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Abstract. This paper proposes a diversity generating mechanism for an
evolutionary algorithm that determines the basic structure of Multilayer
Perceptron (MLP) classifiers and simultaneously estimates the coeffi-
cients of the models. We apply a modified version of a recently proposed
diversity enhancement mechanism [1], that uses a variable population
size and periodic partial reinitializations of the population in the form
of a saw-tooth function. Our improvement on this standard scheme con-
sists of guiding saw-tooth reinitializations by considering the variance of
the best individuals in the population, performing the population restart
when the difference of variance between two consecutive generations is
lower than a percentage of the previous variance. The empirical results
over six benchmark datasets show that the proposed mechanism out-
performs the standard saw-tooth algorithm. Moreover, results are very
promising in terms of classification accuracy, yielding a state-of-the-art
performance.

Keywords: Evolutionary algorithm, population reinitializations, saw-
tooth algorithm, neural networks.

1 Introduction

Evolutionary Algorithms (EAs) are search algorithms based on the concept of
natural selection. Among them, Evolutionary Programming (EP), originally pro-
posed by L.J. Fogel [2], is a sthocastic optimization. One of the main charac-
teristic of an EP algorithm is the absence of a direct codification, only working
with their representation. Evolutionary artificial neural networks have been a
key research area in the past decade, providing an interesting platform for op-
timizing both the weights and architecture of the network simultaneously. The
problem of finding a suitable architecture and the corresponding weights of the
network is a very complex task and this difficulty justifies the use of an evolu-
tionary algorithm to design the structure and training of the weights (for a very
interesting review on this subject the reader can consult [3]).
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Population size is one of the most important parameters affecting the robust-
ness and computational efficiency of EAs. Small population sizes may result in
premature convergence to nonoptimal solutions, whereas large population sizes
require a considerable increase in computational effort. Although some authors
try to estimate an optimal population size regarding the complexity of the prob-
lem [4], variable population size is a more interesting alternative [5], improving
the EA capability of obtaining better solutions and reducing sensitivity in the
election of different parameters. On the other hand, several methods using a con-
stant census have been proposed in the literature that attempt to increase the
diversity of the population and avoid premature convergence, including, among
others, alternative mutation strategies [6], the well known Eshelman’s CHC al-
gorithm [7] or the micro Genetic Algorithm or μ-GA, suggested by Goldberg
[8]. Both CHC and μ-GA algorithms are based on periodical reinitializations of
population when the diversity drops below a threshold.

One methodology combining the effects of variable population size with peri-
odical reinitializations is that proposed by Koumousis and Katsaras [1], which
follows a saw-tooth scheme with a specific amplitude and period of variation. In
each period, the population size decreases linearly and, at the beginning of the
next period, randomly generated individuals are appended to the population.
One of the major drawbacks of this approach is that both the amplitude and
period of saw-teeth must be specified a priori.

In this paper, we propose an enhanced version of this saw-tooth EA, in which
we guide the period of each saw-tooth according to the variance of the best
individual fitnesses of the population. The underlying idea is that reinitializa-
tions should be performed when the best individuals have converged and no
further optimization is being achieved, so randomly generated individuals can
help the algorithm to explore new regions in the search space. We apply this
proposed scheme over a previously implemented EP Algorithm [9], that evolves
the weights and the structure of MLP Neural Network classifiers. In order to test
the performance and suitability of our methodology, a comparative study using
the original constant population EP algorithm, the standard saw-tooth EP algo-
rithm and the variance guided saw-tooth EP algorithm has been applied to six
datasets taken from the UCI repository [10]. The rest of the paper is organized
as follows: Section 2 is dedicated to a description of the selected EP algorithm;
Section 3 describes the implementation of the standard saw-tooth scheme and
its application to the EP algorithm; the aim of Section 4 is to describe the pro-
posed variance guided version of the saw-tooth scheme; Section 5 explains the
experiments carried out; and finally, Section 6 shows the conclusions of our work.

