
Comparison of training set reduction techniques
for Pittsburgh approach Genetic Classifier

Systems

Jaume Bacardit and Josep Maria Garrell

Enginyeria i Arquitectura La Salle, Universitat Ramon Llull.
Psg. Bonanova 8, 08022-Barcelona, Catalonia, Spain.

{jbacardit,josepmg}@salleURL.edu

Abstract. In this paper we deal with the problem of reducing the com-
putational cost of a Genetic Based Machine Learning (GBML) system
based on the Pittsburgh Approach. In previous work we studied an incre-
mental learning scheme that divided the training set in several strata and
changed the used strata at each iteration. This scheme reduced the com-
putational cost more than expected and even managed to improve the
accuracy of the system. In this paper we compare our previous scheme
with two alternative methods.

1 Introduction

The application of Genetic Algorithms (GA) [1] to classification problems is
known as Genetic Based Machine Learning (GBML). One of the traditional
ways of addressing it has been the Pittsburgh approach, exemplified by GABIL
[2]. One of the main drawbacks of the systems based on this approach is the high
computational cost.

One way to reduce this cost is by using a subset of the training set used for
fitness computations. In a previous paper [3] we studied some incremental learn-
ing schemes that changed the subset of instances used for fitness computations
through the iterations. The scheme performing better was called Incremental
Learning with Alternating Strata - ILAS which managed to achieve better ac-
curacy that the non-incremental system. In this paper we compare the ILAS
scheme with two alternative methods to reduce the computational cost of the
system:

– Generation-Wise Sampling (GWS): Selecting a random sample of the train-
ing set for each iteration of the evolutionary process.

– Accuracy-Classification Case Memory (ACCM) [4]: A prototype selection
method to reduce a priori the training set. The selected method comes from
the Case-Based Reasoning field and it is a Case Base Maintenance method
based on Rough Sets.

2 Framework

Our learning system is called GAssist (Genetic Algorithms based claSSIfier syS-
Tem) and it is a Pittsburgh style classifier system descendant of GABIL [2]. The
details of the system are described in [3].

Fig. 1. Incremental Learning with Alternating Strata

Procedure Incremental Learning with Alternating
Strata

Input : Examples, NumStrata, NumIterations
Initialize GA
Reorder Examples in NumStrata parts of equal
class distribution
Iteration = 0
SegmentSize = size(Examples)/NumStrata
While Iteration < NumIterations

If Iteration = NumIterations − 1 Then T rainSet = Examples
Else

CurrentSegment = Iteration mod NumStrata
T rainSet= examples from

Examples[CurrentSegment · SegmentSize] to
Examples[(CurrentSegment + 1) · SegmentSize]

EndIf
Run one iteration of the GA with T rainSet
Iteration = Iteration + 1

EndWhile
Output : Best individual (set of rules) from GA population

3 Incremental Learning with Alternating Strata (ILAS)

This scheme splits the training examples into n strata and alternatively uses
them in a round-robin manner through the iterations of the GA evolution pro-
cess, changing the used stratum at each iteration. The pseudocode of this scheme
can be seen in figure 1.

In our previous paper [3] we reported accuracy increases of the ILAS scheme
over a non-incremental one for several datasets. Our hypothesis for this fact is
based on how the population of the GA adapt itself to the environment that we
create by changing the used training set at each iteration. The best way to adapt
to this environment is by creating generalized individiuals, as these individuals
will have more chances of performing well with every stratum used. These better
generalized individuals usually are more reduced than the ones generated by the
non-incremental system and, therefore, faster to evaluate. This is the reason of
having a computational cost reduction higher than expected.

4 Generation-Wise Sampling (GWS)

The next incremental scheme tested selects, for each generation of the GA, a
sample of approximately |T |/n instances (where |T | is the size of the training
set) of equal class distribution than the whole set. Therefore, its performance
should be similar to the ILAS scheme with n strata. The code of the algorithm
can be seen in figure 2.

5 ACCM

ACCM is a case base maintenance method that uses the Rough Sets theory to
extract two measures of relevance from each training instance. These measures
are the basis of a competence model based on the concepts of coverage (the set
of cases that can be correctly classified by this instance) and reachability (the
set of cases that can be used to correctly classify this case). Using these two
concepts ACCM computes whether it is necessary to maintain or delete each
instance. An extensive explanation of the algorithm can be found in [4].

6 Test suite

We have selected six problems from the well-known University of California
at Irvine (UCI) repository [5]. The selected problems are: “Wisconsin Breast
Cancer” (bre), “Ionosphere” (ion), “Pima-indians-diabetes” (pim), “Pen-Based

Fig. 2. Generation-Wise Sampling

Procedure Generation-Wise Sampling
Input : Examples, Reduction, Classes, NumIterations
Initialize GA
{Examples1, Examples2, . . . , ExamplesClasses} = Split
Examples into Classes sets with the examples belonging to
each class
Iteration = 0
While Iteration < NumIterations

Sample = �
If Iteration = NumIterations − 1 Then Sample = Examples
Else

ForEach i in Classes Do
SampleSize = |Examplesi|/Reduction
While SampleSize >= 1

Select a random instance from Examplesi without replacement
Add instance to Sample
SampleSize = SampleSize − 1

EndWhile
If SampleSize > 0 Then

If rand(0, 1) < SampleSize Then Add instance to Sample
EndIf

EndIf
EndForEach

EndIf
Run one iteration of the GA with Sample
Iteration = Iteration + 1

EndWhile
Output : Best individual (set of rules) from GA population

Recognition of Handwritten Digits” (pen), “SatImage” (sat) and “Thyroid Dis-
ease” (thy). The last three problems have a number of instances much higher that
the others (ranging from 6435 to 10992 instances). These are selected because
the computational cost becomes critical in problems like these.

