of a Multi Objective Simulated Annealing algo-
rithm (hereinafter MOSA) is proposed, and a random tree generation algorithm
to create the individuals is carried out in the evolutionary algorithm. A MOSA
hybridized with genetic operators is proposed (hereinafter, SAP), and a random
tree generation algorithm to create the individuals is carried out in the evolu-
tionary algorithm. The results show that the proposed algorithm remails with
the same performance index even though LQD is given. The relevance of three
generation algorithms in MOSA hybridized with genetic operators is studied in
[?]. The approach makes use of fuzzy fitness funcions. Consequently, the rele-
vance of the tree generation methods is focused on the first generations due to
the temperature grading and the need to search in the whole variables space.
Two algorithms were compared. On the one hand, the so-called GROW GP tree
generation algorithm, described in [?], chooses a node type with equal prob-
ability, including the terminal and non-terminal ones. On the other hand, [?]
offers an alternative tree-creation algorithm, the Probabilistic Tree Creation 1
(PTC1), which gives the user control over the expected tree size, the maximum
deth and the probabilities of appearance of functions within the tree, providing
in addition, very low computational complexity.

The present work aims to extend it with the representation and comparison
of the model learning evolution when genetic programming and uncertainty are
considered for the two tree generation methods proposed, GROW and PTC1.
For this purpose, an statistical study of the results has been done. The remainder
of this manuscript is as follows. Firstly, a description of the simulated annealing
approach for learning white box models with LQD is included. Then, the dif-
ferent tree generation methods employed in this comparison are detailed. The
experiments and the results are discussed next, while in the last section the
conclusions are drawn and the future work is proposed.

2 White Box Models SAP Learning With LQD

Soft Computing includes the set of techniques that allow learning models using
the knowledge in the data [?,?,?,?]. There are several uncertainty sources in data
gathered from real processes [?]. In this work, we study data which has been
gathered as crisp data but that are highly imprecise, i.e., the data gathered from
light sensors [?,?]. In [?] a SAP approach for learning white box models from this
kind of data is presented.In that study, the representation of the vagueness in a
GP model is represented by two constants C− and C+ assigned to each imprecise
variable which evolves in the learning process. These constants represent the



limits of a triangular membership function for an α-cut= 0 which is associated
with each imprecise variable. Let us suppose the training data set being the set
{dji}, with i = {0, . . . , D} for each of the D variables Xi and j = {1, . . . , N}
and N the number of examples in the data set. Then, whenever an imprecise
variable Xi is evaluated for the example j, a fuzzy number with a triangular fuzzy
membership defined through the three following values [dji −C−, d

j
i , d

j
i +C+] is

returned. If symmetrical membership functions are considered, only one constant
per imprecise variable is needed. As in classical fuzzy logic literature, crisp values
from constants or from crisp variables are extended to fuzzy singletons, so only
operations with fuzzy numbers are required. In order to reduce the computational
cost, the solution presented in [?] is used, and evaluations are calculated only
for certain predefined α-cuts.

An individual in this study is a compound of the equation representation, the
constants vector and the specification of the uncertainty, which is provided with
the number of constants used to represent the uncertainty and the list of indexes
of the input variables in the dataset that are supposed to manage LQD. As in
Genetic Programming hybridized with Genetic Algorithms (hereinafter, GAP)
models, the equation representation consists of a nodes tree, each internal node
corresponds with a valid operator, and the leaf nodes correspond with a variable
or a constant index. The number of constants is predefined, so the constant
vector in all individuals has the same size. The first group of constants in the
constant vector is assigned to the uncertainty management. The generation of a
nodes tree is the well-known random strategy given by the GROW method [?].

