Predicting Student Grades in Learning Management Systems with Multiple Instance Genetic Programming

Amelia Zafra and Sebastián Ventura {azafra,sventura}@uco.es Computer Science and Numerical Analysis Department, University of Cordoba

Abstract. The ability to predict a student's performance could be useful in a great number of different ways associated with university-level learning. In this paper, a grammar guided genetic programming algorithm, G3P-MI, has been applied to predict if the student will fail or pass a certain course and identifies activities to promote learning in a positive or negative way from the perspective of Multiple Instance Learning (MIL). Computational experiments compare our proposal with the most popular techniques of MIL. Results show that G3P-MI achieves better performance with more accurate models and a better trade-off between such contradictory metrics as sensitivity and specificity. Moreover, it adds comprehensibility to the knowledge discovered and finds interesting relationships that correlate certain tasks and the time devoted to solving exercises with the final marks obtained in the course.

1 Introduction

The design and implementation of the virtual learning environment (VLE) or e-learning platforms have grown exponentially in the last years, spurred by the fact that neither students nor teachers are bound to a specific location and that this form of computer-based education is virtually independent of any specific hardware platforms [1]. These systems can potentially eliminate barriers and provide: flexibility, constantly updated material, student memory retention, individualized learning, and feedback superior to the traditional classroom, thus becoming an essential accessory to support both the face-to-face classroom and distance learning.

The use of these applications accumulates a great amount of information because they can record all the information about students' actions and interactions in log files and data sets. Nowadays, there has been a growing interest in analyzing this valuable information to detect possible errors, shortcomings and improvements in student performance and discover how the student's motivation affects the way he or she interacts with the software [2-4]. All previous studies have used traditional supervised learning to represent the problem. However, such representation generates instances with many missing values because the information about the problem is incomplete. Each course has different types and numbers of activities and each student carries out the number of activities considered most interesting, dedicating more or less time to resolve them. In this context, the Multiple Instance Learning (MIL) representation makes possible a more appropriate representation of available information. MIL stores the general information of each pattern by means of bag attributes and specific information about the student's work on each pattern by means of a variable number of instances. This paper tackles the problem from a MIL perspective and presents a grammar guided genetic programming (G3P) algorithm, G3P-MI, to solve it. The most representative

paradigms in MIL are compared to our proposal. Experimental results show that G3P-MI is more effective in obtaining a more accurate model as well as in finding a trade-off between contradictory measurements like sensitivity and specificity. Moreover, it adds comprehensibility to the knowledge discovered, allowing interesting relationships between activities, resources and results to be obtained.

The paper is organized as follows. Section 2 introduces multi-instance learning and section 3 presents the problem of classifying students' performance from a multi-instance perspective. Section 4 reports on experiment results which compare our proposal to the most representative multiple instance learning paradigms. Finally, Section 5 summarizes the main contributions of this paper and suggests some future research directions.

2 Multiple Instance Learning

Multiple Instance Learning (MIL) introduced by Dietterich et al. [5] consists of generating a classifier that will correctly classify unseen patterns. The main characteristic of this learning is that the patterns are bags of instances where each bag can contain different numbers of instances. There is information about the bags because a bag receives a special label, but the labels of instances are unknown. According to the standard learning hypothesis proposed by Dietterich et al. [6] a bag is positive if and only if at least one of its instances is positive, and it is negative if none of its instances produce a positive result. The key challenge in MIL is to cope with the ambiguity of not knowing which of the instances in a positive bag is really a positive example and which is not. In this sense, this learning problem can be regarded as a special kind of supervised learning problem where the labeling information is incomplete.

This learning framework is receiving growing attention in the machine learning community because numerous real-world tasks can be very naturally represented as multiple instance problems. If we go through them, we can find specifically developed algorithms for solving MIL problems [5,6,7] or, on the other hand, contributions which adapt popular machine learning paradigms to the MIL context, such as multi-instance lazy learning algorithms [8], multi-instance tree learners and multi-instance rule inducers [9], multi-instance neural networks [10], multi-instance kernel methods [11], multi-instance ensembles [12] and finally, a multi-instance evolutionary algorithm [13].

3 Predicting Students' performance based on the e-learning Platform

Predicting student's performance based on work they have done on the Virtual Learning Platform is an issue under much research. This problem shows interesting relationships that can suggest activities and resources to students and educators that can favour and improve both their learning and effective learning process. Thus, it can be determined if all the additional material provided to the students (web-based homework) helps them to assimilate the concepts and subjects developed in the classroom or if some activities are not useful to improve the final results.

