
 

 

 

 

Abstract— This paper presents a new tool, called Xfhl, for 

the automatic generation of hierarchical fuzzy systems. The 

tool takes a training dataset as input and finds the best 

hierarchical decomposition in terms of fuzzy modules with two 

inputs and one output. The behavior of Xfhl is based on an 

exhaustive search among all possible module decompositions. 

In order to evaluate each structure, Xfhl uses the mean square 

error on the structure after a process of parametric 

optimization. The tool is integrated into Xfuzzy 3, a 

development environment for fuzzy systems. 

I. INTRODUCTION 

S far as fuzzy systems have been strengthened as a good 

way for modeling nonlinear behavior, the complexity of 

the problems in discussion has been increasing. Regarding 

standard fuzzy systems, a problem with n input variables and 

m linguistic labels for each one is described by a fuzzy 

system with m
n
 rules. This exponential increase results in a 

lack of interpretability when the number of variables is 

large. This problem, which is not unique to fuzzy systems, is 

known as “the curse of dimensionality” [1]. 

One way to reduce the number of rules and, therefore, to 

increase the interpretability, is to decompose the fuzzy 

system into a structure of simpler modules, which is known 

as a hierarchical fuzzy system (HFS). There are many 

proposals for the design of such systems [2]. Some of them 

consist in identifying common parts of the set of rules and 

create modules that generate these common parts, which is 

known as clean HFS [3] [4]. In other proposals the hierarchy 

level of each module refers to an increase in the granularity 

of the variables [5].  

The most traditional kind of HFS is that in which each 

module is a complete fuzzy system relating a reduced set of 

variables. In this structure, the input variables of each 

module may be either global input variables or inner 

variables (which must be generated as outputs of other 

modules) [6]. For this kind of HFS the number of rules is 
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where L is the number of modules and ci is the number of 

inputs for the i-th module. If different modules can share an 

input variable, then the HFS has the shape of an acyclic 

directed graph. Otherwise, the structure of the HFS is a tree. 

Focusing on systems with a single output (MISO) and tree 

shape, the input number of the modules must meet the 

following equation: 
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where n is the number of input variables of the HFS. If all 

the modules have the same number of inputs, c, the number 

of modules of the HFS is.  
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and, then, the number of rules of the HFS is 
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This represents a linear grow in the number of rules in 

terms of the number of input variables of the system instead 

of the exponential grow that suffer the standard fuzzy 

systems. The minimum number of rules is reached for c = 2, 

i.e., when using modules with two input variables. These 

modules are usually known as fuzzy logic units (FLUs). The 

use of FLUs has another important feature. The behavior of 

these modules can be represented by a surface, so the 

interpretation of its behavior can be made both from a 

linguistic point of view and from a graphical point of view.  

An important aspect of the HFS is their capability to 

approximate functions. It is well known that standard fuzzy 

systems are universal approximators [7]. Although there are 

some proposals of HFS that have been demonstrated to be 

universal approximators [8][9], these proposals refers to 

high order Takagi-Sugeno fuzzy systems (with an order 

similar to the number of inputs). So the problem with the 

dimensionality is not solved, but shifted from the antecedent 

of the rules on a standard fuzzy system to the consequent of 

the rules on the Takagi-Sugeno hierarchical fuzzy system 

[10]. On the other hand, Mamdani type hierarchical fuzzy 

systems are not universal approximators. In this case, the 

interest is now to know which functions can be 

approximated by a Mamdani type HFS. In [11], the concept 
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of continuous functions with natural hierarchical structure 

is defined and it is proved that a Mamdani type HFS can 

approximate these functions correctly when the HFS has the 

same hierarchical structure as that of the function. 

In order to find the structure of HFS which can 

approximate some given continuous function, some authors 

have proposed the use of genetic algorithms [12] [13]. This 

paper presents a tool that develops an exhaustive search 

among all the modular decomposition that can be done based 

on modules with two inputs (FLUs). The hierarchical 

structure generated by the tool is the one that minimize the 

mean square error after an optimization process. 