2 Evolutionary Programming Algorithm

In this section, we present the EP algorithm used to estimate the parameters
and the structure of the MLP neural networks models. The main objective of the
algorithm is to design a neural network with optimal structure and weights for
each classification problem tackled. The search begins with an initial population
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of MLPs, to which a population-update algorithm is applied in each iteration.
The algorithm shares many characteristics and properties with other previous
algorithms like [11] and [12]. Individuals are subjected to the operations of repli-
cation and mutation. Crossover is not used due to its potential disadvantages in
evolving artificial neural networks. With these features the algorithm falls into
the class of EP.

We consider standard feed forward MLP neural networks with one hidden
layer and we interpret the outputs of the neurons on the output layer from a
probability point of view which considers the softmax activation function given
by the following expression:

gl(x, θl) =
exp fl(x, θl)

∑J
j=1 exp fj(x, θj)

(1)

where J is the number of classes in the problem, fl(x, θl) the output of the neu-
ron j for pattern x and gl(x, θl) the probability that pattern x has of belonging
to class j. Considering this expression, the classification rule C(x) of the MLP
is the following:

C(x) = l̂, where l̂ = arg maxl gl(x, θl), for l = 1, 2, ...J (2)

We define the Correctly Classified Rate by CCR = (1/N)
∑N

n=1(I(C(xn) =
yn), where I(·) is the zero-one loss function. A good classifier tries to achieve the
highest possible CCR in a given problem. The function used in the EP algorithm
for obtaining the fitness of individuals is a strictly decreasing transformation of
the cross entropy error function and is given by the following expression:

A(g) =
1

1 + l(θ)
(3)

where θ = (θ1, ..., θJ) and l(θ) is the cross entropy error function of the model
and is obtained as:

l(θ) = − 1
N

N∑

n=1

J∑

j=1

y(l)
n log gl(xn, θl) = (4)

=
1
N

N∑

n=1

⎡

⎣−
J∑

j=1

y(l)
n fl(xn, θl) + log

J∑

j=1

exp fl(xn, θl)

⎤

⎦

The general framework of the EP algorithm is the following:

1. Generate a random population of size NP.
2. Repeat until a maximum number of generations G is reached:

(a) Apply parametric mutation to the best 10% of individuals. Apply struc-
tural mutation to the remaining 90% of individuals.

(b) Calculate the fitness of every individual in the population.
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(c) Add best fitness individual and best CCR individual of the last genera-
tion (double elitist algorithm).

(d) Rank the individuals with respect to their fitness.
(e) Best 10% of population individuals are replicated and substitute the

worst 10% of individuals.
3. Select the best CCR individual and the best fitness individual in the final

population and consider both as possible solutions.

As mentioned previously, fitness is a decreasing transformation of cross-entropy
error. In general, the relationship between CCR and cross-entropy error strongly
depends on the data base structure. Hence, regarding experimental results, using
cross-entropy elitism is more suitable for some databases to result in a higher
generalization accuracy, but using CCR elitism can be more appropriate for some
other databases. For this reason, the EP algorithm returns both the best CCR
and the best fitness individuals as solutions, the best approach for each problem
being difficult to ascertain a priori. Parametric mutation is accomplished for
each coefficient of the model with Gaussian noise, applying a standard simulated
annealing process for accepting or rejecting modifications. On the other hand, we
use five different structural mutations, similar to the mutations in the GNARL
model [11]. The severity of mutations depends on the temperature T (g) of the
neural network model, defined by T (g) = 1 − A(g) 0 ≤ T (g) ≤ 1.

In order to define the topology of the neural networks, we consider three
parameters: m, ME and MI . They correspond, respectively, to the minimum
and maximum number of hidden nodes in the whole evolutionary process and
the maximum number of hidden nodes in the initialization process. In order to
obtain an initial population formed by models simpler than the most complex
model possible, parameters must fulfil the condition m ≤ ME ≤ MI. More details
about the EP algorithm can be consulted in [9], [13] and [14]. The EP algorithm
was implemented using the Evolutionary Computation framework JCLEC [15]
(http://jclec.sourceforge.net) and is available in the non-commercial java
tool named KEEL (http://www.keel.es).

