
Learning Fuzzy Linguistic Models from Low Quality Data by
Genetic Algorithms

Luciano Sánchez, Member, IEEE, and José Otero

Abstract— Incremental rule base learning techniques can be
used to learn models and classifiers from interval or fuzzy-
valued data. These algorithms are efficient when the observation
error is small. This paper is about datasets with medium to high
discrepancies between the observed and the actual values of the
variables, such as those containing missing values and coarsely
discretized data. We will show that the quality of the iterative
learning degrades in this kind of problems, and that it does not
make full use of all the available information. As an alternative,
we propose a new implementation of a mutiobjective Michigan-
like algorithm, where each individual in the population codifies
one rule and the individuals in the Pareto front form the
knowledge base.

I. INTRODUCTION

There are many practical problems requiring to learn
models from uncertain data. Coarse-grained digital data, as
obtained when weighing small objects in a low resolution
scale, routinely appears. Or, occasionally we are provided
with values comprising both a numerical measure and one
or more confidence intervals defining its imprecision (the
position given by a GPS sensor, for example.) In either case,
there is an unknown difference between the true measure
and the observed one, but assuming that this difference
is stochastic noise is an oversimplification. Intervals or
fuzzy sets are best suited for representing the uncertainty
in the observation. Furthermore, an interval or fuzzy-based
representation can also be used to to reconcile different
measurements of a feature in a given object [8] and, lastly, to
describe incomplete knowledge about a value. For example,
a missing input value can codified by an interval spanning
the whole range of the variable.

In [7] we advocated the use of fuzzy data to learn
and evaluate Genetic Fuzzy Systems, and raised the use
of fuzzy-valued fitness functions to formulate the kind of
problems mentioned before. When using imprecise data, the
accuracy of a model becomes a fuzzy number, thus it is
needed to optimize a fuzzy valued function, and sometimes
a combination of crisp and fuzzy objectives [8]. Besides, we
also proposed to combine backfitting and boosting techniques
with the Iterative Rule Learning method in genetic fuzzy
models [6] and classifiers [3], and lastly both approaches
(backfitting and imprecise data handling) were combined in
the definition of a learning algorithm for fuzzy models, based
in incremental rule learning and the optimization a fuzzy-
valued fitness function [9].

Luciano Sánchez and José Otero are with the Computer Science Depart-
ment, University of Oviedo, Campus de Viesques, 33203 Gijón, Asturias,
Spain (email: [luciano,jotero]@uniovi.es).

This paper is about datasets with medium to high dis-
crepancies between the observed and the true values of the
variables, such as those containing missing values or coarsely
discretized data. It has been shown that the iterative algorithm
in [9] is efficient in problems where the observation error is
small. Unfortunately, we will show that it does not make full
use of low quality data. As discussed in section III-B, the
residual becomes less and less specific when new rules are
added, and in certain cases this prevents discovering enough
rules. As an alternative, we propose a new implementation
of a mutiobjective Michigan-style algorithm, where each
individual in the population codifies one rule, but all the
individuals in the Pareto front comprise the knowledge base.
In this paper, we will use an extension of the NSGA-II algo-
rithm [2][8] rather than the simulated annealing introduced
in [9].

The structure of this paper is as follows: in the next
section we discuss certain issues about the representation of
vague data with intervals. In section III we recall the use
of backfitting techniques to learn fuzzy models from interval
data, and summarize the modifications that must be done to
the NSGA-II algorithm in order to optimize fuzzy valued
functions. In section IV we describe the new algorithm, and
benchmark its results in section V. The paper finishes with
the concluding remarks, in section VI.

II. LOW QUALITY DATA

There exist problems where the correspondence between
a vague input and an interval is not direct. For example, let
us be given a training example (X, Y) = (1.5, 3) and let
us suppose that the tolerance of the measures in the input
space is ±0.5 units, and the measures are accurate in the
output space (see Figure 1.) If we represent this imprecise
example by mean of the interval-valued pair (1.5 ± 0.5, 3)
we are stating that the desired value of the output for all the
values in 1.5 ± 0.5 is 3, which is not true. What we really
know is that there exist at least one value in the interval [1, 2]
whose output is 3. The proper representation of the granule
of information in Figure 2 is the pair ([1, 2], [1, 4]).