II. THE MODULAR DECOMPOSITION ALGORITHM 

The proposed methodology consists in making an 

exhaustive search among all possible hierarchical structures 

with n input variables, based on FLUs. This section 

describes the algorithm used to generate all these structures. 

It is a recursive algorithm that generates all the structures of 

n input variables in terms of all the structures of (n-1) input 

variables.  

The base case of the recursive algorithm is the structure of 

a system with two input variables, which is formed by a 

single FLU, as shown in Fig. 1. 

 

The general case consists in generating the structures of n 

input variables using the structures of (n-1) input variables. 

Given a hierarchical structure with (n-1) inputs, it’s possible 

to generate a set of structures with n inputs inserting a new 

FLU in each variable of the structure. Fig. 2 shows an 

example of the structures with 3 inputs, which can be 

generated through the base case. The structure of Fig. 2.a is 

obtained by including the new FLU in the position of the 

variable in0. Fig. 2.b is obtained including the new FLU in 

the position of the variable in1. The structure shown in Fig. 

2.c is obtained including the new FLU in the position of the 

output variable. 

Every hierarchical structure with n inputs contains (n-1) 

FLUs, so the total number of variables of the structure is 

(2n-1). Therefore, the number of structures with (n+1) inputs 

is 
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Table 1 shows the values of the number of different 

hierarchical structures that can be generated using FLUs. It 

can be seen that this number increase exponentially with 

respect to the number of inputs. For those problems with a 

number of input variables less than 7 or 8 the exhaustive 

search of the best structure is feasible. When the number of 

inputs is greater than 8, the number of structures is too high, 

leading to the use of random search techniques.  

III. PARAMETRIC OPTIMIZATION OF 

HIERARCHICAL FUZZY SYSTEMS 

From all the hierarchical structures in which a system 

with n input variables can be decomposed, the proposed 

methodology selects the one that can adjust the best to a 

training dataset. In order to evaluate the approximation 

capability of each structure, the methodology uses a 

parametric optimization algorithm based on the Gradient-

Descent method. The use of algorithms based on Gradient-

Descent method for tuning hierarchical fuzzy systems is also 

 
 

Fig 1.  Base case for the recursive algorithm 
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Fig. 2.  Hierarchical structures for 3 input variables. The conection 

where the new module (FLU-2) is inserted is represented in bold. 
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TABLE I 
NUMBER OF HIERARCHICAL STRUCTURES 

Input variables Number of structures 

2 1 

3 3 
4 15 

5 105 

6 945 
7 10395 

8 135135 

9 2027025 
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proposed in [14]. The proposal in our methodology is the use 

of the RPROP algorithm [15] and Levenberg-Marquardt 

algorithm [16], which present a higher convergence speed. 

These algorithms (and many others) are included in the 

optimization tool of the Xfuzzy environment [17]. This 

feature has greatly eases the development of the Xfhl tool 

described in this work. 

The hierarchical structures are evaluated by the mean 

square error (MSE) on the training dataset. This function is 
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where N is the number of instances in the dataset, (xi, ỹi) 

are the input-output instances of the data set and y(x) 

represents the behavior of the system. 

The behavior of the system depends on the hierarchical 

structure and on the behavior of the different FLUs. The 

behavior of each FLU depends on the parameters that define 

the membership functions of its input variables and the 

parameters using in the calculation of its output. The goal of 

the optimization algorithm is to tune the values of all these 

parameters in order to minimize the value of the MSE. 