Evolving GAP individuals introduce four genetic operators, two come from
GP evolution (the GP crossover and mutation) and two come from GA (GA
crossover and mutation). The GP operators introduce variability in the structure
of the model, in other words, the equation itself. The GA operators modify
the vector of constants. In all the cases, there is a predefined probability of
carrying out each of these genetic operators. In each run, the type of operation
to carry out is chosen, that is only GP or GA operations can take place, but
never both in the same run. The fitness of an individual is calculated as the
mean squared error, which in fact is a fuzzy number. To reduce the width of
the intervals and to obtain models that include the desired output crisp data
two more objectives have also been considered, so multi-objective techniques are
needed. The evolutionary algorithm is the MOSA proposed in [?,?].

3 Tree-Generation Algorithms

Tree-creation plays an important role in GP algorithms since a good random
tree-creation is needed to create the number of trees that will compose the
initial population and the subtrees used in subtree mutation. Besides, as stated
in [?], tree creation is also related with tree bloat, that is, the tendency of GP
trees to grow during the evolutionary process [?] which causes the slowdown of
the evolutionary process by making individuals more resistant to change. This
section discusses the role of the tree generation methods when learning LQD.



The above mentioned SAP approach is used for learning models with such kind of
data, and two different techniques for tree generation are compared: the GROW
and the PTC1 methods.

In [?] the so-called GROW GP tree-generation algorithm has been widely
used since its formulation despite having several weaknesses. Although originally
not designed to control the depth and the size of the tree, it can be easily
extended to do so. To generate a tree, the algorithm chooses a node type with
equal probability. The choice of a node includes the terminal and non-terminal
nodes. Once a node has been chosen, and attending to the arity of the node,
the algorithm moves to each of its operands and is executed recursively. This
process continues either until all the leaf nodes are terminal nodes, or either the
depth limit or the tree size limit is reached. In these two latter cases, the tree is
filled with terminal nodes.

On the other hand, [?] propose an alternative tree-creation algorithm, the
Probabilistic Tree Creation 1 (PTC1). This algorithm gives the user control
over the expected tree size, a method parameter. Instead of attempting to gen-
erate completely uniformly distributed tree structures, PTC1 allows user-defined
probabilities of appearance of functions within the tree plus a desired maximum
depth D, providing in addition, very low computational complexity. However,
PTC1 does not provide any control over the variance in tree size generated,
which limits its usefulness. In this algorithm, the set of functions F is divided
into two disjoint subsets: terminals nodes set T , each one with probability qt,
and non-terminals nodes N , each one with probability qt. The recursive method
chooses between terminal and non-terminal nodes type for the current node with
probability p (see Eq. ??), where bn is the arity of non-terminal n. When a ter-
minal node type is chosen, variable or constant is decided according to qt. In
case of non-terminal nodes, the node type will be selected according to qn. Each
of its operators is chosen recursively. Both {qt} and {qn} are given by the user.

p =
1− 1

Etree∑
n∈N qnbn

(1)

4 Experimentation and results

In the experimentation stage, the performance of GROW and PTC1 algorithms
when learning models with LQD is compared when both regression and time
series problems are faced. Several different synthetic LQD data set are gener-
ated. In order to obtain such LQD, a two step procedure has been carried out:
firstly, the crisp data sets have been generated and then the uncertainty have
been introduced to the data. Four different problems are proposed, three of them
correspond with regression problems and one is a time series problems. In re-
gression problems the model can not be a function of the output variable, while
in the time series problems this variable can be included in the equations. The
output variable should be included in an equation and it must be affected with



a delay operator at least. Time series problems models should be evaluated re-
cursively, that is, the output at time t should be calculated using the previously
calculated values of the output variable. The regression problems are defined
through f1, f2 and f3 in Table ??, while f4 represents a time series problem. In
all the cases, four input variables are considered ({x0, x1, x2, x3}. The variable
time t is used to calculate the values of the examples {xi,∀i}. It is included the
output variable calculated with the corresponding formulae fi. The second step
for generating the LQD data sets is the aggregation of uncertainty to the data.
For each variable in an example, a random value in the range [−1e−4, 2e−4] is
added. All the involved variables in a data set are affected, including the output
variable, so that all the variables are parameterized as imprecise. The param-
eters used are presented in Table ??. Although the number of iterations is set
to 1000, data has been gathered each 200 iterations in order to determine the
fitness evolution during the simulated annealing run.