According to the relative uncertainty between inputs and
outputs, we can classify all imprecise datasets into one of
these three categories (see Figure 2):

I. The uncertainty in the outputs is lower than the
span of the function in the range of the inputs.

II. The uncertainty in the outputs is higher than the
span of the function in the range of the inputs.

III. The uncertainty in the outputs matches the set of all
the images of the values compatible with the input.

1-4244-1210-2/07/$25.00 ©2007 IEEE.
1921

1 2

Y

3
Y[1,2]=3

1

4

1 2

Y

Y+[1.5]

Y-[1.5]
1

4

1 2

Y

Y+[1,2]

Y-[1,2]

TYPE I TYPE II TYPE III

X X

Fig. 2. Categories of vague datasets. Type I: The uncertainty in the outputs is lower than the span of the function in the range of the inputs: Y [1, 2] = 3.
Type II: The uncertainty in the input spans an interval contained in the range of the output: Y (1.5) = [1, 4]. Type III: The output data is the set of all the
images of the values compatible with the input: Y [1, 2] = [1, 4]

Problems of type III are rare. In point of fact, type I
problems appear the most, since we seldom can quantify
how much the observation error in the inputs is mapped to
the output variable. Nevertheless, the most convenient case
(from the point of view of rule learning) is that of a type II
dataset with near crisp inputs. This is the case we will study
in this paper, because any dataset can be transformed into that
case without losing much information. The transformation
from an assert “There is one point in [1, 2] whose output is
3” into a sentence like “The output of the value 1.5 is in the
interval [1, 4]” involves selecting a characteristic point of that
input (the center point, for instance) and then extending the
output until we are certain that it covers the actual output of
the function at this characteristic point. Think, for instance,
in a problem with missing values. These unknown values can
be replaced by their characteristic values with the method of
choice, provided that the output is also expanded accordingly
so that we are certain that it contains the true output of the
model in that characteristic point.

III. FUZZY EXTENDED ADDITIVE MODELS

In this section we define the fuzzy reasoning method we
will use, and recall the backfitting algorithm to which our
proposal will be compared. We will restrict ourselves to
linguistic additive fuzzy rule-based models, comprising M

1

4

1 2

Y

f

2

3

Y+[1,2]

Y-[1,2]

Y[?]=3

Fig. 1. The proper representation of the training example (1.5 ± 0.5, 3)
is a pair (1.5 ± 0.5, [3 − δ1, 3 + δ2]) for certain values δ1(ε) and δ2(ε)
that depend on the excursion of f in [1, 2].

rules as the one that follows:

If x is Am then y is Bm with weight wm, (1)

where x and y are the feature and the output vectors,
respectively, and Am are conjunctions of linguistic labels,
which in turn are associated to fuzzy sets. Bm can be either
a singleton or a fuzzy number. In this paper, none of the sets
Am, Bm will be modified during the learning, to preserve
the linguistic interpretability, but we will admit that each rule
is assigned a weight wm. The output y of the fuzzy model
is then computed as

y = GM
m=1(wm · I(Am(x), Bm(y))) (2)

where I is a fuzzy inference operator, and G is an operator
that combines the outputs of all the rules. Let us define I to
be the product, and G the sum of the centroids. If the input
x is crisp, the output of the fuzzy model is a real number,
which can be written as

y(x) =
M∑

m=1

fm(x) (3)

Each function fm(x) is a product βmAm(x). Am(x) is the
membership of x to a linguistic expression whose terms
are labels of the linguistic variables defined over the input
variables, connected by the operators “AND” and “OR”. βm

is the product of the centroid of Bm and the weight wm

assigned to the rule.

A. Backfitting Fuzzy Models
To learn the model (3) from data with the backfitting

algorithm, we first fit one rule f1 to the train set. Then, we
replace the output variable in the train set by the residuals
of the output of this rule, repeat the process to obtain f2 and
so on. A fuzzy rule fm will be obtained in every iteration,
and the process finishes when its βm is near zero. Because
of the limitations of space, the reader is refered to [6] for
further details in the numerical procedure.

