

Abstract— This paper presents a new tool, called Xfhl, for

the automatic generation of hierarchical fuzzy systems. The

tool takes a training dataset as input and finds the best

hierarchical decomposition in terms of fuzzy modules with two

inputs and one output. The behavior of Xfhl is based on an

exhaustive search among all possible module decompositions.

In order to evaluate each structure, Xfhl uses the mean square

error on the structure after a process of parametric

optimization. The tool is integrated into Xfuzzy 3, a

development environment for fuzzy systems.

I. INTRODUCTION

S far as fuzzy systems have been strengthened as a good

way for modeling nonlinear behavior, the complexity of

the problems in discussion has been increasing. Regarding

standard fuzzy systems, a problem with n input variables and

m linguistic labels for each one is described by a fuzzy

system with m
n
 rules. This exponential increase results in a

lack of interpretability when the number of variables is

large. This problem, which is not unique to fuzzy systems, is

known as “the curse of dimensionality” [1].

One way to reduce the number of rules and, therefore, to

increase the interpretability, is to decompose the fuzzy

system into a structure of simpler modules, which is known

as a hierarchical fuzzy system (HFS). There are many

proposals for the design of such systems [2]. Some of them

consist in identifying common parts of the set of rules and

create modules that generate these common parts, which is

known as clean HFS [3] [4]. In other proposals the hierarchy

level of each module refers to an increase in the granularity

of the variables [5].

The most traditional kind of HFS is that in which each

module is a complete fuzzy system relating a reduced set of

variables. In this structure, the input variables of each

module may be either global input variables or inner

variables (which must be generated as outputs of other

modules) [6]. For this kind of HFS the number of rules is

L

i

cimrulesofNumber

1

, (1)

This work was supported in part by the Spanish CICYT Projects

TEC2008-04920/TEC, and TIN2008-06681-C06-06, and by the Projects

P07-TIC-03179 and P08-TIC-03674 from the Andalusian Regional
Government.

S. Cala is a student of the Máster en Tecnologías Informáticas

Avanzadas, Universidad de Huelva, Huelva, SPAIN (e-mail:
sergio.cala@alu.uhu.es).

F. J. Moreno-Velo is with the Departamento de Tecnologías de la

Información, Universidad de Huelva, Huelva, SPAIN (e-mail:
francisco.moreno@dti.uhu.es).

where L is the number of modules and ci is the number of

inputs for the i-th module. If different modules can share an

input variable, then the HFS has the shape of an acyclic

directed graph. Otherwise, the structure of the HFS is a tree.

Focusing on systems with a single output (MISO) and tree

shape, the input number of the modules must meet the

following equation:

1

1

Lnci
L

i

 , (2)

where n is the number of input variables of the HFS. If all

the modules have the same number of inputs, c, the number

of modules of the HFS is.

1

1

c

n
L , (3)

and, then, the number of rules of the HFS is

cm
c

n
rulesofNumber

1

1
. (4)

This represents a linear grow in the number of rules in

terms of the number of input variables of the system instead

of the exponential grow that suffer the standard fuzzy

systems. The minimum number of rules is reached for c = 2,

i.e., when using modules with two input variables. These

modules are usually known as fuzzy logic units (FLUs). The

use of FLUs has another important feature. The behavior of

these modules can be represented by a surface, so the

interpretation of its behavior can be made both from a

linguistic point of view and from a graphical point of view.

An important aspect of the HFS is their capability to

approximate functions. It is well known that standard fuzzy

systems are universal approximators [7]. Although there are

some proposals of HFS that have been demonstrated to be

universal approximators [8][9], these proposals refers to

high order Takagi-Sugeno fuzzy systems (with an order

similar to the number of inputs). So the problem with the

dimensionality is not solved, but shifted from the antecedent

of the rules on a standard fuzzy system to the consequent of

the rules on the Takagi-Sugeno hierarchical fuzzy system

[10]. On the other hand, Mamdani type hierarchical fuzzy

systems are not universal approximators. In this case, the

interest is now to know which functions can be

approximated by a Mamdani type HFS. In [11], the concept

Xfhl: A Tool for the Induction of Hierarchical Fuzzy Systems

Sergio Cala and Francisco J. Moreno-Velo

A

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3315

of continuous functions with natural hierarchical structure

is defined and it is proved that a Mamdani type HFS can

approximate these functions correctly when the HFS has the

same hierarchical structure as that of the function.