3 Standard Saw-Tooth Evolutionary Programming
Algorithm

The scheme proposed in [1] is briefly summarized in this section. The Stan-
dard Saw-tooth algorithm utilizes a variable population size following a periodic
scheme where a mean population size n, an amplitude D and a period of variation
T define the saw-tooth shape. Thus, at a specific generation t, the population
size n(t) is determined as:

n(t) = int
{

n + D − 2D

T − 1

[

t − T · int
(

t − 1
T

)

− 1
]}

(5)

where int(·) is the floor function. Therefore, n(1) = n + D, n(T ) = n − D,
n(T + 1) = n + D, etc.The selection of the n, T and D parameters affects the

http://jclec.sourceforge.net
http://www.keel.es
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performance of the algorithm. In the paper cited, the optimum values of the T
and D parameters of the saw-tooth are obtained experimentally, the optimum
normalized amplitude D/n being from 0.9 to 0.96 and the optimum normalized
period ranging from T/n = 0.5 to 0.7 for multimodal optimization problems and
a standard real coded Genetic Algorithm.

In this paper, we have adapted this scheme, defining what we call Standard
Saw-tooth Evolutionary Programming (SSEP). Instead of using 5, population
size in each generation is calculated from the last generation population size as:

n(t) = n(t − 1) − N (6)

N being the saw-tooth slope and n(0) = NP = 1000 being the number of
individuals in the initial population. The value of D is calculated according to
the guidelines previously described. For the parameter T , we estimate its value
from the maximum number of generations G and a parameter r that defines the
maximum number of restarts, T = int(G/r). The use of this new parameter r is
justified, since a better control of the increase in the diversity of the algorithm
is achieved by defining the maximum number of restarts (that is, the maximum
number of saw-tooth oscillations) than by defining the amplitude T of each saw-
tooth. With these two parameters, the saw-tooth slope is obtained as N = T/2D.
Figure 3(a) is an example of a standard saw-tooth scheme for the Vehicle dataset,
including all the parameters mentioned.

4 Saw-Tooth Evolutionary Programming Algorithm
Guided by the Variance of Best Individual Distributions

The previously defined scheme has been enhanced considering the variance of the
best individual distributions, forcing the beginning of a new saw-tooth oscillation
when the best individuals have converged and the performance of the algorithm
decreases. Consequently, if the variance of best individual fitnesses has signifi-
cantly decreased, the population size falls. Otherwise a restart is performed, new
individuals being added to the current population. This methodology has been
called Guided Saw-tooth Evolutionary Programming (GSEP).

The condition that must be fulfilled in order to force a restart of the popula-
tion is that the difference of variance of the best individual fitnesses between two
consecutive generations decreases by a specific percentage (λ) with respect to the
previous generation variance, previously establishing the most appropriate dis-
tribution to represent the best individual fitnesses. As a first approximation, the
best individual fitness values have been characterized using two distinct distri-
butions, uniform distribution and normal distribution. Considering the uniform
distribution, the variance is estimated by:

σ̂2 =
1
12

(fmax − fmin)2 (7)
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fmax and fmin being, respectively, the maximum and minimum fitness value of
the best individual set B, and, considering the normal distribution, the variance
is estimated as:

σ̂2 =
1

|B|

|B|∑

i=1

(
fi − f

)2
(8)

fi being the fitness of the individual i of the set of best individuals B and f the
mean fitness value of all individuals in B.

Finally, a minimum number of individuals mn in the population is defined
based on the amplitude D of saw-teeth, mn = 1000 − 2D. Restart will also be
forced if the population size achieves this minimum. The number of the best
individuals whose variance is studied in order to guide the algorithm (|B|) is
constant during the evolution process and has been fixed to mn. As a result, the
number of individuals in each generation is obtained as:

– If [(σ̂2
t < σ̂2

t−1) and (σ̂2
t−1 − σ̂2

t ) < λσ̂2
t−1] or [(n(t − 1) − N) ≤ mn],

Perform a restart, generating new individuals until filling initial population
size, n(t) = 1000.