When the output data in the train set is fuzzy, the residual
of the approximation of a rule to the data consists in
minimizing a fuzzy-valued function. Following the ideas
introduced in [7], given two fuzzy samples {X̃1, . . . X̃N}

1922

and {Ỹ1, . . . ỸN} of the input-output data, The residual of
the model is

R̃k(θ, β) = Ỹn !
M∑

m=1

βmAm(X̃n) (4)

and the best rule will be the one that minimices the fuzzy
valued function

F̃β(θ) =
N⊕

n=1

(
R̃k(θ, β)

)2
(5)

where [X]2α = {x2 | x ∈ [X]α} and β = (β1,β2, . . . ,βM)
is the parameter vector. The membership value F̃β(θ) will
be understood as the possibility of the value θ is the true
error of the rule, thus θ is an unknown real number whose
possibility distribution is given by the fuzzy fitness F̃β :

Π(θ|β) = F̃β(θ). (6)

B. Incremental learning of rules in low quality data

Unless the input is crisp, the residual becomes less specific
each time a new rule is added. Observe that the uncertainty in
the input propagates to the output because of the right term
of the subtraction in eq. (4), and each time the output data is
replaced by the residual of a rule the situation is made worse,
as R̃k will be wider. Eventually, the residual will cover the
null value for all the points. As we will discuss later, a
method that evaluates all rules at the same time (Pittsburgh
or Michigan) would be potentially better for problems with
fuzzy inputs.

C. Using NSGA-II for optimizing uncertain objectives

In [8] the NSGA-II algorithm [2] was extended so that it
can find a set of nondominated solutions for a two-objective
problem, where one of the objectives is crisp (the complexity
of the fuzzy rule base) and the other one is an interval. This
extension, which involves changes in three modules, is used
in this paper. These modules are the precedence (dominance)
operator, the non-dominated sorting of the individuals, and
the crowding distance.

1) Precedence under imprecise fitness: To determine
whether one individual precedes another, it is needed to set
up a procedure that, given two imprecise observations F̃β1

and F̃β2 of two unknown fitness values θ1 and θ2, estimates
whether the probability of θ1 < θ2 is greater than that of
θ1 ≥ θ2, thus F̃β1 ≺ F̃β2 . In this sense, the criteria that we
pursue can be regarded as a special case of fuzzy ranking.
However, we also want to find those cases where there is not
statistical evidence in F̃β1 and F̃β2 that makes us to prefer
one of them (thus F̃β1 ‖ F̃β2 .)

If a joint probability P ((θ1, θ2)|(x1, x2)) were known,
comparing two individuals would be an statistical decision
problem. The imprecise fitness provides us with less infor-
mation than this probability distribution, because it is only
an upper probability, that dominates the posterior probability
of the crisp fitness. In other words, given an individual x,

the information we have about its fitness takes a value θ is
limited to

F̃β(θ) = P ∗(θ|β) ≥ P (θ|β) (7)

and the decision rule is
P∗({(θ1, θ2) : θ1 < θ2}|β)
P ∗({(θ1, θ2) : θ1 ≥ θ2}|β)

> 1. (8)

In the reference [8] three different implementations of this
decision rule were introduced. We will use here the one that
introduces an uniform prior, i.e F̃β1 ≺ F̃β2 if

∑
θ1<θ2

F̃β1(θ1)F̃β2(θ2)
∑

R F̃β1(θ1)F̃β2(θ2)
> 1. (9)

2) Non Dominated Sorting: Finding the best individual is
a procedure of statistical decision that generalizes the rule
shown in the preceding section. Observe that we can bound
the lower probability of the assert “the i-th individual has
the best fitness in the population” by

Mi = P∗(θi is the minimum) =
s∏

j=1

P∗(θi < θj) i &= j

where P∗(θi < θj) = 1 − max{F̃β1(θ1) · Fβ2(θ2) : θ1 ≥
θ2}. Therefore, sorting the population w. r. t. an imprecise
criterion is the same as ordering the values of Mi.

3) Crowding distance: We have chosen the Hausdorff
distance between the expectation of both fitness values.
Given two intervals A and B, this distance is defined as

dH(A,B) = max{|a1 − b1|, |a2 − b2|}.

The crowding distance is defined as the distance between
the nearest (as defined by the Hausdorff metric) individual
preceding Ii and the nearest individual following Ii. The
first and the last individuals are assigned a high crowding
distance. The meaning of ’precede’, ’follow’, ’first’ and ’last’
is given by the order defined by the values Mi mentioned
before.