The problem could be formulated as follows. A student could do different activities in a course to enable him to acquire and strengthen the concepts acquired in class. Later, at

the end of the course, there is a final exam. A student with a final score higher or equal than a minimum required passes a module, while a student with a mark lower than that minimum fails that lesson or module. With this premise, the problem consists of predicting if the student will pass or fail the module considering the time dedicated, the number and type of activities done for the student during the course.

The types of activities considered in this study are quizzes, assignments and forums. They have shown its effectiveness to strengthen the learning in a lot of studies. A summary of the information available for each activity in our study is shown in Table1.

ACTIVITY	ATTRIBUTE NAME	ATTRIBUTE DESCRIPTION	
Aggioumout	numberAssignment	Number of practices/tasks done by the user in the course.	
Assignment	timeAssignment	Total time in seconds that the user has been in the assignment.	
	numberPosts	Number of messages sent by the user forum.	
Forum	numberRead	Number of messages read by the user forum.	
	timeForum	Total time in seconds that the user has been in the forum.	
	numberQuiz	Number of quizzes seen by the user.	
Ouiz	numberQuiz_a	Number of quizzes passed by the user.	
Quiz	numberQuiz_s	Number of quizzes failed by the user.	
	timeQuiz	Total time in seconds that the user has been in the quiz.	

Table1. Information summary considered in our study

3.1 MIL representation of the problem

In this problem, each student can execute a different number of activities: a hard-working student may do all the activities available but, on the other hand, there can be students who have not done any activities. Moreover, there are some courses with only a few activities along with others with an enormous variety and number of them. MIL allows a representation that adapts itself perfectly to the concrete information available for each student, eliminating the missing values that abound when traditional representation is used. In MIL representation, each pattern represents a student registered in a course. Each student is regarded as a bag which represents the work carried out. Each bag is composed of one or several instances. Each instance represents the different types of work that the student has done. Therefore, each pattern/bag will have as many instances as the different types of activities done by the student. This representation fits the problem completely because general information about the student and course is stored as bag attributes, and variable information is stored as instance attributes.

Each instance is divided into 3 attributes: type of Activity, number of exercises in that activity and the time devoted to completing it. Eight activity types are considered which are *ASSIGNMENT_S*, number of assignments that the student has submitted, *ASSIGNMENT* referring to the number of times the student has visited the activity without submitting finally any file. *QUIZ_P*, number of quizzes passed by the student,

QUIZ_F number of quizzes failed by the student, QUIZ referring to the times the student has visited a survey without actually answering it, FORUM_POST number of messages that the student has submitted, FORUM_READ number of messages that the student has read and FORUM that refers to the times the student has seen different forums without entering them. In addition, the bag contains three attributes, student identification, course identification and the final mark obtained by the student in that course. A summary of the attributes that belong to the bag and to the instances is presented in Table2.

BAG		INSTANCE		
User-Id	Student identifier.	TypeActivity	Type of activity which represents the instance. The type of activities considered are eight: FORUM read, written or consulted, QUIZ passed or failed and ASSIGNMENT submitted or consulted.	
Course	Course identifier.	timeActivity	Time spent to complete the tasks of this type of activity.	
FinalMark	Final mark obtained by the student in this course.	numberActivity	Number of activities of this type completed by the student.	

Table2. Information about bags and information about instances

4 Experimentation and Results

Experiments compare the performance of G3P-MI to other MIL techniques. All experiments are carried out using 10-fold stratified cross validation and 10 different runs for each partition are executed to measure the performance of evolutionary algorithm. First, the problem domain is described briefly. Then, the results are shown and discussed. Finally, the comprehensibility of the rules generated by G3P-MI will be shown.

4.1 Problem domain used in Experimentation

This study employs the students' usage data from the virtual learning environment at Cordoba University that makes use of Moodle platform[14]. The research includes the information for 7 courses with 419 students. The details about the 7 e-Learning courses are given in Table 3. For the purpose of our study, the collection of data was carried out during an academic year from September to June, just before the Final Examinations. All information about each student for both representations is exported to a text file using Weka ARFF format [15].

COURSE IDENTIFIERS	ICT-29	ICT-46	ICT-88	ICT-94	ICT-110	ICT-111	ICT-218
Number of Students	118	9	72	66	62	13	79
Number of Assignments	11	0	12	2	7	19	4
Number of Forums	2	3	2	3	9	4	5
Number of quizzes	0	6	0	31	12	0	30

Table3. General information about the courses

4.2 Multi-Instance Grammar Guided Genetic Programming

G3P-MI is an extension of traditional GP systems, called grammar-guided genetic programming G3P [16]. G3P facilitates the efficient automatic discovery of empirical laws providing a more systematic way to handle typing by using a context-free grammar which establishes a formal definition of syntactical restrictions. The motivation to include this paradigm is that it retains a significant position due to a flexible representation using solutions of variable length and the low error rates that it achieves both in obtaining classification rules, and in other tasks related to prediction, such as feature selection and the generation of discriminant functions.

