
A fuzzy definition of Mutual Information with
application to the design of Genetic Fuzzy

Classifiers
Luciano Sánchez

Dept. of Computer Science
University of Oviedo
33271 - Gijón, Spain

Email: luciano@uniovi.es

M. Rosario Suárez
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Abstract— The equation used by fuzzy boosting algorithms to
assign weights to rules precludes either the tuning of member-
ships while the rule base is been generated, or a final tuning
stage, like that used in genetic iterative learning. In both cases,
the tuning would need to alter the weights of all rules in the base,
thus destroying the incremental nature of the learning. Therefore,
if we are not given a semantic for the linguistic variables in the
classifier, but want to tune the memberships of the variables, the
calculus must be done in advance, via a discretization algorithm.
Since the strength of boosting algorithms is in their ability to
produce small rule bases, this discretization should be directed
to preserve as much dependence as possible between the input
and the output variables, with special interest in situations with a
low number of labels. The statistical measure of this dependence
is the mutual information.

Contrary to its customary use, in this paper we suggest that
the natural definition of the mutual information between a fuzzy
variable and a crisp variable is a fuzzy number, and not a
numerical value. Therefore, it is proposed a new definition of the
statistical dependence between a fuzzified continuous variable
and a crisp variable, that can be used in combination with
boosting-related fuzzy rule learning algorithms in classification
problems.

I. INTRODUCTION

Fuzzy boosting techniques are iterative rule learning meth-
ods that incrementally obtain fuzzy knowledge bases from
data. The first fuzzy boosting algorithm was derived from Ad-
aBoost [5][9], but there also exist a backfitting-based approach
[12], and a version able to use standard max-min inference
[13].

There are many similarities between fuzzy boosting and
Iterative Rule Learning [3], but also some fundamental dif-
ferences. In particular, IRL performs a tuning of the mem-
bership functions, but fuzzy boosting does not alter the shape
or position of these functions. Conversely, knowledge bases
learned by boosting contain weighted fuzzy rules. There are
some works discussing the relative benefits of weighting rules
vs. tuning memberships, and besides it can be argued that
the semantic of a linguistic variable should not be altered
in linguistically understandable classifiers [14], it is also
clear that there exist problems where such an alteration is
admissible. In this last case, fuzzy boosting could also benefit

from an adequate selection of the fuzzy partitions of the input
variables.

Contrary to IRL, in fuzzy boosting it is not easy to integrate
the tuning of the membership functions with the learning
algorithm. With this last algorithm, each time a rule is added
to the base, a weight is calculated for it, as a function of the
misclassified examples of the data base. This weight depends
on the membership functions associated to the linguistic
variables, thus any change on these functions would imply
to recalculate the weights of the already emitted rules. This
is obviously impractical, and we propose that the selection of
the membership functions is done in advance, before any rules
are emitted.

There exist many techniques to design fuzzy memberships
(some of them will be reviewed in section III,) that could
be used to solve this problem [3]. In this paper, we suggest
that this decision can be guided by a measure of the loss of
information that happens between the output and the input
variables when the input data is discretized. This magnitude
is the Mutual Information between the output variable and the
input variables. The Mutual Information (M.I.) is a widely
used measure of the statistical dependence between these
magnitudes. Apart from its main use, in feature selection
algorithms, the M.I. is useful to assess the quality of a
discretization [2]. In addition, if combined with a search
algorithm, this statistic serves to select the partition that
loses the less information about the output variable, that will
ultimately lead to the best classifier system. It will also be
shown that, contrary to its customary use, the natural definition
of the mutual information between a fuzzy variable and a crisp
variable is a fuzzy number (and not a numerical value.)

The main objective of this work is to propose a new
definition of the statistical dependence between a fuzzified
continuous variable and a crisp variable, that can be used in
combination with boosting-related fuzzy rule learning algo-
rithms in classification problems. The structure of this paper is
as follows: in the next section, fuzzy classifiers are introduced
and it is explained how Adaboost can be applied to induce
them from data. Then (section III) it is explained why a tuning
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stage is not appropriate in combination with boosting, thus
other techniques to obtain fuzzy memberships are reviewed
and a design based on mutual information is proposed. The
paper finishes with a graphical analysis of the properties of the
boosting algorithm under fuzzy partitions of different quality.