– Otherwise,
Decrease population size, n(t) = n(t − 1) − N , or keep population size to
the minimum value if the maximum number of restarts has been achieved,
n(t) = mn.

5 Experiments

The proposed GSEP algorithm is applied to six datasets taken from the UCI
repository, [10], to test its overall performance as compared to EP and SSEP
algorithms. The selected databases include both binary classification problems
(German, Heart-statlog, Ionosphere) and multiclass classification problems (Bal-
ance, Glass and Vehicle). The experimental design was conducted using a holdout
cross-validation procedure, with 30 runs and 70% of instances for the training
set and 30% for the generalization set.

Regarding the configuration of the different experiments, the specific param-
eters for each database have been fine tuned by a trial and error process and
summarized in Table 5. Considering an estimated mean population size n of 500
and the guidelines proposed in [1], D parameter value should range between 480
and 490. Consequently, we have considered two different values of the mn pa-
rameter , 20 and 40, for SSEP and GSEP algorithms. The period T of saw-teeth
is determined by the maximum number of restarts r and maximum number of
generations G, both specified in Table 5. For GSEP experiments, r value has
been increased in one additional restart, in order to avoid an excessive number
of generations with a minimum population size.

In order to graphically evaluate the performance of the proposed methodology,
the mean and the maximum fitness of the population have been plotted versus
the number of generation in Fig. 1 and Fig 2. The depicted values correspond
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Table 1. Non-common parameters values

Dataset Balance German Glass Heart Ionos Vehicle
G 300 150 200 100 350 1500

[m, ME, MI] [3,4,5] [2,3,4] [7,8,9] [1,1,2] [3,4,5] [6,7,8]
r 5 1 2 2 2 4
λ 0.005 0.0075 0.0075 0.0075 0.005 0.001

to the average over 30 runs of Vehicle experiment, using both SSEP and GSEP
schemes. The dynamic guided Saw-tooth algorithm achieves an overall better
performance (0.6% better final fitness). At the final generations, mean fitness
is higher using the GSEP scheme than using the SSEP and, throughout the
evolution process, the guided application of the saw-tooth reinitialization leads
to better fitness peaks.
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Fig. 1. Maximum fitness average for 30 runs using SSEP-40 and GSEP-40-U algorithms

Table 2 shows the mean value and standard deviation of results of the Cor-
rectly Classified Rate (CCR) for training and generalization sets and the cor-
responding number of net connections in 30 runs of the experiment, for the
EP algorithm and the best performing variant of SSEP and GSEP algorithms.
As the algorithms returned both the best CCR and cross-entropy individuals,
Table 2 only includes the most efficient approach in each given problem. The
algorithm that yields better generalization results is represented in bold print.
The saw-tooth algorithms (SSEP and GSEP) can be observed to outperform the
original EP algorithm in four out of the six problems analyzed. Moreover, the
models obtained have a lower number of connections in five out of six databases,
which suggests that including periodical reinitializations allows the evolutionary
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Fig. 2. Mean fitness average for 30 runs using SSEP-40 and GSEP-40-U algorithms

Table 2. Best statistical (mean and standard deviation, SD) CCR results in training
and testing sets, number of connections and population size throughout the 30 runs
for: Evolutionary Programming with 1000 individuals (EP), Standard Saw-tooth EP
(SSEP) and Guided Saw-tooth EP (GSEP), with 20 and 40 individuals as minimum
population size and considering uniform (U) and normal (N) distributions

Dataset CCRT CCRG #connect Pop. Size
(Elitism) Method Mean ± SD Mean ± SD Mean ± SD Mean ± SD
Balance EP 95.47 ± 1.50 94.10 ± 1.64 30.73 ± 2.16 1000.00
(CCR) SSEP-40 94.48 ± 1.35 93.18 ± 1.86 30.43 ± 2.46 524.00