IV. A MULTIOBJECTIVE MICHIGAN-STYLE GENETIC
FUZZY SYSTEM ABLE TO LEARN FUZZY MODELS FROM

IMPRECISE DATA

In this section we propose to use a Michigan-stype al-
gorithm instead of the iterative approach discussed before.
While the catalog of this kind of algorithms for classification
problems is wide, their application to modeling problems is
less studied [1], [5], [10], [11], and there are not, up to our
knowledge, previous formulations of Michigan models for
imprecise data.

The rationale behind our method is as follows: we as-
sume that the best model will comprise rules that are in
nondominated sets under confidence and support measures
[4]. Therefore, we will use the extension of the NSGA-
II algorithm described in the preceding section to obtain
successive approximations to this set of nondominated rules.
Every generation, by means of a weighting and selection
procedure that will be explained later in this section, we

1923

Initialize P
Evaluate confidence and support in P
SVD select P
Create Intermediate Population Q
while iter ≤ maxiter

Evaluate confidence and support in P+Q
SVD select P+Q
non dominated sort P+Q
compute crowding distance P+Q
P ← selection of P+Q
SVD select P
non dominated sort P
Create Intermediate Population Q

end while
Output the nondominated elements of P

Fig. 3. Pseudocode of the NMIC algorithm

assign a weight to each rule in the Pareto front and solve
the cooperation-competition problem. The set of rules that
remain with non-null weights will comprise the knowledge
base of the fuzzy model. The pseudocode of the NSGA-II
based Michigan algorithm (NMIC) is shown in Figure 3. The
same codification and genetic operators described in [9] were
used.

A. Fitness function: Confidence and support
The fitness of an individual has three components: the

support of the antecedent of the rule, its confidence and the
weight of the rule.

The usual definition of support (the sum of the member-
ships of the antecedent for all the points in the sample) is
applicable. It is remarked that, in our case, the support is an
imprecise value when the inputs are interval or fuzzy.

The confidence is used to compare the degree to which a
rule explains all the examples that it covers. In modeling
problems, and assuming that the consequent of a rule is
constant, we will consider that the concept “fraction of
negative examples,” matches the variance of the covered
examples, weighed by the membership of these examples
to the antecedent of the rule. Thus, we propose to use this
approximate expression to assign a confidence value to a rule
(the lower the better):

{⊕
[Ỹn # wAm(X̃n)]2 ⊗Am(X̃n) ∃ n | Am(X̃n) > 0⊕
[Ỹn]2 otherwise

(10)
where w is the solution to the weighted least squares problem
defined by the centers Xn of the data:

w =
∑N

n=1 YnAm(Xn)2
∑N

n=1 Am(Xn)3
. (11)

It is remarked that the values w are only used to compute
the confidence. The weights of the rules are computed as
described in the section that follows.

B. Cooperation-competition problem: SVD selection
The crux of this method is the assignment of weights

and selection of rules from the Pareto front. This stage is

needed because the cooperation of the rules only arises if the
sum of the fitness values of the individuals is comonotonic
with the fitness of the rule base they form. Otherwise, the
genetic evolution would not improve the error or the model.
However, this is not the case with our confidence and support
based measures: each rule in the population models the part
of the space covered by its antecedent, but nothing prevents
that more than one rule covers the same area while other
areas are uncovered.

We have solved this problem by assigning a weight to each
rule in the Pareto front. Resembling the fitness assignment in
Michigan classifier systems, where two identical rules may
be given different credit, we intend to assign a null weight
to all the redundant rules. Our purpose is to obtain the most
compact rulebase, and also that these weights produce the
best matching between the data and the model.

Again, as we have done in the preceding section, we can
obtain these weights by least squares. Let A = [anm] be the
matrix of the memberships of the antecedents of all rules
in the Pareto front, at the centerpoint of the inputs, anm =
Am(Xn). Let Y = [yn], yn = Y n be a column vector with
the centers of the desired outputs of the model, and let W =
[Wn] be another column vector formed by the weights of
these rules, those that we want to obtain. The assignment of
weights that minimizes the error (and therefore solves the
cooperation problem) is

K = (AtA)−1AtY (12)

provided that the rank rA of A coincides with its number
of columns, the number of individuals in the Pareto front.
In most cases, rA is lower than this, therefore C = AtA
does not have inverse. The common solution to this problem
is to apply a singular value decomposition C = UDV t,
then cancel the eigenvalues of D lower than 10−6 times the
highest, and take the inverse of the remaining ones, and by
last define