We follow an approach where an individual represents IF-THEN rules that add comprehensibility to the discovered knowledge and the fitness function to evaluate the rules obtained will be *sensitivity *specificity*. These measurements allow us to consider both successes in the positive and negative class assigning a value of 0 when no example of one class is classified and value of 1 when both classes are full classified.

The main steps of our algorithm are based on a classical generational and elitist evolutionary algorithm. Initially, a population of classification rules is generated. Once the individuals are evaluated with respect to their ability to solve the problem, the main loop of the algorithm is composed of the parent selection using a binary tournament selector, then recombination and mutation processes [16] are carried out with a probability of 90% and 10% respectively, and finally, the population is updated by direct replacement with elitism, that is, the offspring replace the present population and the best individual in the population is included. The procedure is repeated until de algorithm reaches a maximum number of one hundred generations or the best individual in the population (a value of 1 in fitness function).

4.3 Comparison with Multiple Instance Learning techniques

The most relevant proposals based on MIL presented to date are considered to solve this problem and compared to our proposal designed in JCLEC framework [17]. The different paradigms compared included, *Methods based on Diverse Density*: MIDD, MIEMDD and MDD; *Methods based on Logistic Regression*: MILR; *Methods based on Support Vector Machines*: MISMO uses the SMO algorithm for SVM learning in conjunction with an MI kernel; *Distance-based Approaches*: CitationKNN and MIOptimalBall; *Methods based on Supervised Learning Algorithms*: MIWrapper using different learners, such as Bagging, PART, SMO, AdaBoost and NaiveBayes; MISimple using PART and AdaBoost as learners and MIBoost. More information about the algorithms considered could be consulted at the WEKA workbench [15] where these techniques are designed. The average results of accuracy, sensitivity and specificity are reported in Table 4.

G3P-MI obtains the most accurate models. Also, this approach achieves a trade-off between the contradictory measurements of sensitivity and specificity. If we observe the results of the different paradigms, it can be seen how they optimise the sensibility measurement in general at the cost of a decrease in the specificity value. This leads to an incorrect prediction of which students will pass the course. This classification problem

has an added difficulty since we are dealing with a variety of courses with different numbers and types of exercises which make it more complicate to establish general relationships among them. Nonetheless, G3P-MI in this sense is the one that obtains the best trade-off between the two measurements, obtaining the highest values for sensitivity. Moreover, G3P-MI obtains interpretable rules to find pertinent relationships that could determine if certain activities influence the student's ability to pass, if spending a certain amount of time on the platform is an important contribution or if there is any other interesting link between the work done and the final results obtained.

	Algorithm	ACCURACY	SENSITIVITY	SPECIFICITY
METHODS BASED ON SUPERVISED LEARNING	PART	0.7357	0.8387	0.5920
(SIMPLE)	AdaBoostM1&PART	0.7262	0.8187	0.5992
	Bagging&PART	0.7167	0.7733	0.6361
METHODS BASED ON	AdaBoostM1&PART	0.7071	0.7735	0.6136
SUPERVISED LEARNING (WRAPPER)	PART	0.7024	0.7857	0.5842
	SMO	0.6810	0.8644	0.4270
	NaiveBayes	0.6786	0.8515	0.4371
METHODS BASED ON	MIOptimalBall	0.7071	0.7218	0.6877
DISTANCE	CitationKNN	0.7000	0.7977	0.5631
Methods Based on Boost	DecisionStump	0.6762	0.7820	0.5277
METHODS DASED ON DOUST	RepTree	0.6595	0.7127	0.5866
LOGISTIC REGRESSION	MILR	0.6952	0.8183	0.5218
	MIDD	0.6976	0.8552	0.4783
Methods Based on Diverse Density	MIEMDD	0.6762	0.8549	0.4250
	MDD	0.6571	0.7864	0.4757
EVOLUTIONARY ALGORITHM	G3P-MI	0.7429	0.7020	0.7750

Table 4. Results for multiple instance learning algorithms

4.4 Comprehensibility in the knowledge discovery process

Our system has the advantage of adding comprehensibility and clarity to the knowledge discovery process. G3P-MI generates a learner based on IF-THEN prediction rules. These rules are simple, intuitive, easy to understand and provide representative information. In continuation, we show an example of the rule generated:

According to this rule, we can determine that passing the course requires at least three passed quizzes, or doing between three and eight activities dedicating between 2554 and

11602 seconds to solve them, or finishing from six to eight activities of any type. We can conclude that the most relevant activity is the quizzes that do not require dedicating a certain time and require completing less number of tasks. On the contrary, the rest of the activities imply handing in more tasks and spending more time to get similar results.