Table 1. Formulae for the data sets generation.

f1 = x1 + x0 ∗ (x2 − 0.5) t = {1, . . . , 100}
f2 = 2 ∗ x1 ∗ x2 x0 = abs(cos(t))
f3 = cos(x0) ∗ (x2 − x1) x1 = abs(sin(t))
f4 = 2 ∗ x2 ∗ delay(f4) x2 = abs(cos(t) ∗ sin(t))

x3 = random in the range [0, 1]

Table 2. Parameters used in the experimentation stage. When LQD is assumed, all the
variables are set as imprecise variables. In all the cases symmetrical triangular mem-
bership functions are used, so only one constant in the GA constants vector is needed
per variable. Whenever time series learning is carried out the models are evaluated
recursively.

Parameter Value Parameter Value

α−cut 0.95 population size 50

Constants range [-10,10] GP mutation prob. 0.25

C− == C+ range [0, 0.01] % GP crossover prob. 1

SA ∆ value 0.1 GA mutation prob. 0.5

SA initial temperature 1 GP crossover prob. 1

SA final temperature 0 stop generation {50, 100, 300}
PTC1 Constant prob. 0.3 generations 1000

PTC1 Operators probability
+ 0.145 - 0.145 * 0.145 / 0.145 max 0.08

min 0.08 delay 0.1 sin 0.08 cos 0.08

No of GA constants 7 Maximum size 5

Maximum depth 5



For both the GROW and the PTC1 methods with each of the four datasets,
ten runs have been carried out. Results are shown in Table ?? and Figure ??.
The former shows the values for the means of the MSE of the individuals with
the best value for the sum of squared values for the considered fitness in the
MOSA: the MSE (mean squared error), number of covered examples and mean
output width. On the other hand, in the depicted boxplots, it is shown that
PTC1 has a faster convergence than GROW as results are more stable during
the succesive iterations. Values for the medians when GROW is used are slightly
better than the ones for the PTC1 method, consequently, better results could
be obtained if the number of iterations is increased.

Table 3. Mean of the MSE values for the individuals with the best value of the fitness
sum in each of the ten runs performed for the four datasets. Results shown should be
multiplied by 10−3.

200 400 600 800 1000

Dataset GROW PTC1 GROW PTC1 GROW PTC1 GROW PTC1 GROW PTC1

f1 1.153 1.197 1.208 1.336 1.166 1.391 1.166 1.480 3.613 1.480

f2 12.254 3.096 11.677 2.751 11.637 2.751 11.557 3.076 0.628 1.611

f3 0.038 0.190 0.038 0.179 0.042 0.299 0.042 0.299 0.041 0.629

f4 2.529 2.591 3.076 2.440 2.359 2.206 2.170 2.490 2.138 2.553

5 Conclusions and future work

An statistical study on the results gathered from the run of two tree genera-
tion algorithms in SAP learning problems whith LQD has been studied. Data
has been gathered each 200 iterations in order to study the fitness evolution.
This study reveals that the choice of the suitable tree generation algorithm is
relevant to the obtained results. The algorithms used are the GROW and the
PTC1. Both behave in a similar way, nevertheless the PTC1 is shown to have a
better convergence, although the medians values obtained when GROW is used
are slighty better, so it can be assumed that if the number of iterations were
increased, the performance would improve. Future work includes the study of
the evolution of the diversity that each of the tree generation algorithms induces
through the temperature evolution in the MOSA learning process, should be
considered.

Acknowledgments. This research has been funded by the Spanish Ministry
of Science and Innovation, under project TIN2008-06681-C06-04, the Spanish
Ministry of Science and Innovation [PID 560300-2009-11], the Junta de Castilla
y Len [CCTT/10/BU/0002] and by the ITCL project CONSOCO.