In order to find the structure of HFS which can

approximate some given continuous function, some authors

have proposed the use of genetic algorithms [12] [13]. This

paper presents a tool that develops an exhaustive search

among all the modular decomposition that can be done based

on modules with two inputs (FLUs). The hierarchical

structure generated by the tool is the one that minimize the

mean square error after an optimization process.

II. THE MODULAR DECOMPOSITION ALGORITHM

The proposed methodology consists in making an

exhaustive search among all possible hierarchical structures

with n input variables, based on FLUs. This section

describes the algorithm used to generate all these structures.

It is a recursive algorithm that generates all the structures of

n input variables in terms of all the structures of (n-1) input

variables.

The base case of the recursive algorithm is the structure of

a system with two input variables, which is formed by a

single FLU, as shown in Fig. 1.

The general case consists in generating the structures of n

input variables using the structures of (n-1) input variables.

Given a hierarchical structure with (n-1) inputs, it’s possible

to generate a set of structures with n inputs inserting a new

FLU in each variable of the structure. Fig. 2 shows an

example of the structures with 3 inputs, which can be

generated through the base case. The structure of Fig. 2.a is

obtained by including the new FLU in the position of the

variable in0. Fig. 2.b is obtained including the new FLU in

the position of the variable in1. The structure shown in Fig.

2.c is obtained including the new FLU in the position of the

output variable.

Every hierarchical structure with n inputs contains (n-1)

FLUs, so the total number of variables of the structure is

(2n-1). Therefore, the number of structures with (n+1) inputs

is

n

i

inSnnS

1

)12()()12()1((5)

Table 1 shows the values of the number of different

hierarchical structures that can be generated using FLUs. It

can be seen that this number increase exponentially with

respect to the number of inputs. For those problems with a

number of input variables less than 7 or 8 the exhaustive

search of the best structure is feasible. When the number of

inputs is greater than 8, the number of structures is too high,

leading to the use of random search techniques.

III. PARAMETRIC OPTIMIZATION OF

HIERARCHICAL FUZZY SYSTEMS

From all the hierarchical structures in which a system

with n input variables can be decomposed, the proposed

methodology selects the one that can adjust the best to a

training dataset. In order to evaluate the approximation

capability of each structure, the methodology uses a

parametric optimization algorithm based on the Gradient-

Descent method. The use of algorithms based on Gradient-

Descent method for tuning hierarchical fuzzy systems is also

Fig 1. Base case for the recursive algorithm

FLU-1

in0

in1

out

(a)

(b)

(c)

Fig. 2. Hierarchical structures for 3 input variables. The conection

where the new module (FLU-2) is inserted is represented in bold.

FLU-1

FLU-2

in0

in2

in1

out

FLU-1

FLU-2

in1

in2

in0 out

FLU-2

FLU-1

in0

in1

in2
out

TABLE I
NUMBER OF HIERARCHICAL STRUCTURES

Input variables Number of structures

2 1

3 3
4 15

5 105

6 945
7 10395

8 135135

9 2027025

3316

proposed in [14]. The proposal in our methodology is the use

of the RPROP algorithm [15] and Levenberg-Marquardt

algorithm [16], which present a higher convergence speed.

These algorithms (and many others) are included in the

optimization tool of the Xfuzzy environment [17]. This

feature has greatly eases the development of the Xfhl tool

described in this work.

The hierarchical structures are evaluated by the mean

square error (MSE) on the training dataset. This function is

N

i
ii xyy

N
MSE

1

2~~1
 , (6)

where N is the number of instances in the dataset, (xi, ỹi)

are the input-output instances of the data set and y(x)

represents the behavior of the system.

The behavior of the system depends on the hierarchical

structure and on the behavior of the different FLUs. The

behavior of each FLU depends on the parameters that define

the membership functions of its input variables and the

parameters using in the calculation of its output. The goal of

the optimization algorithm is to tune the values of all these

parameters in order to minimize the value of the MSE.