The optimization algorithms proposed in this 

methodology are based on the gradient of the MSE, that is, 

on the derivative of the MSE with respect to the different 

parameters in the system. These derivatives are computed 

using the chain rule. For example, the derivative of the MSE 

with respect to the parameters of the FLU-1 module in Fig. 3 

is given by the expression 
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In the expression above, the derivative of the MSE with 

respect of the output of the system for the i-th instance is 
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In order to compute the rest of the partial derivatives, it is 

necessary to know the behavior of the FLUs. If, into these 

modules, the conjunction operator is assigned to the product, 

and the fuzzy mean is used as defuzzification method, then 

the behavior of the FLU is the following: 
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where 1i(x1) are the membership functions related to the 

input variable x1, 2j(xj) are the membership functions 

related to the input variable x2, m is the number of 

membership functions of each variable, and cij is the centroid 

for the conclusion of the rule relating “x1=label-i” and “x2 = 

label-j”.  

Given the expression above, it is possible to compute the 

partial derivative of the output of a FLU with respect to the 

centroids of the rules: 
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Equation (9) can be used also to compute the partial 

derivative of the output of a FLU with respect to the 

activation degree of each membership function: 
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Finally, the partial derivative of the membership functions 

with respect to their parameters must be considered. For 

example, for a Gaussian membership function,  
 

 




















 


2

exp,,
b

ax
bax  ,   (12)  

 

the derivative with respect to the variable x is 
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the derivative with respect to the parameter a is  

Fig. 3.  Example of a hierarchical structure 
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and the derivative with respect to the parameter b is   
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Considering all these equations it is possible to compute 

the gradient of the MSE as shown in (7) and use it in the 

selected parametric optimization algorithm. In the case that 

the behavior of FLUs is based on a distinct conjunction 

operator, a distinct defuzzification method, or distinct 

membership functions, the equations (8) to (15) need to be 

recalculated. 

IV. THE XFHL TOOL 

Xfhl is a new tool integrated into the Xfuzzy development 

environment for fuzzy system. The Xfhl tool implements the 

methodology for the induction of hierarchical fuzzy systems 

discussed in the preceding paragraphs. The tool works by 

generating all hierarchical structures of n inputs and one 

output that can be built with modules of two inputs and one 

output (FLUs). The selected structure is that having the 

minimum  mean square error after a parametric optimization 

process based on a gradient descent algorithm (RProp or 

Levenberg-Marquardt). 

The generation of the set of hierarchical structures for n 

input variables is based on the algorithm presented in the 

second section. The implementation of the algorithm uses an 

iterator based on a stack of structures. Each stack level 

corresponds to a number of inputs, starting from the base 

structure with two inputs. The top of the stack contains the 

structure of n inputs generated by the iterator. On each 

iteration, the algorithm pops the last structure and generates 

the following structure from the structure of (n-1) inputs 

stored on the stack. When all the structures of n inputs have 

been generated for the structure on the (n-1) level, the 

algorithm pops the structure of (n-1) inputs and generates a 

new structure of (n-1) inputs based on the structure of (n-2) 

entries stored on the stack, and so on. Thanks to this iterator, 

there is no need to store all hierarchical structures in 

memory at once. 

The tool performs a parametric optimization process on 

all parameters of each structure. In order to do this, the tool 

computes the gradient of the mean square error as described 

in Section 3 and applies the chosen gradient descent 

algorithm. 

Since the optimization and evaluation of a structure can be 

performed independently of the others, the search process is 

easily parallelizable. The Xfhl tool has been programmed to 

take advantage of parallelization capabilities of current 

systems (multicore architectures, multiprocessor and 

hyperthreading technology) so that the tuning process of the 

different hierarchical structures is performed in parallel in 

multiple execution threads. 

Fig. 4 shows the main window of Xfhl. The configuration 

menu is located at the top of the window. This menu allows 

the selection of the different run options of the tool. Under 

the menu bar, there is an area with the best fuzzy system 

found to date and a progress bar indicating the percentage of 

structures studied so far. Under this bar is a panel which 

shows the status of each thread of the tool. For each thread, 

the panel includes the structure representation under study 

and a progress bar of the optimization process. In the bottom 

of the window there are controls buttons dedicated to run the 

process, stop, save the best result obtained so far and close 

the tool. 

Fig. 5 shows the configuration window of the tool. This 

configuration requires the selection of the following fields: 

• Training dataset. 