The partition of the examples into the training and testing sets was done us-
ing stratified ten-fold cross-validation. Each test is repeated 15 times with differ-
ent seeds. The ILAS and GWS schemes are tested with 2, 3 and 4 strata/reduction
degrees for the small problems (pim,bre and ion) and 5, 10 and 20 for the big
ones (thy,sat and pen). The ACCM method was not tested with the big prob-
lems because the train set reduction (81%) is not enough to achieve a reasonable
computational cost. The non-incremental scheme (NON) is also included as a
baseline.

7 Results

The aim of these tests is to compare the ILAS incremental learning scheme
against GWS and ACCM in two aspects: accuracy and computational cost.
Therefore, for each method and test problem we show the averaged cross-validation
accuracy and speedup. The meaning of the speedup is the ratio between the
non-incremental and incremental schemes run times. The implicit generalization
pressure described previously is the reason that most speedups are higher than
expected. Results are shown in table 1.

From a global point of view we can see that the GWS sampling scheme
presents a very similar behavior to ILAS, in both accuracy and speedup. Looking
at the results of the ACCM method we can see that it fells behind the other
two methods in accuracy and, specially, in computational cost reduction. We
think that the reason of the accuracy drop is that ACCM was designed as a case
base maintenance (CBM) method from a CBR system using a nearest-neighbour
classifier. The goal of ACCM method is to reduce noise and redundancy in the
training set. A GBML system, however, benefits from redundancy because the
rules that survive along the GA iterations are the ones that have best coverage,
and redundancy helps the good rules survive because they become more general.

Table 1. Results of the comparative tests
Problem scheme accuracy speedup

bre

NON 95.6% —
ILAS2 95.9% 2.72
ILAS3 96.0% 4.63
ILAS4 95.8% 5.70
GWS2 95.8% 2.46
GWS3 95.8% 4.43
GWS4 95.9% 5.76
ACCM 95.2% 1.30

ion

NON 89.5% —
ILAS2 90.2% 2.72
ILAS3 90.6% 4.63
ILAS4 91.0% 5.70
GWS2 90.6% 2.46
GWS3 90.9% 4.43
GWS4 90.9% 5.76
ACCM 89.9% 1.18

pim

NON 75.2% —
ILAS2 74.8% 2.67
ILAS3 74.6% 4.41
ILAS4 74.0% 5.85
GWS2 74.5% 2.44
GWS3 74.2% 4.23
GWS4 73.9% 5.88
ACCM 72.6% 1.31

Problem scheme accuracy speedup

pen

NON 79.9% —
ILAS5 79.9% 5.18
ILAS10 79.4% 10.37
ILAS20 78.9% 20.44
GWS5 79.6% 4.92
GWS10 79.3% 9.72
GWS20 79.4% 18.75

sat

NON 79.9% —
ILAS5 79.9% 4.73
ILAS10 79.4% 9.04
ILAS20 78.9% 16.54
GWS5 79.6% 4.62
GWS10 79.3% 8.84
GWS20 79.4% 15.80

thy

NON 93.6% —
ILAS5 93.7% 5.20
ILAS10 93.6% 9.84
ILAS20 93.5% 18.52
GWS5 93.6% 4.24
GWS10 93.5% 8.13
GWS20 93.5% 15.23

8 Conclusions and further work

In this paper we have extended our prior work in reducing the computational
cost of Pittsburgh approach Genetic-Based Machine Learning systems by means
of incremental learning methods. This extension has consisted on two alterantive
methods: sampling (Generation-Wise Sampling) and a Case-Base Maintenance
method based on Rough Sets. The tests indicate that the GWS method has
very similar behavior to ILAS, and also show that the ACCM method is not
well suited for a GBML system.

As a further work in studying the behavior of the ILAS and GWS methods
we could analyze the diversity of the population. Also, we could refine the GWS
method by using some statistical test to help choosing a better sample. Finally,
it would be interesting to analyze the datasets with some complexity metrics in
order to find a correlation between the maximum run time reduction before the
accuracy drop and the characteristics of the problem.

Acknowledgments
The authors acknowledge the support provided under grant numbers 2001FI 00514,

TIC2002-04160-C02-02, TIC 2002-04036-C05-03 and 2002SGR 00155. Finally we would

like to thank Enginyeria i Arquitectura La Salle for their support to our research group.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press (1975)

2. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept
learning. Machine Learning 13 (1993) 161–188

3. Bacardit, J., Garrell, J.M.: Incremental learning for pittsburgh approach classifier
systems. In: Proceedings of the “Segundo Congreso Español de Metaheuŕısticas,
Algoritmos Evolutivos y Bioinspirados.”. (2003) 303–311

4. Salamó, M., Golobardes, E.: Hybrid deletion policies for case base maintenance. In:
Proceedings of FLAIRS-2003. (2003) 150–154

5. Blake, C., Keogh, E., Merz, C.: Uci repository of machine learning databases (1998)
(www.ics.uci.edu/mlearn/MLRepository.html).