The optimization algorithms proposed in this

methodology are based on the gradient of the MSE, that is,

on the derivative of the MSE with respect to the different

parameters in the system. These derivatives are computed

using the chain rule. For example, the derivative of the MSE

with respect to the parameters of the FLU-1 module in Fig. 3

is given by the expression

p

xa

xa

xa

xa

xy

xy

MSE

p

MSE

i

i

i

N

i i

i

i
~

~

~

~

~

~

0

0

1

1 1
 (7)

In the expression above, the derivative of the MSE with

respect of the output of the system for the i-th instance is

 yxy

Nxy

MSE
i

i

~~2
~

 (8)

In order to compute the rest of the partial derivatives, it is

necessary to know the behavior of the FLUs. If, into these

modules, the conjunction operator is assigned to the product,

and the fuzzy mean is used as defuzzification method, then

the behavior of the FLU is the following:

m

i

m

j
ji

m

i

m

j
ijji

xx

cxx

xxy

1 1
2211

1 1
2211

21,

 (9)

where 1i(x1) are the membership functions related to the

input variable x1, 2j(xj) are the membership functions

related to the input variable x2, m is the number of

membership functions of each variable, and cij is the centroid

for the conclusion of the rule relating “x1=label-i” and “x2 =

label-j”.

Given the expression above, it is possible to compute the

partial derivative of the output of a FLU with respect to the

centroids of the rules:

m

k

m

l
lk

ji

ij
xx

xx

c

xxy

1 1
2211

221121,

 . (10)

Equation (9) can be used also to compute the partial

derivative of the output of a FLU with respect to the

activation degree of each membership function:

2

1 1
2211

1 1

2211

1

22

1 1
2211

1

22

11

21,

m

k

m

l
lk

m

i

m

j

ijji

m

j

j

m

k

m

l
lk

m

j

ijj

i

xx

cxxx

xx

cx

x

xxy

 (11)

Finally, the partial derivative of the membership functions

with respect to their parameters must be considered. For

example, for a Gaussian membership function,

2

exp,,
b

ax
bax , (12)

the derivative with respect to the variable x is

2

exp
2,,

b

ax

b

ax

bx

bax
 ; (13)

the derivative with respect to the parameter a is

Fig. 3. Example of a hierarchical structure

x3 FLU-2 a1

FLU-3
y

FLU-1

x0

x1
a0

x4

3317

2

exp
2,,

b

ax

b

ax

ba

bax
 ; (14)

and the derivative with respect to the parameter b is

22

exp
2,,

b

ax

b

ax

bb

bax
 . (15)

Considering all these equations it is possible to compute

the gradient of the MSE as shown in (7) and use it in the

selected parametric optimization algorithm. In the case that

the behavior of FLUs is based on a distinct conjunction

operator, a distinct defuzzification method, or distinct

membership functions, the equations (8) to (15) need to be

recalculated.

IV. THE XFHL TOOL

Xfhl is a new tool integrated into the Xfuzzy development

environment for fuzzy system. The Xfhl tool implements the

methodology for the induction of hierarchical fuzzy systems

discussed in the preceding paragraphs. The tool works by

generating all hierarchical structures of n inputs and one

output that can be built with modules of two inputs and one

output (FLUs). The selected structure is that having the

minimum mean square error after a parametric optimization

process based on a gradient descent algorithm (RProp or

Levenberg-Marquardt).

The generation of the set of hierarchical structures for n

input variables is based on the algorithm presented in the

second section. The implementation of the algorithm uses an

iterator based on a stack of structures. Each stack level

corresponds to a number of inputs, starting from the base

structure with two inputs. The top of the stack contains the

structure of n inputs generated by the iterator. On each

iteration, the algorithm pops the last structure and generates

the following structure from the structure of (n-1) inputs

stored on the stack. When all the structures of n inputs have

been generated for the structure on the (n-1) level, the

algorithm pops the structure of (n-1) inputs and generates a

new structure of (n-1) inputs based on the structure of (n-2)

entries stored on the stack, and so on. Thanks to this iterator,

there is no need to store all hierarchical structures in

memory at once.

The tool performs a parametric optimization process on

all parameters of each structure. In order to do this, the tool

computes the gradient of the mean square error as described

in Section 3 and applies the chosen gradient descent

algorithm.

