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Abstract. In this work, we propose the use of a new post-processing
method for the lateral and amplitude tuning of membership functions
combined with a rule selection to develop accurate fuzzy logic controllers
dedicated to the control of heating, ventilating and air conditioning sys-
tems concerning energy performance and indoor comfort requirements.

1 Introduction

Heating, Ventilating and Air Conditioning (HVAC) systems are equipments usu-
ally implemented to maintain satisfactory comfort conditions in buildings. The
energy consumption as well as indoor comfort aspects of buildings are highly de-
pendent on the design, performance and control of their HVAC systems. There-
fore, the use of automatic control strategies, as Fuzzy Logic Controllers (FLCs),
could result in important energy savings compared to manual control [1, 10].

FLCs in buildings are often designed using rules of thumb not always compat-
ible with the controlled equipment requirements, energy performance and users
expectations and demand. However, different criteria should be optimized for a
good performance of the HVAC system and, due to the nature of the problem,
a rational operation and improved performance of FLCs is required [10]. A way
to improve the FLC performance is the tuning of Membership Functions (MFs).

Recently, a new linguistic rule representation was presented to perform a fine
genetic Lateral and Amplitude tuning (LA-tuning) of MFs [3]. It is based on a
new symbolic representation with three values (s, α, β), respectively representing
a label, the lateral displacement and the amplitude variation of the support of
this label. The tuning of both parameters involves a reduction of the search space
that eases the derivation of optimal models respect to classical tuning. This work
proposes to apply and to combine the LA-tuning with a rule selection [11, 12] to
develop accurate FLCs dedicated to the control of HVAC systems.

This paper is arranged as follows. The next section presents the basics of the
HVAC system control problem. Section 3 introduces the genetic LA-tuning and
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rule selection. Section 4 proposes the evolutionary algorithm for the LA-tuning
with rule selection. Section 5 applies the proposed method to the HVAC control
problem. And finally, Section 6 points out some concluding remarks.

2 The HVAC System Control Problem

An HVAC system is comprised by all the components of the appliance used to
condition the interior air of a building. The HVAC system is needed to provide
the occupants with a comfortable and productive working environment which
satisfies their physiological needs. In Figure 1, a typical office building HVAC
system is presented. This system consists of a set of components to be able to
raise and lower the temperature and relative humidity of the supply air.
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Fig. 1. Generic structure of an office building HVAC system

Some artificial intelligence techniques could be successfully applied to en-
hance the HVAC system capabilities [5, 10]. However, most works apply FLCs
to individually solve simple problems such as thermal regulation (maintaining a
temperature setpoint), energy savings or comfort improvements. On the other
hand, the initial rule set is usually constructed based on the operator’s control
experience using rules of thumb, which sometimes fail to obtain satisfactory re-
sults [10]. Therefore, the different involved criteria should be optimized for a
good performance of the HVAC System. Usually, the main objective is to reduce
the energy consumption while maintaining a desired comfort level.

In our case, five criteria should be optimized improving an initial FLC ob-
tained from human experience (involving 17 variables) by using the LA-tuning
and rule selection. To do so, we consider the calibrated and validated models of
a real test building. Both, the initial FLC and the simulation model were de-
veloped within the framework of the JOULE-THERMIE programme under the
GENESYS 1 project (see [1, 4] for more information on this problem).

2.1 Objectives and Fitness Function

Our main optimization objective is the energy performance but maintaining the
required indoor comfort levels, specifically to minimize the following five criteria:
1 GENESYS Project: Fuzzy controllers and smart tuning techniques for energy effi-

ciency and overall performance of HVAC systems in buildings, European Commis-
sion, Directorate-General XII for Energy (contract JOE-CT98-0090).
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O1 Upper thermal comfort limit2: if PMV > 0.5, O1 = O1 + (PMV − 0.5).
O2 Lower thermal comfort limit: if PMV < −0.5, O2 = O2 + (−PMV − 0.5).
O3 Indoor air quality: if CO2 conc. > 800ppm, O3 = O3 + (CO2 − 800).
O4 Energy consumption: O4 = O4+ Power at time t.
O5 System stability: O5 = O5+ System change from time t to (t − 1), where

system changes states for a change in the system operation.

These criteria are combined into one overall objective function by means of
a vector of weights. When trustworthy weights are available, this approach re-
duces the size of the search space providing the adequate direction into the
solution space and its use is highly recommended. In our case, trusted weights
were obtained by the experts for the objective weighting fitness function: wO

1 =
0.0083022, wO

2 = 0.0083022, wO
3 = 0.00000456662, wO

4 = 0.0000017832 and wO
5

= 0.000761667. Finally, the fitness function to be minimized was computed as:

F =
∑5

i=1 wO
i · Oi .