5 Conclusions and Future Works

This paper describes the use of G3P-MI to solve the problem of predicting a student's final performance based on his/her work in VLE from MIL perspective. To check effectiveness, the most representative paradigm of multiple instance learning is applied to solve this problem, and the results are compared. Experiments show that G3P-MI has better performance than the other techniques at an accuracy of 0.743 and achieves a trade-off between sensitivity and specificity at values of 0.702 and 0.775. Moreover it obtains representative information about the problem that is very useful to determine if all the additional material provided to the students (web-based homework) helps them to better assimilate the concepts and subjects developed in the classroom or what activities are more effective to improve the final results.

The results obtained are very interesting. However, there are still a few considerations to improve them. For example, the work only considers if a student passes a course or not. It is would be interesting to expand the problem to predict students' grades (classified in different classes) in an e-learning system. Thus, more interesting relationships could be found between the work done by the student and the precise mark obtained. Another interesting issue consists of determining how soon before the final exam a student's marks can be predicted. If we could predict a student's performance in advance, a feedback process could help to improve the learning process during the course.

References

[1] Chou, S and Liu, S. Learning Effectiveness in Web-based Technology-mediated Virtual Learning Environment. HICSS'05: Proceedings of the 38th Hawaii International Conference on System Sciences, Washington, USA, *2005*.

[2] Finaei-Bidgoli, B. and Punch, W. Using Genetic Algorithms for Data Mining Optimization in an Educational Web-based System. Genetic and Evolutionary Computation, 2, 2252–2263, 2003.

[3] Superby, J.F., Vandamme, J.P., Meskens, N. Determination of Factors Influencing the Achievement of the First-year University Students using Data Mining Methods. EDM'06: Workshop on Educational Data Mining, 37-44, 2006.

[4] Kotsiantis, S.B., Pintelas, P.E. Predicting Students Marks in Hellenic OpenUniversity. ICALT'05: The 5th International Conference on Advanced Learning Technologies, 664-668, 2005.

[5] Dietterich, T.G., Lathrop R. H., Lozano-Perez, T., Solving the multiple instance problem with axis-parallel rectangles, Artificial Intelligence, 89 (1-2), 31–71, 1997.

[6] Maron, O., Lozano-Pérez, T. A framework for multiple-instance learning. NIPS'97: Proceedings of Neural Information Processing System 10, Denver, Colorado, USA, 570–576, 1997.

[7] Zhang, Q., Goldman, S. EM-DD: An improved multiple-instance learning technique, in: NIPS'01: Proceedings of Neural Information Processing System 14, Vancouver, Canada, 1073–1080, 2001.

[8] Wang, J., Zucker, J.-D. Solving the multiple-instance problem: A lazy learning approach, in: ICML'00: Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, USA, 1119–1126, 2000.

[9] Chevaleyre, Y.-Z., Zucker, J.-D. Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem. AI'01: Proceedings of the 14th of the Canadian Society for Computational Studies of Intelligence,LNCS 2056, Ottawa, Canada, 204–214, 2001.

[10] Chai, Y.M., Yang, Z.-W. A multi-instance learning algorithm based on normalized radial basis function network. ISSN'07: Proceedings of the 4th International Symposium on Neural Networks. LNCS 4491, Nanjing, China, 1162–1172, 2007.

[11] Han Q.Y., Incorporating multiple SVMs for automatic image annotation, Pattern Recognition, 40(2), 728–741, 2007.

[12] Zhou, Z.-H., Zhang, M.-L. Solving multi-instance problems with classifier ensemble based on constructive clustering, Knowledge and Information Systems 11(2), 155–170, 2007.

[13] Zafra, A., Ventura, S., Romero C., Herrera-Viedma, E. Multi-Instance Genetic Programming for Web Index Recommendation, 2009, doi:10.1016/j.eswa.2009.03.059.

[14] Rice, W. H. Moodle e-learning course development. A complete guide to successful learning using Moodle. Pack Publishing, 2006.

[15] Witten, I.H., Frank, E. Data Mining: Practical machine learning tools and techniques, 2nd Edition. Morgan Kaufmann, San Francisco, 2005.

[16] Whigham, P. A. Grammatical bias for evolutionary learning, Ph.D. thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia, 1996.