K = [V · (1/D) · U t]AtY. (13)

While this assignment solves the cooperation problem, it
does not solve the competition problem, because the redun-
dant rules are not discarded. The value of K in the preceding
equation if that of minimum norm, but what we really need
is the definition of the matrix (1/D) that produce the most
sparse definition of K, not that with the lowest weights. For
example, observe that the definition in eq. 13 will assign
the same weight to identical rules, but we want that one of
them takes all the credit. It is easy to purge the duplicated
rules, but it is difficult to remove rules that are (almost) linear
combination of others in the Pareto front.

As a matter of fact, the number of individuals we want to
assign weights different than zero is the same as the number
of not cancelled eigenvalues in D. Observe that, the columns
of the matrix U associated to null eigenvalues form a basis
of the nullspace of A and that means that each individual
(each column of A), if expressed in the base formed by the
columns of U , will have at most rA non-null coefficients,
i.e, we will not find more than rA independent elements in

1924

the Pareto front. Therefore, we know that we can set to zero
the weights of all the rules but rA. The problem here is, how
can we determine which columns of A will be set to nonzero
weight.

The solution is trivial, but computationally intensive: we
just need to compute the eigenvalues of all the submatrices
A′ of A formed by removing only one of its columns. When
it is found a submatrix A′ whose non null eigenvalues are
the same as those of A, the column is removed and the
process restarted from A′. We will end up with a matrix
with rA columns and full rank. Now it is possible to use the
pseudoinverse solution in eq. (12) to obtain the weights of the
rA rules in the base, thus solving the competition problem.

C. Non dominated sorting
The precedence between individuals is based on weight,

confidence and support. The treatment of the three criteria is
not symmetric:

1) An individual which has a weight different than zero
precedes another whose weight is cero.

2) In case that two individuals have both zero weight
or both nonzero weight, we use a nondominance-
based order depending on the two criteria ‘confidence’
and ‘support’ defined before. At least one of them is
imprecise, thus we use the ranking defined in [8].

V. NUMERICAL ANALYSIS

8 synthetic problems and two real world problems have
been used to benchmark the algorithms proposed in this
paper. The synthetic problems are based on the functions
f1(x, y) = x2 + y2 (high slope) and f2(x, y) = 10(x −
xy)/(x − 2xy + y) (low slope). It is expected that the
improvements of the GFS in this paper are more significant in
f1, for its slope magnifies the effect of the imprecision in the
inputs. fi-y are the functions fi with y% of gaussian noise,
and are used to model the combined effects of stochastic
error and observation error. “Building” and “Cable” are real-
world problems, of moderate and small sizes, respectively.
The results shown are the mean test values of 10 repetitions
of the experiments.

In the first place we have quantified the effect of using
type-I datasets without preprocessing the output, that we
claimed in section II that could cause overtraining. In Table
I we have plotted the test error when the input data has
tolerances ±1%, ±2% and ±3%. As expected, when the
observation error is combined with a high slope in the
function (function f1 and “cable” problem,) that overtraining
happened. The train errors (not displayed in the table) were
not affected.

The second benchmark measures the accuracy of this
method when train data is crisp, so we can compare it to
different fuzzy rule learning and statistical methods in the
literature. Wang and Mendel with importance degrees ’maxi-
mum’ (WM1), ’mean’ (WM2) and ’product maximum-mean’
(WM3), the same three versions of Cordón and Herrera’s
method (CH1, CH2, CH3), Nozaki, Ishibuchi and Tanaka’s
(NIT), Linear (LIN) and Quadratic regression (QUA) , Neural

0% 1% 2% 3%
f1 0.13 0.22 1.34 5.30

f1-10 1.60 1.67 2.75 6.69
f1-20 5.98 6.08 7.17 11.05
f1-30 14.37 14.53 15.76 19.92
f1-50 39.22 39.30 40.31 44.16

f2 0.22 0.23 0.34 0.76
f2-10 0.35 0.37 0.50 0.93
f2-20 0.86 0.88 1.00 1.43
f2-30 1.40 1.42 1.55 1.97
f2-50 3.69 3.71 3.83 4.25

cable ·10−3 416 416 416 890

TABLE I
TEST ERROR WHEN THE INPUT DATA HAS TOLERANCES ±1%, ±2% AND

±3%. WHEN THE OBSERVATION ERROR IS COMBINED WITH A HIGH

SLOPE IN THE FUNCTION (FUNCTION f1 AND “CABLE” PROBLEM,) THE

LEARNING ALGORITHM OVERTRAINS.