2.2 FLC Variables and Architecture

The DB is composed of symmetrical fuzzy partitions with triangular MFs labeled
from L1 to Lli (with li being the number of labels of the i-th variable). Figure 3
depicts the initial DB together with the tuned DB to optimize the paper size.

A hierarchical FLC architecture considering the PMV, CO2 concentration,
previous HVAC system status and outdoor temperature was proposed for the
GENESYS site. The architecture, variables and initial Rule Base (RB) can be
seen in Figure 4 together with the final selected rules again for the paper size.
Figure 4 represents the decision tables of each module of the hierarchical FLC
in terms of these labels. Each cell of the table represents a fuzzy subspace and
contains its associated output consequent(s), i.e., the corresponding label(s). The
output variables are denoted in the top left square for each module. Both, the
initial RB and DB, were provided by experts.

3 LA-Tuning and Rule Selection

This section presents the two techniques that are combined to improve the FLC
behavior in the HVAC control problem, the LA-tuning and the rule selection.

3.1 The LA-Tuning of Membership Functions

In [2], a new model of tuning of MFs was proposed considering the linguistic
2-tuples representation scheme introduced in [9], that allows the symbolic trans-
lation of a label by considering an only parameter per label. The LA-tuning [3]
2 PMV is the more global Predicted Mean Vote thermal comfort index 7730 selected

by the international standard organization ISO, incorporating relative humidity and
mean radiant temperature (http://www.iso.org/iso/en/ISOOnline.frontpage).
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is an extension of the lateral tuning to also perform a tuning of the support
amplitude of the MFs. To adjust the displacements and amplitudes of the MF
supports we propose a new rule representation considering two parameters, α
and β, relatively representing the lateral displacement and the amplitude varia-
tion of a label. In this way, each label can be represented by a 3-tuple (s, α, β),
where α is a number within the interval [-0.5, 0.5) that expresses the domain
of a MF when it is moving between its two lateral MFs (as in the 2-tuples rep-
resentation), and β is also a number within the interval [-0.5, 0.5) that allows
an increase or decrease in the support amplitude of a MF by 50% of its original
size. Let us consider a set of labels S representing a fuzzy partition. Formally,
we have the triplet,

(si, αi, βi), si ∈ S, {αi, βi} ∈ [−0.5, 0.5)

As an example, Figure 2 shows the 3-tuple represented label (s2, −0.3, −0.25)
together with the lateral displacement and amplitude variation of the corre-
sponding MF. Let cs2 and as2 be the right and the left extreme of the si support,
and Sups2 be its size. The support of the new label s′2 = (s2, −0.3, −0.25), can
be computed in the following way:

Sups′
2

= Sups2 + β ∗ Sups2 , with Sups2 = cs2 − as2

In our case, the learning is applied to the level of linguistic partitions. In this
way, the pair (Xj , label) takes the same tuning values in all the rules where it is
considered. For example, Xj is (High, 0.3, 0.1) will present the same values for
those rules in which the pair ”Xj is High” was initially considered. Notice that,
since symmetrical triangular MFs and a FITA (First Infer, Then Aggregate)
fuzzy inference will be considered, a tuning of the amplitude of the consequents
has no sense, by which the β parameter will be only applied on the antecedents.

In the context of the FLCs, we are going to see its use in the linguistic rule
representation. Let us consider a control problem with two input variables, one

β

α = -0.3
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0.5- 0.5
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Fig. 2. LA-Variation of the MF Associated to s2
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output variable and a DB defined from experts determining the MFs for the
following labels: Error and �Error → {N, Z, P}, and Power → {L, M, H}.
Based on this DB definition, an example of a 3-tuples represented rule is:

If Error is (Zero,-0.3,0.1) and �Error is (Positive,0.2,-0.4) then Power is (High,-0.1).

3.2 Rule Selection

Rule set reduction techniques try to minimize the number of rules of a given fuzzy
rule-based system while maintain (or even improve) the system performance. To
do that, erroneous and conflicting rules that degrade the performance are elim-
inated, obtaining a more cooperative fuzzy rule set and therefore involving a
potential improvement of the system accuracy. Furthermore, in many cases the
accuracy is not the only requirement of the model but also the interpretability
becomes an important aspect. Reducing the model complexity is a way to im-
prove the system readability, i.e., a compact system with few rules requires a
minor effort to be interpreted.

Fuzzy rule set reduction is generally applied as a post-processing stage, once
an initial fuzzy rule set has been derived. One of the most known fuzzy rule set
reduction techniques is the rule selection. This approach involves obtaining an
optimal subset of fuzzy rules from a previous fuzzy rule set by selecting some
of them. We may find several methods for rule selection, with different search
algorithms that look for the most successful combination of fuzzy rules [11, 12].
In [13], an interesting heuristic rule selection procedure is proposed where, by
means of statistical measures, a relevance factor is computed for each fuzzy rule
composing the fuzzy system to subsequently select the most relevant ones.