Since the optimization and evaluation of a structure can be

performed independently of the others, the search process is

easily parallelizable. The Xfhl tool has been programmed to

take advantage of parallelization capabilities of current

systems (multicore architectures, multiprocessor and

hyperthreading technology) so that the tuning process of the

different hierarchical structures is performed in parallel in

multiple execution threads.

Fig. 4 shows the main window of Xfhl. The configuration

menu is located at the top of the window. This menu allows

the selection of the different run options of the tool. Under

the menu bar, there is an area with the best fuzzy system

found to date and a progress bar indicating the percentage of

structures studied so far. Under this bar is a panel which

shows the status of each thread of the tool. For each thread,

the panel includes the structure representation under study

and a progress bar of the optimization process. In the bottom

of the window there are controls buttons dedicated to run the

process, stop, save the best result obtained so far and close

the tool.

Fig. 5 shows the configuration window of the tool. This

configuration requires the selection of the following fields:

• Training dataset.

• Number of concurrent threads to execute. The value

"Default" specifies that the number of threads is

equal to the number of cores in the system.

• Number of membership functions for each input

variable.

• Style of the membership functions for the input

Fig. 4. The main window of Xfhl

Fig. 5. The configuration window of Xfhl

3318

variables. This style may be one of the following

types: Free Triangles, Free Shouldered Triangles,

Free Gaussians, Triangles Family, Shouldered-

Triangular Family, and B-Splines Family.

• Function associated to the conjunction operator. It

can be the minimum or the product.

• Defuzzification method used in the modules. The

options are the fuzzy mean method and the

weighted fuzzy mean method.

• The parametric optimization algorithm used to

evaluate each structure. The options are RProp and

Levenberg-Marquardt. The control parameters of

the algorithm must be configured and the number

of iterations in the tuning process must be

introduced.

V. TEST

In order to demonstrate how the Xfhl tool works, the

following continuous function with 4 input variables and

separable hierarchical structure has been considered:

 yxzwzyxwf 2

3
cos,,, 22

 (16)

The training dataset has been generated considering that

the 4 variables are defined in the interval [-1.0, 1.0]. All

possible instances have been generated, sweeping the values

of the variables in steps of 0.25, producing a dataset with a

total of 6561 instances.

The process have been configured considering a division

of variables into three Gaussian membership functions and

choosing the product as conjunction operator and weighted

fuzzy mean as defuzzification method. The parametric

optimization has been carried out through 40 iterations of the

Rprop algorithm. The execution was carried out with two

threads on Intel Core2 Duo 2.0 GHz machine. The process

spends approximately 3 minutes to finish. The best structure

found by the tool (from the set of 15 possible

decompositions) is shown in Fig. 6.a. This structure

corresponds to the natural hierarchical structure of the target

function. The structure has initially a RMSE = 2.9%. A later

parametric optimization with RProp get a better

approximation to a RMSE = 1.4%.

Fig. 6 shows the graphical representation of the behavior

of the different modules of the hierarchical structure

obtained. As shown in Figure 6b, the behavior of FLU-1

module approximates the cosine function on a linear

relationship of the variables x and y. (Actually the function

is displaced, since the output range is between 0 and 1). A

more detailed study can even deduce this relationship.

Regarding the behavior of the FLU-2 module, the Figure 6.c

shows that the relation between the variables w and z

correspond to a parabola, that is to say, to the function w
2
+z

2

multiplied by a negative factor. In the case of FLU-3

module, the behavior is more difficult to interpret because

this module is responsible not only for calculating the

product between the two parts of the function but also to

compensate the offset and scale factors of the modules

above.

VI. CONCLUSION

Hierarchical fuzzy systems are an interesting way to

model a complex behavior while keeping a good

interpretability. The better results on interpretability are

obtained for HFSs composed by FLUs, that is, modules with

two input variables. This work proposes a design

methodology for HFSs based on an exhaustive search over

the whole set of modular decompositions based on FLUs.

The goodness of each HFS is evaluated after a tuning

process based on the RPROP algorithm or the Levenberg-

(a)

(b)

(c)

(d)

Fig. 6. Results of the Xfhl run for the target function.

(a) best HFS found; (b) behavior of FLU-1 module;

(c) behavior of FLU-2 module; (d) behavior of FLU-3

module.