1% 1% 5% 5% 10% 10%
BMO NMIC BMO NMIC BMO NMIC

f1 0.89 0.35 6.64 6.25 24.82 24.77
f1-10 2.66 1.86 9.39 8.31 29.03 28.60

f2 0.52 0.23 0.60 0.47 1.41 1.23
f2-10 0.56 0.37 0.97 0.68 1.67 1.70
cable 440 421 581 558 1003 988

TABLE II
COMPARISON OF NMIC AND BMO IN DATASETS WITH 1%, 5% AND

10% OF INTERVAL-VALUED IMPRECISION IN THE OUTPUTS, AND

TESTED WITH CRISP DATA WITH NON-ZERO MEAN OBSERVATION ERROR.
NMIC IMPROVED THE RESULTS IN ALL THE TESTS FOR WHICH THE

OBSERVATION ERROR WAS THE MOST RELEVANT SOURCE OF NOISE.

Networks (NN) and TSK rules induced with Weighted Least
Squares (WLS) are compared to genetic backfitting (BFT),
MOSA backfitting (BMNO) and NSGA-II based Michigan
(NMIC). The best overall result and the most accurate fuzzy
rule base were boldfaced in Table III. All the methods and
datasets not described in this paper are referenced in [6] and
[9]. Because of space reasons we do not include the statistical
tests, but a selection of boxplots in Figure 4.

Lastly, to compare the performance of the NMIC method
with that of the iterative learning, we have prepared datasets
with 1%, 5% and 10% of interval-valued imprecision in the
outputs, and tested the rule bases with crisp data with non-
zero mean observation error (all the test points were in the
upper extreme of the tolerance.) We have only used datasets
for which the stochastic error is lower than the observation
error, and the results are shown in Table II. As expected,
NMIC improved the results in all the tests for which the
observation error was the most relevant source of noise.

VI. CONCLUDING REMARKS

This paper addressed some problems of learning fuzzy
rules from imprecise data (namely, how to make full use
of low quality data). Besides, there are some basic questions
that remain unanswered, as the best way of preprocessing a

1925

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT BMO NMIC
f1 5.65 5.73 5.57 5.82 8.90 6.93 5.63 130.5 0.00 0.17 0.09 0.45 0.30 0.13

f1-10 6.89 7.19 6.54 6.84 10.15 8.20 7.16 133.91 1.40 1.78 1.62 1.86 1.71 1.59
f1-20 11.07 10.99 11.06 11.33 13.45 12.42 10.63 135.6 5.29 6.42 5.90 6.04 5.98 5.98
f1-50 51.78 46.40 47.80 53.48 48.94 48.16 39.65 166.64 33.53 41.18 36.76 39.62 38.66 39.22

f2 0.41 0.48 0.45 0.40 0.59 0.45 0.43 1.54 1.61 1.48 0.15 0.24 0.26 0.22
f2-10 0.64 0.68 0.68 0.59 0.68 0.60 0.58 1.71 1.75 1.81 0.29 0.42 0.41 0.35
f2-20 1.27 1.16 1.17 1.29 1.15 1.17 0.97 2.04 2.09 0.90 0.76 0.87 0.87 0.86
f2-50 4.34 3.98 3.94 4.47 3.90 3.97 3.59 4.67 4.78 3.76 3.62 3.67 3.72 3.69

cable ·10−3 778 720 723 673 663 655 548 418 393 522 486 441 437 416
building ·102 1.113 1.051 1.023 0.983 1.753 1.465 0.432 0.477 - 0.276 0.246 0.375 0.389 0.389

TABLE III
COMPARATIVE RESULTS BETWEEN ADDITIVE REGRESSION + GENETIC BACKFITTING (BFT), MOSA-BASED BACKFITTING (BMO) AND OTHER

APPROACHES. BFT METHOD WAS LIMITED TO 25 FUZZY RULES. THE BEST OF WM, CH, NIT, BFT AND BMO, PLUS THE BEST OVERALL MODEL,
WERE HIGHLIGHTED FOR EVERY DATASET.