These kinds of techniques could be easily combined with other post-processing
techniques to obtain more compact and accurate fuzzy models. In this way, some
works have considered the rule selection together with the tuning of MFs by
coding all of them (rules and parameters) in the same chromosome [7]. In this
work, we combine the rule selection with the LA-tuning of MFs.

4 Algorithm for LA-Tuning and Rule Selection

To perform the LA-tuning together with the rule selection we consider a Genetic
Algorithm (GA) based on the well-known steady-state approach. The steady-
state approach [14] consists of selecting two of the best individuals in the pop-
ulation and combining them to obtain two offspring. These two new individuals
are included in the population replacing the two worst individuals if the former
are better adapted than the latter. An advantage of this technique is that good
solutions are used as soon as they are available. Therefore, the convergence is
accelerated while the number of evaluations needed is decreased.

In the following, the components needed to design this process are explained.
They are: chromosome evaluation, coding scheme and initial gene pool, the ge-
netic operators and a restarting approach to avoid premature convergence.
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4.1 Evaluating the Chromosome

The fitness function (see Section 2.1) has been modified in order to consider
the use of fuzzy goals that decrement the importance of each individual fitness
value whenever it comes to its respective goal or that penalize each objective
whenever its value is worse with respect to the initial solution. To do so, a
function modifier parameter is considered, δi(x). A penalization rate, pi, has
been included in δi(x), allowing the user to set up priorities in the objectives
(0 less priority and 1 more priority). With gi being the goal value, ii being the
initial solution value and qi = max(gi, ii), the global fitness is evaluated as:

F ′ =
5∑

i=1

wO
i · δi(Oi) · Oi , with δi(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if x ≤ gi

x − gi

ii − gi
, if gi < x < ii

x − qi

x − x · pi
+ 1, if x ≥ qi .

4.2 Coding Scheme and Initial Gene Pool

To combine the rule selection with the LA-tuning, a double coding scheme for
both rule selection (CS) and LA-tuning (CT ) is used:

– For the CS part, the coding scheme generates binary-coded strings of length
m (with m being the number of fuzzy rules in the existing FLC). Thus, the
corresponding part Cp

S for the p-th chromosome will be a binary vector that
determines when a rule is selected or not (values ‘1’ and ‘0’ respectively),

Cp
S = (cp

S1, . . . , c
p
Sm) | cp

Si ∈ {0, 1} .

– For the CT part, a real coding is considered, i.e., the real parameters are the
GA representation units (genes). This part is the joint of the parameters of
the fuzzy partitions, lateral (CL) and amplitude (CA) tuning. Let us consider
the following number of labels per variable: (m1, . . . , mn), with n being the
number of system variables (n − 1 input variables and 1 output variable).
Then, a chromosome has the following form,

CT = (CL + CA) = (cL
11, . . . , c

L
1m1 , . . . , cL

n1, . . . , c
L
nmn) +

(cA
11, . . . , c

A
1m1 , . . . , cA

(n−1)1, . . . , c
A
(n−1)mn).

Finally, a chromosome Cp is coded in the following way: Cp = Cp
SCp

T .

To make use of the available information, the initial FLC obtained from expert
knowledge is included in the population as an initial solution. To do so, the initial
pool is obtained with first individual having all genes with value ‘1’ in the CS part
and having all genes with value ‘0.0’ (no displacement or amplitude variation)
in the CT part. The remaining individuals are generated at random.
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4.3 Genetic Operators

The crossover operator will depend on the chromosome part where it is applied:

– For the CT part, the BLX-α crossover [6] and a hybrid between a BLX-α
and an arithmetical crossover [8] are considered. In this way, if two parents,
Cv

T = (cv
T1, . . . , c

v
Tk, . . . , cv

Tg) and Cw
T = (cw

T1, . . . , c
w
Tk, . . . , cw

Tg), are going to
be crossed, two different crossovers are considered,
1. Using the BLX-α crossover [6] (with α = 0.3), one descendent Ch

T =
(ch

T1, . . . , c
h
Tk, . . . , ch

Tg) is obtained, with ch
Tk being randomly generated

within the interval [ILk
, IRk

] = [cmin − I · α, cmax + I · α], cmin =
min(cv

Tk, cw
Tk), cmax = max(cv

Tk, cw
Tk) and I = cmax − cmin.

2. The application of the arithmetical crossover [8] in the wider interval
considered by the BLX-α, [ILk

, IRk
], results in the next descendent:

Ch
T with ch

Tk = aILk
+ (1 − a)IRk

,
and with a ∈ [0, 1] randomly generated each time this operator is applied.

– In the CS part, the standard two-point crossover is used.