   

   

Fig. 1. Boxplots for the values of the individuals with the best value of the fitness sum
in each of the ten runs performed for the four datasets.

References

1. J. Alcal-fdez, L. Snchez, S. Garca, M. J. Del Jesus, S. Ventura, J. M. Garrell,
J. Otero, J. Bacardit, V. M. Rivas, J. C. Fernndez, and F. Herrera. Keel: A
software tool to assess evolutionary algorithms for data mining problems ?

2. Berzosa Berzosa, José R. Villar, and Marco Sedano, Javier Garćıa-Tamargo. Tree
generation methods comparison in gap problems with low quality data. accepted for
publication in the Proceedings of the International Conference on Soft Computing
Models in Industrial and Environmental Applications SOCO’2011, Advances in
Intelligent and Soft Compputing Series, 2011.

3. E. Corchado and A. Herrero. Neural visualization of network traffic data for in-
trusion detection. Applied Soft Computing, 2010.

4. Scott Ferson, Vladik Kreinovich, Janos Hajagos, William Oberkampf, and Lev
Ginzburg. Experimental uncertainty estimation and statistics for data hav-
ing interval uncertainty. Technical report, Technical Report SAND2007-0939;
http://www.ramas.com/intstats.pdf, 2007.

5. Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano.
Identifying learners robust to low quality data. Informatica (Slovenia), 33(3):245–
259, 2009.

6. Robin De Keyser and Clara Ionescu. Modelling and simulation of a lighting control
system. Simulation Modelling Practice and Theory, 18(2):165 – 176, 2010.

7. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.



8. Danny H.W. Li, K.L. Cheung, S.L. Wong, and Tony N.T. Lam. An analysis of
energy-efficient light fittings and lighting controls. Applied Energy, 87(2):558 –
567, 2010.

9. Sean Luke. Two fast tree-creation algorithms for genetic programming. IEEE
Transactions on Evolutionary Computation, 4(3):274–283, September 2000.

10. Luciano Sánchez, M. Rosario Suárez, J. R. Villar, and Inés Couso. Mutual
information-based feature selection and partition design in fuzzy rule-based classi-
fiers from vague data. Int. J. Approx. Reasoning, 49:607–622, November 2008.

11. Javier Sedano, Leticia Curiel, Emilio Corchado, Enrique de la Cal, and José R.
Villar. A soft computing method for detecting lifetime building thermal insulation
failures. Integr. Comput.-Aided Eng., 17:103–115, April 2010.

12. Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic
programming. In Proceedings of the First Annual Conference on Genetic Pro-
gramming, GECCO ’96, pages 215–223, Cambridge, MA, USA, 1996. MIT Press.

13. José Villar, Enrique de la Cal, Javier Sedano, and Marco Garćıa-Tamargo.
Analysing the low quality of the data in lighting control systems. In Manuel
Graña Romay, Emilio Corchado, and M. Garćıa Sebastián, editors, Hybrid Artifi-
cial Intelligence Systems, volume 6076 of Lecture Notes in Computer Science, pages
421–428. Springer Berlin / Heidelberg, 2010.

14. José Villar, Adolfo Otero, José Otero, and Luciano Sánchez. Taximeter verification
with gps and soft computing techniques. Soft Comput., 14:405–418, October 2009.

15. José R. Villar, Alba Berzosa, Enrique de la Cal, Javier Sedano, and Marco Garćıa-
Tamargo. Multi-objecve simulated annealing in genetic algorithm and program-
ming learning with low quality data. Submitted to Neural Computing, 2010.

16. José R. Villar, Enrique de la Cal, and Javier Sedano. A fuzzy logic based efficient
energy saving approach for domestic heating systems. Integrated Computer-Aided
Engineering, 16:151–163, April 2009.

17. W.-D. Yu and Liu Y.-C.Sedano. Ahybridization of cbr and numeric soft computing
techniques for mining of scarce construction databases. Autom. in Constr., 15:33–
46, 2006.