WM1 WM2 WM3 CH1 CH2 CH3 NIT CUA NEU WLS BFT NIMC

0
2

4
6

8
1
0

1
2

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT NMIC

0
.0

0
.5

1
.0

1
.5

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT NMIC

4
0
0
0
0
0

6
0
0
0
0
0

8
0
0
0
0
0

1
0
0
0
0
0
0

1
2
0
0
0
0
0

1
4
0
0
0
0
0

1
6
0
0
0
0
0

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN NEU WLS BFT NMIC

0
.0
0
5

0
.0
1
0

0
.0
1
5

Fig. 4. Comparative results between additive regression + backfitting (BFT) and multiobjective fuzzy Michigan (NMIC). over f1, f2, cables and building
datasets.

dataset with missing values, i.e., how to compute the spread
of the output when an interval in the input is replaced by one
point (generally speaking, how convert type I problems into
type II.) In this paper we have benchmarked the algorithm
over type II problems, but future works should emphasize
the learning of the more common type I problems.

The implementation of the new algorithm NMIC could
also be improved in future releases. It worths mentioning
that the initialization the population is currently random, so
most points are uncovered in problems with many inputs. We
might study an hypothetical ’interval-valued’ Wang-Mendel
initialization, that would be good in terms of confidence but
would produce rules far from Pareto-optimal ones in terms
of support. In addition, the search of the Michigan algorithm
could be further guided toward points with high residuals.

ACKNOWLEDGEMENT

This work was supported by the Spanish Ministry of
Education and Science, under grant TIN2005-08036-C05-05.

REFERENCES

[1] Bonarini, A. (1993). “ELF: learning incomplete fuzzy sets for
an autonomous robot”. In Proc. EUFIT’ 93. Aachen, Germany,
pp. 69-75.

[2] Deb, K., Pratap, A., Agarwal, S., and Meyarevian,T., (2002)
A fast and elitist multiobjective genetic algorithm: NSGA-II,
IEEE Transactions on Evolutionary Computation, vol. 6, no.
2, pp. 182-197.

[3] del Jesús, M. J., Hoffmann, F. , Junco, L., Sánchez, L. (2004)
Induction of fuzzy-rule-based classifiers with evolutionary
boosting algorithms. IEEE T. Fuzzy Systems 12(3): pp. 296-
308.

[4] Ishibuchi, H, Kuwajima, O., Nojima, Y. (2007) “Relation be-
tween Pareto-optimal fuzzy rules and Pareto-optimal fuzzy rule
sets”. Proc. 2007 IEEE Symp. on Comp. Int. in Multicriteria
Decision Making, Honolulu, USA, To appear.

[5] Parodi, A. and Bonelli, P (1993) A new approach to fuzzy
classifier systems. In Proc Fifth International Conference on
Genetic Algorithms (ICGA’93). pp. 223-230.

[6] Sánchez, L. Otero, J. (2004) A fast genetic method for induct-
ing descriptive fuzzy models. Fuzzy Sets and Systems 141(1):
33-46

[7] Sánchez, L., Couso, I. (2007) Advocating the use of Impre-
cisely Observed Data in Genetic Fuzzy Systems. IEEE Trans
Fuzzy Sys, 2007. In press.

[8] Sánchez, L., Couso, I., Casillas, J. (2007) “Modelling vague
data with genetic fuzzy systems under a combination of crisp
and imprecise criteria” Proc. 2007 IEEE Symp. on Comp. Int.
in Multicriteria Decision Making, Honolulu, USA, To appear.

[9] Sánchez, L., Otero, J., Villar, J. R., (2006) “Boosting of fuzzy
models for high-dimensional imprecise datasets”. Proc. IPMU
2006, Paris, France, pp. 1965-1973.

[10] Valenzuela-Rendón, M. (1991) “The fuzzy classifier system:
A classifier system for continuosly varying variables.” In Proc.
ICGA’91, San Diego, USA, pp. 346-353

[11] Velasco, J. R., (1998) Genetic-based on-line learning for fuzzy
process control. International Journal of Intelligent Systems.
13(10-11), 891-903

1926