Finally, four offspring are generated by combining the two ones from the CS

part with the two ones from the CT part. The mutation operator flips the gene
value in the CS part but, to improve the convergence no mutation is considered
in the CT part. Once the mutation is applied on the four generated offspring,
the resulting descendents are the two best of these four individuals.

4.4 Restart Approach

Finally, to get away from local optima, this algorithm uses a restart approach.
Whenever the population converges to similar results (practically the same fit-
ness value), the entire population but the best individual is randomly generated
within the corresponding variation intervals. It allows the algorithm to perform a
better exploration of the search space and to avoid getting stuck at local optima.

5 Experiments

To evaluate the goodness of the approach proposed (LA-tuning with rule selec-
tion), the HVAC problem is considered to be solved. The FLCs obtained from
the proposed approach will be compared to the performance of a classic On-Off
controller and to the performance of the initial FLC (provided by experts). The
goals and improvements will be computed with respect to this classical controller
as done in the GENESYS 3 project. The intention from experts was to try to
have 10% energy saving (O4) together with a global improvement of the system
behavior compared to On-Off control. Comfort parameters could be slightly in-
creased if necessary (no more than 1.0 for criteria O1 and O2). The methods
considered in this study are shown in Table 1.

The values of the parameters used are: 31 individuals, 0.2 as mutation prob-
ability per chromosome (except for GL and GLA without mutation) and 0.35
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Table 1. Methods Considered for Comparison

Method, Ref. Year Description
S, [4] 2005 Rule Selection (CS part of GLA-S)
CL, [1] 2003 Classical Tuning
GL, [2]∗ 2004 Global Lateral-tuning (CL part of GLA-S)
CL-S, – – Classical Tuning (CL) + Rule Selection (S)
GL-S, – – Global Lateral-tuning (GL) + Rule Selection(S)
GLA, – – Global LA-tuning (CT part of GLA-S)
GLA-S, – – Global LA-Tuning + Rule Selection
∗ The global lateral tuning proposed in [2] adapted to this problem.

Table 2. Comparison among the different methods

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
Initial FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

S 160 0.1 0 0 2886422 9.98 1312 -15.52
C 172 0.0 0 0 2586717 19.33 1081 4.84

C − S 109 0.1 0 0 2536849 20.88 1057 6.98
GL 172 0.9 0 0 2325093 27.49 1072 5.66

GL − S 113 0.7 0 0 2287993 28.64 800 29.58

GLA 172 0.9 0 0 2245812 29.96 797 29.84
GLA − S 104 0.8 0 0 2253996 29.70 634 44.19
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Fig. 3. Initial and Tuned DB of a Model Obtained with GLA-S (seed 1)

as factor a in the max-min-arithmetical crossover in the case of CL. The termi-
nation condition is to reach 2000 evaluations. To see the GA convergence, three
runs have been performed with different seeds for the random number generator.

The results presented in Table 2 correspond to averaged results obtained
from the three different runs, where % stands for the improvement rate with
respect to the On-Off controller and #R for the number of rules. No improvement



460 R. Alcalá et al.
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Fig. 4. RB and final structure of a Model Obtained with GLA-S (seed 1)

percentages have been considered in the table for O1 . . . O3, since these objectives
always met the experts requirements (goals). A good trade-off between energy
and stability was achieved by GLA-S. GLA-S presents improvement rates of
about a 29.7% in energy and about a 44.2% in stability, with the remaining
criteria for comfort and air quality within the requested levels. Moreover, the
proposed algorithm presented a good convergence and seems to be robust.

Figure 3 depicts the initial and final DB of a FLC obtained by GLA-S (seed
1). It shows that not so strong variations in the MFs can involve important
improvements. Figure 4 represents the corresponding decision tables (GLA-S,
seed 1). In this case, a large number of rules have been removed from the initial
FLC, obtaining much simpler models (72 rules were removed). This fact improves
the system readability, and allows us to obtain simple and accurate FLCs.

6 Concluding Remarks

In this work, we propose the use and combination of the LA-tuning with the rule
selection to obtain accurate FLCs dedicated to the control of HVAC systems.
Techniques based on the LA-tuning, specially that including rule selection, have
yielded much better results than the remaining approaches, showing their good
behavior on these kinds of complex problems. It is due to the following reasons:

– The search space reduction that the LA-tuning involves in complex problems.
It allows to these techniques to obtain more optimal FLCs.

– The complementary characteristics that the tuning approaches and the rule
selection present. The ability of the rule selection to reduce the number of
rules by only selecting those presenting a good cooperation is combined with
the tuning accuracy improvement, obtaining accurate and compact FLCs.
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As further work, we propose the use of multiobjective GAs in order to obtain
even simpler FLCs maintaining a similar accuracy.
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