• Number of concurrent threads to execute. The value 

"Default" specifies that the number of threads is 

equal to the number of cores in the system. 

• Number of membership functions for each input 

variable. 

• Style of the membership functions for the input 

 
 

Fig. 4.  The main window of Xfhl 

 

 
 

Fig. 5. The configuration window of Xfhl 
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variables. This style may be one of the following 

types: Free Triangles, Free Shouldered Triangles, 

Free Gaussians, Triangles Family, Shouldered-

Triangular Family, and B-Splines Family. 

• Function associated to the conjunction operator. It 

can be the minimum or the product. 

• Defuzzification method used in the modules. The 

options are the fuzzy mean method and the 

weighted fuzzy mean method. 

• The parametric optimization algorithm used to 

evaluate each structure. The options are RProp and 

Levenberg-Marquardt. The control parameters of 

the algorithm must be configured and the number 

of iterations in the tuning process must be 

introduced. 

V. TEST 

In order to demonstrate how the Xfhl tool works, the 

following continuous function with 4 input variables and 

separable hierarchical structure has been considered: 
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The training dataset has been generated considering that 

the 4 variables are defined in the interval [-1.0, 1.0]. All 

possible instances have been generated, sweeping the values 

of the variables in steps of 0.25, producing a dataset with a 

total of 6561 instances. 

The process have been configured considering a division 

of variables into three Gaussian membership functions and 

choosing the product as conjunction operator and weighted 

fuzzy mean as defuzzification method. The parametric 

optimization has been carried out through 40 iterations of the 

Rprop algorithm. The execution was carried out with two 

threads on Intel Core2 Duo 2.0 GHz machine. The process 

spends approximately 3 minutes to finish. The best structure 

found by the tool (from the set of 15 possible 

decompositions) is shown in Fig. 6.a. This structure 

corresponds to the natural hierarchical structure of the target 

function. The structure has initially a RMSE = 2.9%. A later 

parametric optimization with RProp get a better 

approximation to a RMSE = 1.4%. 

Fig. 6 shows the graphical representation of the behavior 

of the different modules of the hierarchical structure 

obtained. As shown in Figure 6b, the behavior of FLU-1 

module approximates the cosine function on a linear 

relationship of the variables x and y. (Actually the function 

is displaced, since the output range is between 0 and 1). A 

more detailed study can even deduce this relationship. 

Regarding the behavior of the FLU-2 module, the Figure 6.c 

shows that the relation between the variables w and z 

correspond to a parabola, that is to say, to the function w
2
+z

2
 

multiplied by a negative factor. In the case of FLU-3 

module, the behavior is more difficult to interpret because 

this module is responsible not only for calculating the 

product between the two parts of the function but also to 

compensate the offset and scale factors of the modules 

above. 

VI. CONCLUSION 

Hierarchical fuzzy systems are an interesting way to 

model a complex behavior while keeping a good 

interpretability. The better results on interpretability are 

obtained for HFSs composed by FLUs, that is, modules with 

two input variables. This work proposes a design 

methodology for HFSs based on an exhaustive search over 

the whole set of modular decompositions based on FLUs. 

The goodness of each HFS is evaluated after a tuning 

process based on the RPROP algorithm or the Levenberg-

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Fig. 6.  Results of the Xfhl run for the target function. 

(a) best HFS found; (b) behavior of FLU-1 module; 

(c) behavior of FLU-2 module; (d) behavior of FLU-3 

module. 
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Marquardt algorithm. This methodology has been 

implemented in a design tool called Xfhl, which has been 

included into the Xfuzzy development environment. 

The methodology has demonstrated to be appropriate 

when the number of input variables of the system is less than 

7 or 8. If the number of input variables is higher, the size of 

the search space is too large and the exhaustive search is 

non-viable. In these cases, the methodology should be 

adapted to the use of metaheuristics. This should lead to a 

hybrid algorithm combining an evolutionary algorithm for 

searching the HFS structure and a gradient-based algorithm 

for evaluating each structure. 
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