[17] Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: A java framework for evolutionary computation soft computing. Soft Computing, 12(4), 381-392, 2008.

Visualization of Differences in Data Measuring Mathematical Skills

Lukáš Zoubek, Michal Burda {Lukas.Zoubek, Michal.Burda}@osu.cz Department of Information and Communication Technologies, Pedagogical Faculty, University of Ostrava, Českobratrská 16, 701 03 Ostrava, Czech Republic

Abstract. Identification of significant differences in sets of data is a common task of data mining. This paper describes a novel visualization technique that allows the user to interactively explore and analyze differences in mean values of analyzed attributes. Statistical tests of hypotheses are used to identify the significant differences and the results are then presented using Hasse diagrams. The presented technique has been tested on real data coming from pedagogical tests focused on evaluation of mathematical skills of secondary school students in Czech Republic. The results show that the proposed tool provides comprehensible representation of the data.

1 Introduction

Knowledge discovery from databases (also known as Data Mining) is a methodology for extraction of non-trivial, previously unknown, and potentially useful knowledge from data [4]. It is broadly used in a commercial sector, research and other domains. A characteristic feature of Data Mining methods is an intensive utilization of computers for difficult computations and testing of large amount of combinations.

The objective of this paper is to present the results of application of a data mining method on data coming from educational tests of secondary school students. In the concrete, a technique for identification of statistically significant differences among mean values is described.

Such method together with the novel visualization technique described here allows the analyst to explore data and view significant differences among mean values of groups of students. The process is on-line: the attributes used to partition the data into groups are set interactively by the user. The results are immediately presented in a graphical form and the user is allowed to change settings in order to allow him or her to iteratively explore the data and find some useful knowledge.

1.1. Related work

An extensive amount of research has been done on data exploration and data mining. Let us focus on visualization techniques related to the main objective of this paper only.

Eick in [3] presents three interesting techniques, where 3D bar chart, scatterplot and a combination of para-boxes, bubble plots and box plots allow to visually analyze values of quantitative attributes.

Authors of [5] describe a visualization of hypothesis tests in multivariate linear models by representing hypothesis and error matrices of sums of squares and cross-products as ellipses, implemented for R, an open-source statistical software [10].

Two prevailing approaches to visualize association rules [1] are compared in [11]. First approach uses two-dimensional matrix to view support and confidence of the rules. Another approach is to use directed graph. The nodes of the graph represent items, and the edges represent the associations. Paper [6] experiments further with animation of the edges to depict the associations.

The co-author of this paper has discussed concept lattices and the approach that utilizes Hasse diagram with negative edges. In [2], these two techniques are compared.

2 Original data

To evaluate performance of the presented analytic tool, a database consisting of educational data has been used. The database comes from research realized at more than 90 secondary schools in the Czech Republic. All the schools are located in Moravia-Silesian region. During the original research, about 8000 students were tested in mathematics, native language (Czech), foreign language (English or German) and general study pre-requisites [7].

The secondary schools engaged in the research can be split into nine categories depending on their orientation and specialization. The categories are as follows:

- Economic (*ECO*),
- Grammar school gymnasium (GRA),
- Lyceum (*LYC*),
- Social and health studies (SAH),
- Natural science (*NAT*),
- Trade and service (*TAS*),
- Social science (SOC),
- Technical (*TEC*),
- Art studies (ART).

Another data attributes about the students are sex, age, and city. After cleanup, data about 7 906 students (males and females together) have been obtained. Table 1 shows distribution of students depending on the type of the school.

For the need of our actual research presented in the article, only the mathematical skills have been analyzed. During realization of the original research, each student had to answer 61 mathematical questions. The correctness of each answer has been then encoded into a binary value. The correct answer is represented by value 1, while the wrong answer is represented by value 0.

Type of school	Number of males	Number of females
ECO	212	522
GRA	807	1 279
LYC	309	491
SAH	47	589
NAT	102	143
TAS	224	713
SOC	8	101
TEC	1 965	319
ART	18	60
TOTAL	3 692	4 214

Table 1. Number of students depending on the type of school and sex

The test questions have been specially prepared in cooperation with pedagogical experts so as to cover eight important mathematical skills. They can be characterized as follows:

- Understanding of the number as a concept expressing quantity (*skill1*);
- Numerical skills (*skill2*);
- Understanding of mathematical symbols and signs (*skill3*);
- Orientation and work with table (*skill4*);
- Graphical reception and work with graph (*skill5*);
- Understanding of plane figures and work with them, spatial imagination (*skill6*);
- Function as a relation between quantities (*skill7*);
- Logical reasoning (*skill8*).