FLU-1

FLU-2

FLU-3

x
y

w

z

3319

Marquardt algorithm. This methodology has been

implemented in a design tool called Xfhl, which has been

included into the Xfuzzy development environment.

The methodology has demonstrated to be appropriate

when the number of input variables of the system is less than

7 or 8. If the number of input variables is higher, the size of

the search space is too large and the exhaustive search is

non-viable. In these cases, the methodology should be

adapted to the use of metaheuristics. This should lead to a

hybrid algorithm combining an evolutionary algorithm for

searching the HFS structure and a gradient-based algorithm

for evaluating each structure.

REFERENCES

[1] R. Bellman, Adaptive Control Processes, Princeton University Press,

1966.

[2] V. Torra, “A Review of the Construction of hierarchical Fuzzy

Systems,” International Journal of Intelligent Systems, vol. 17, 2002,

pp. 531-543.
[3] S. Aja-Fernández and C. Arbeloa-López, “Matrix modeling of

hierarchical fuzzy systems,” IEEE Transactions on Fuzzy Systems,

vol. 16, n. 3, 2008, pp. 585-599.
[4] M.L. Lee, H.Y. Chung, and F.M. Yu, “Modeling of hierarchical fuzzy

systems,” Fuzzy Sets and Systems, vol. 138, 2003, pp. 343-361.

[5] O. Cordón, F. Herrera, and I. Zwir, “A hierarchical knowledge-based
environment for linguistic modeling: models and iterative

methodology,” Fuzzy Sets and Systems, vol. 138, 2003, pp. 307-341.

[6] G.V.S. Raju, J. Zhou, and R.A. Kisner, “Hierarchical fuzzy control,”
International Journal of Control, vol. 54, 1991, pp. 1201-1216.

[7] J.L. Castro, “Fuzzy logic controllers are universal approximators,”

IEEE Transactions on Systems, Man and Cybernetics, vol. 25, n. 4,

1995, pp. 629-635.

[8] M.G. Joo and J.S. Lee, “Universal approximation by hierarchical

fuzzy system with constraints on the fuzzy rule,” Fuzzy Sets and

Systems, vol. 130, n. 2, 2002, pp. 175-188.

[9] L.X. Wang, “Universal approximation by hierarchical fuzzy systems,”

Fuzzy Sets and Systems, vol. 93, 1998, pp. 223-230.

[10] L.X. Wang, “Analysis and Design of Hierarchical Fuzzy Systems,”

IEEE Transactions on Fuzzy Systems, vol. 7, n. 5, 1999.

[11] X.J. Zeng and J.A. Keane, “Approximation Capabilities of

Hierarchical Fuzzy Systems,” IEEE Transactions on Fuzzy Systems,

vol. 13, n. 5, 2005, pp. 659-672.

[12] A.D. Benítez and J. Casillas, “Aprendizaje Evolutivo de Sistemas

Difusos Jerárquicos en Serie,” in Actas del VI Congreso Español

sobre Metaheurística, Algoritmos Evolutivos y Bioinspirados

(MAEB’09), 2009, pp. 255-262. (in spanish)

[13] Y. Chen, B. Yang, A. Abraham, and L. Peng, “Automatic Design of

Hierarchical Takagi-Sugeno Type Fuzzy Systems Using Evolutionary

Algorithms,” IEEE Transactions on Fuzzy Systems, vol. 15; n. 3,

2007, pp. 385-397.

[14] D. Wang, X.J. Zeng, and J. Keane, “Learning for Hierarchical Fuzzy

Systems Based on the Gradient-Descent Method,” in Proc. 2006 IEEE

International Conference on Fuzzy Systems, 2006, pp. 92-99.

[15] M. Riedmiller and H. Braun, “RPROP: A fast and robust

backpropagation learning strategy,” in Proc. 4th Australian

Conference on Neural Networks, 1993, pp. 169-72.

[16] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons,

Ltd., 1986.

[17] F.J. Moreno-Velo, I. Baturone, A. Barriga, and S. Sanchez-Solano,

“Automatic tuning of complex fuzzy systems with Xfuzzy,” Fuzzy

Sets and Systems, vol. 158, 2007, pp. 2026-2038.

3320