GSEP-40-U 94.31 ± 1.56 93.65 ± 1.56 30.60 ± 2.25 527.05 ± 45.77
German EP 78.66 ± 1.48 73.05 ± 1.58 95.20 ± 21.90 1000.00
(Fitness) SSEP-40 78.48 ± 1.06 72.87 ± 1.77 88.17 ± 21.08 520.50

GSEP-40-N 78.20 ± 1.44 73.43 ± 2.22 85.80 ± 19.56 553.86 ± 46.08
Glass EP 72.61 ± 3.00 67.23 ± 4.10 77.57 ± 8.01 1000.00
(CCR) SSEP-40 71.76 ± 2.96 67.99 ± 4.04 73.63 ± 7.41 544.48

GSEP-40-N 70.99 ± 2.96 68.93 ± 4.53 76.37 ± 7.26 389.69 ± 18.70
Heart EP 86.06 ± 0.90 86.91 ± 2.06 17.27 ± 2.03 1000.00

(Fitness) SSEP-20 86.34 ± 1.22 85.44 ± 1.65 16.47 ± 2.37 520.00
GSEP-20-N 86.50 ± 0.96 86.37 ± 1.85 17.23 ± 2.57 366.91 ± 35.53

Ionos. EP 98.27 ± 0.93 92.53 ± 1.80 73.77 ± 9.91 1000.00
(Fitness) SSEP-20 98.43 ± 0.83 92.41 ± 2.08 80.83 ± 11.64 510

GSEP-20-U 98.43 ± 0.75 92.61 ± 1.80 77.47 ± 12.83 392.20 ± 18.73
Vehicle EP 79.94 ± 1.45 78.33 ± 2.74 96.47 ± 6.62 1000.00

(Fitness) SSEP-20 80.12 ± 1.86 78.50 ± 2.93 95.93 ± 6.67 510.00
GSEP-40-U 80.55 ± 1.84 78.66 ± 2.15 95.03 ± 10.05 449.21 ± 47.40
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algorithm.

Fig. 3. Population size for SSEP and GSEP schemes

process to explore simpler structures that offer better generalization results. Fi-
nally, the GSEP scheme proposed yielded better results than SSEP in all the
experiments evaluated. On the other hand, the efficiency of all the algorithms
has been estimated by obtaining the mean size of the population throughout all
the generations (also presented in Table 2). The values represented correspond
to the average and standard deviation of this mean population size during the
30 runs of the different experiments. Both EP and SSEP algorithms have a fix
population scheme, their standard deviation being equal to 0. In Fig. 3 average
population size over the 30 runs has been plotted for SSEP and GSEP, together
with two example runs for GSEP. In general, saw-tooth schemes (SSEP and
GSEP) result in a lower computational cost. Moreover, for Glass, Heartlog and
Ionosphere experiments, GSEP obtains a lower population size than SSEP.

6 Conclusions

The application of the standard saw-tooth scheme has proved viable in the de-
signing of Evolutionary MLP Neural Networks, providing diversity to the evo-
lutionary process and resulting in a more efficient and accurate algorithm. The
proposed GSEP algorithm improves the performance of the SSEP algorithm and
could be easily introduced into any existing EA. This proposed scheme has been
presented as an enhanced version of the standard saw-tooth scheme, performing
the population restart when the difference of variance between two generations
is lower than a percentage of previous variance. The evaluation of the algorithm
for a wide, thought not exhaustive, range of problems examined showed results
that are comparable to those of other classification techniques found in machine
learning literature [16]. In this way, it can be affirmed that distribution of the
best individual fitnesses can be considered a suitable tool for guiding restarts
and introducing diversity into the EP algorithm evaluated. Since the results show
that the improvement is consistent in the selected databases, we are extending
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experimentation using more databases, in order to apply of statistical tests and
analyze in depth the efficiency of the proposed methodologies.
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