In the next step of data preparation, each of the eight mathematical skills presented above has been evaluated depending on the corresponding answers. For each student, the skills have been evaluated separately. Each of the skills has been characterized by a percentage (0-100) representing the level of the skill. The evaluation strategy has been prepared again in cooperation with pedagogical experts. So, at the end, each student has been represented by a vector of eight values corresponding to eight skills (attributes).

3 The method

On the above described data, a method for searching statistically significant differences among mean values has been applied. We have been searching for significant differences among the means (averages) of mathematical skills.

To identify significant differences, a statistical test of hypotheses could be used. For our purpose, a two sample Student's t-test for testing the equality of means has been used [9]. The test statistic is:

$$t = \frac{\overline{X} - \overline{Y}}{S}$$
, where $S = \sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}$,

and where \overline{X} and \overline{Y} are the means of the two samples, s_X^2 and s_Y^2 are the sample variances

$$s_X^2 = \frac{1}{m-1} \sum_{i=1}^m (\overline{X} - x_i)^2$$
 and $s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (\overline{Y} - y_i)^2$.

The test statistic *t* has Student's distribution with

$$f = \frac{(s_x^2 / m + s_y^2 / n)^2}{(s_x^2 / m)^2 / (m-1) + (s_y^2 / n)^2 / (n-1)}$$

degrees of freedom. Thus, for sufficiently high |t|, say $|t| > T_f(1-0.05)$, where T_f is a cumulative distribution function of the Student's distribution with *f* degrees of freedom, we can reject the hypothesis of equal means, that is, we can consider \overline{X} and \overline{Y} to be statistically significantly different.

This way we can test each combination of mean values. Consider e.g. data in the following table:

	ART	ECO	GRA	LYC	NAT	SAH	SOC	TAS	TEC
average	66.02	66.5	77.24	70.37	62.32	62.66	65.83	63.03	69.59
stdev	16.52	16.55	14.16	15.96	15.59	16.5	15.83	17.1	16.52
count	78	734	2086	800	245	633	109	937	2284

 Table 2. Table shows aggregated data representing skill1. (Variance is a square of stdev)

By testing each pair of the mean values, we can obtain the following inequalities that represent statistically significant differences:

ART < GRA; ART < LYC; NAT < ART; SAH < ART; ART < TEC; ECO < GRA; ECO < LYC; NAT < ECO; SAH < ECO; TAS < ECO; ECO < TAC; LYC < GRA; NAT < GRA; SAH < GRA; SAH < GRA; SOC < GRA; TAS < GRA; TEC < GRA; NAT < LYC; SAH < LYC; SOC < LYC; TAS < LYC; NAT < SOC; NAT < TEC; SAH < SOC; SAH < TEC; SOC < TEC; TAS < TEC.

Generally, the described technique proceeds as follows:

- 1. A test characteristic c is selected, i.e. the attribute whose average differences we would like to explore (e.g. some mathematical skill, in our case).
- 2. Optionally, a selection condition is defined. Selection condition determines, which data rows will be processed only (e.g. grammar schools only).

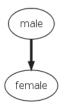
- 3. A partitioning attribute is selected (e.g. sex). The partitioning attribute is a categorical attribute that is used to partition the data into groups $G_1, G_2, ..., G_n$, among which the differences of means would be analyzed.
- 4. A statistical testing of differences among *c*'s mean values of groups $G_1, G_2, ..., G_n$ is performed. That is, the difference of mean values among all combinations of groups G_i and G_j are tested. We have used two-sample Student's t-test with level of significance $\alpha = 0.05$.
- 5. As the result, a relation describing statistically significant inequalities among the groups is obtained: $G_i > G_j$ with respect to *c*.

Thus, the obtained inequalities are based on statistical testing of hypotheses. The results may be very interesting to the analyst. Unfortunately, plain textual representation of the obtained relationships seems not to be very synoptic. *Is there any way of representing them graphically?*

The obtained inequalities may be visualized using a Hasse diagram. Hasse diagram is a graph with each group G_i being represented with a vertex. A downward line is drawn from G_i to G_j , if the statistical test has indicated that the mean value computed for group G_i is significantly greater than mean value computed for G_j (i.e. $G_i > G_j$) and there is no such G_k that $G_i > G_k$ and $G_k > G_j$.

Generally, the Hasse diagram should be understood as follows: a node X is significantly greater than Y, if there exists a downward path from X to Y. The path from X to Y may lead through other nodes – however, it must be always downward. Thickness of the line represents intensity of the difference.

For instance, see Figure 2 depicting inequalities extracted from example data characterized in Table 2. From Figure 2 can be for example seen, that grammar schools (GRA) have the greatest average skill level, whereas natural science (NAT) and social and health studies (SAH) are the worst, but there is not a significant difference among them. Similarly, lyceum (LYC) and technical schools (TEC) are not different either.


Please note that accordingly to the theory of statistics, performing large amount of simultaneous statistical tests increases the test error far beyond the level of significance α [8]. Therefore, the obtained inequalities should be considered only as hypotheses indicating some interesting relationship within data – we can never treat the results as a sure and proven knowledge, if obtained that way.

4 Results

This section presents the results of the proposed tool when applied to a set of real data. The data characterizing mathematical skills of secondary school students have been analyzed from three points of view.

4.1. Male or female

The aim of the first test is to analyze difference between male and female students over the eight mathematical skills analyzed. In the first part, the type of secondary school has not been considered for the test. The results show significant differences in average values of levels for all analyzed skills. For all skills, the average values computed for male students are significantly higher. Hasse diagram characterizing this situation is shown in Figure 1. The lowest difference (2.79%) is obtained for *skill4* (males 71.88%; females 69.09%). On the contrary, the maximal difference (5.57%) between males and females is in the case of *skill6* (males 53.49%; females 47.92%).

Figure 1. Hasse diagram representing the situation, when the average level computed for male students is significantly different compared to female students

The results of the detailed analysis, when the different types of secondary school have been separated, show, that the secondary schools could be sorted into three groups. Grammar schools (GRA), lyceums (LYC) and economic schools (ECO) can be characterized by the fact that the average skill level characterizing all analyzed skills is significantly higher for male students. In the case of natural science (NAT), trade and service (TAS), social and health studies (SAH), and technical schools (TEC), only for some skills is the average level computed for males significantly higher than for females. The concrete skills and types of school are summarized in the Table 3. The results for remaining schools (art studies (ART), social science (SOC)) do not show significant difference of average skill level for any skill. Unfortunately, relevancy of the data characterizing male students at social science secondary school is low because of very small number of recordings (only eight male students).

Table 3. In the case of four schools, only several skills show significant difference of average skill levels

Type of school	Significantly different skills
NAT	skill1, skill2, skill3, skill6, skill7, skill8
TAS	skill1, skill2, skill4, skill6, skill8
SAH	skill1, skill2, skill8
TEC	skill3, skill5

4.2. Difference of the skills

In the second part, individual skills have been evaluated and compared. For this analysis, male and female students are not separated into two groups. From the eight skills to be analyzed, two skills (*skill1* and *skill4*) are characterized by the highest average level. Both *skill1* and *skill4* are significantly different from the remaining six skills, while not being significantly different each other. On the other hand, the students have reached the lowest average level for the *skill5*. The mean value is again significantly different from all the other analyzed skills. Table 4 shows order of the skills depending on the average skill level. When two or more skills are not significantly different, they are presented on the same line. As it can be seen, the difference between *skill1* and *skill4*, and *skill2* is only 2%. Due to the fact, that the number of items is high (N = 7 906), this difference is evaluated by the statistic test as significantly different.

Skill	Average skill level
skill1, skill4	70%
skill2	68%
skill3, skill8	57%
skill7	54%
skill6	50%
skill5	42%

Table 4. Average skill levels computed for the sk	tills analyzed in the research.
Tuste in it is a ge sinn te tes compared for the si	

There are only slight differences in the order of the individual skills when the type of school or the sex is considered as an attribute. As we can expect, the values of average level vary for different types of school engaged in the research. This effect is analyzed in the next section.

4.3. Effect of the secondary school

To provide complete analysis of the data, the effect of the school type on the skills has been also evaluated using the presented tool. The average level of the grammar school (GRA) students (both male and female students) is the highest for all the analyzed skills. It is significantly different compared to the other schools. Then, it could be said, that technical schools (TEC) and lyceums (LYC) are characterized with the second highest average level for most of the skills. The values are again significantly different from the remaining schools. The order of the other types of school depends on the concrete skill and no general rule can be derived from the data. Figure 2 shows the Hasse diagram prepared from the data characterizing *skill1*. Grammar schools (GRA) are placed alone on the top of the diagram, which represents the highest average level obtained for the skill. Lyceums (LYC) and technical schools (TEC) are placed together on the same level just below the grammar schools (GRA). Absence of a path between them corresponds to the fact, that there is no significant difference between them for *skill1*.

For *skill2* and *skill7*, the average level obtained for lyceum (LYC) students is significantly different (higher) compared to the average value obtained for technical school (TEC) students.

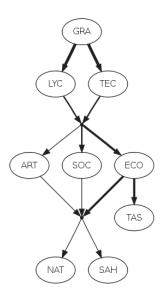


Figure 2. Hasse diagram created for *skill1* (understanding of the number as a concept expressing the quantity)

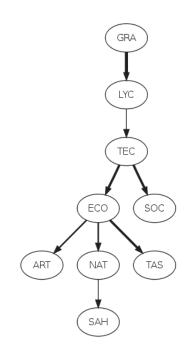


Figure 3. Hasse diagram created for *skill7* (function as relation between quantities)

Only in the case of *skill5*, the result is markedly different. Figure 4 shows the Hasse diagram obtained.

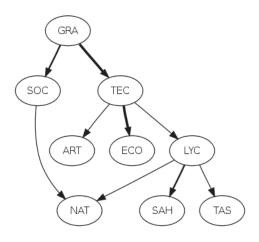


Figure 4. Hasse diagram created for *skill5* (graphical reception and work with graph)

In the next step of the analysis, we focused on evaluation of absolute differences between various types of schools. This analysis shows another two interesting facts. In the case of *skill5*, the difference between the highest average level (grammar school (GRA)) and the lowest average level is only about 8.5%. It represents the smallest difference among the analyzed skills. For grammar schools (GRA), the average skill level reached 46.5%. On the contrary, the worst average level has been obtained for art (ART) and natural science (NAT) and social and health studies (SAH) students (about 38%). This fact strongly corresponds to the results presented in the previous parts, where the average level representing the *skill5* has been determined as very poor compared to the other skills and also the Hasse diagram (Figure 4) representing order of the schools is slightly different.

The greatest difference (over 21%) has been reached for *skill3* and *skill7*. For both the skills, the maximal average level characterizes grammar schools (65% and 64% respectively) and the minimal average level reached art schools (about 43%). In the case of *skill3*, the average level reached for art school is significantly different from the values obtained for other types of school. For the other skills, the difference varies between 14% and 17%.

The variety of absolute difference between types of school is also evident from the diagrams obtained. When the absolute difference is minimal (*skill5*, Figure 4), the structure of the diagram is much wider compared to the skills characterized with maximal absolute difference (e.g. *skill7*, Figure 3). The *skill7* is represented with very narrow structure of the diagram representing the significant differences among averages of the skill levels.

5 Conclusion

We have introduced a new tool for visualization of statistically significant differences among the mean values of quantitative attributes. The method is based on statistical tests of hypotheses of equal means. Firstly, a set of tests is performed in order to determine significant differences among all combinations of tested mean values. The results are then visualized in the Hasse diagram which represents the extracted information in easily understandable format. The proposed technique has been applied on data characterizing mathematical skills of secondary school students. From the results obtained, we can pick up very poor work with graphs (*skill5*) typical for all types of secondary schools.

In the future, the authors of this paper plan to utilize Hasse diagrams to visualize other types of knowledge (e.g. impact rules).

References

[1] Agrawal, R. Fast discovery of association rules. In: Advances in knowledge discovery and data mining. AAAI Press/MIT Press, 1996, 307-328.

[2] Burda, M. Visualization of cosymmetric association rules using Hasse diagrams and concept lattices. In: Znalosti, Hradec Králové, Czech Republic, 2006, ISBN 80-248-1001-8.

[3] Eick, S.G. Visualizing multi-dimensional data. SIGGRAPH Comput. Graph. **34**(1), 2000, 61-67.

[4] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthursamy, R., eds. Advances in Knowledge Discovery and Data Mining. AAAI Press/MIT Press, 1996.

[5] Fox, J., Friendly, M., Monette, G. Visualizing hypothesis tests in multivariate linear models: the heplots package for R. In: Directions in Statistical Computing, Springer-Verlag, 2008.

[6] Hetzler, B., Harris, W., Havre, S. Visualizing the Full Spectrum of Document Relationships. 1998. [online] http://citeseer.ist.psu.edu/ hetzler98visualizing.html

[7] Kubincová, L., Malčík, M. Trstiny of skills of the 1st year secondary schools pupils. In: Information and Communication Technology in Education, Rožnov pod Radhoštěm, Czech Republic, 2008.

[8] Miller, R.G. Simultaneous statistical inference, 2nd edition. Springer, 1981. ISBN 978-0387905488.

[9] NIST/SEMATECH. E-handbook of statistical methods. [online] http://www.itl.nist.gov/div898/handbook/index.htm.

[10] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. [online] <u>http://www.r-project.org</u>.

[11] Wong, P.C., Whitney, P., Thomas, J. Visualizing Association Rules for Text Mining. In: INFOVIS, 1999, 120-123.