II. BOOSTING FUZZY CLASSIFIERS

A. Notation

At this point we introduce the basic notation employed
throughout the paper. Let X be the feature space, and let x be
a feature vector x = (x1, . . . , xn) ∈ X. Let p be the number of
classes. The training set is a sample of m classified examples
(xi, yi), where xi ∈ X, 1 ≤ yi ≤ p, 1 ≤ i ≤ m.

The antecedents of all fuzzy rules in the classifier form a
fuzzy partition A of the feature space A = {Aj}j=1...N , with
Aj ⊂ P̃(X), where P̃(X) stands for “fuzzy parts of X”.
In the remaining part of this paper, we will assume that the
training examples will be indexed by the letter i, the rules
by j, the features by f and the classes by k; the ranges of
these variables are 1 ≤ i ≤ m, 1 ≤ j ≤ N , 1 ≤ f ≤ n and
1 ≤ k ≤ p. For example, if we write “for all xi” we mean
xi, 1 ≤ i ≤ m; from now on, this range will not be explicitly
stated unless its absence leads to confusion.

We will define a fuzzy rule based classifier by means of a
fuzzy relationship defined on A × {1, . . . , p}. Values of this
relationship describe the degrees of compatibility between the
fuzzy subsets of the feature space collected in A, and each
one of the classes. In other words, for every antecedent Aj

we have p numbers between 0 and 1 that represent our degree
of knowledge about the assert “All elements in the fuzzy set
Aj belong to class number k”. Values near to 1 mean “high
confidence,” and values near 0 mean “absence of knowledge
about the assertion.”

B. Linguistic interpretation of fuzzy classifiers

Fuzzy rule based classifiers are understandable to humans
as they can be expressed as linguistic sentences. There are
different standards when translating the former fuzzy relation-
ship into linguistic statements. In this paper, we combine p
instances of the fuzzy relationship,

compatibility(Aj , ck) = sk k = 1, . . . p,

into a single sentence, as follows:

if x is Aj then truth(c1) = sj
1 and · · · and truth(cp) = sj

p

Furthermore, the antecedents of various rules with the same
consequent

if x is A then truth(c1) = s1 and · · · and truth(cp) = sp

if x is A′ then truth(c1) = s1 and · · · and truth(cp) = sp

can be combined with the help of the “or” connective, given
a compound rule:

if (x is A) or (x is A′) then
truth(c1) = s1 and · · · and truth(cp) = sp.

In practical cases, we work with asserts Aj that can be
decomposed in a Cartesian product of fuzzy sets defined over
each feature, Aj = Aj

1 ×Aj
2 × . . .×Aj

n, thus the rules are

if (x1 is Aj
1 and . . . and xn is Aj

n) or (x1 is etc. )
then truth(c1) = sj

1 and · · · and truth(cp) = sj
p.

The linguistic expression of the fuzzy classifier does not
include the terms for which confidence values are null. In case
there exist fuzzy subsets for which all confidence values are
null, the rule base will comprise less sentences (fuzzy rules,)
than elements exist in the fuzzy partition A.

We can restrict the definition further by defining n linguistic
variables (one linguistic variable for every feature) and requir-
ing that all terms sets Aj

f in the antecedents are associated with
one linguistic term in its corresponding linguistic variable. In
this case, we obtain a fuzzy rule based descriptive classifier. If
we do not apply the latter restriction, we obtain an approximate
classifier.

Observe that in a descriptive fuzzy classifier the set of
possible rules is finite due to the discrete number of possible
linguistic labels associated to each rule. Conversely, there is
an infinite number of possible approximate classifiers as fuzzy
rules use continuous parameters to define the characteristic
points of their underlying fuzzy sets.

C. Fuzzy inference

Fuzzy reasoning methods define how rules are combined
and how to infer from a given input to the corresponding
output. The actual inference method is solely defined in terms
of the fuzzy relationship, and is therefore independent of the
classifier being approximate or descriptive. An instance x is
assigned to the class

arg maxk=1,..., p

N∨
j=1

Aj(x) ∧ sj
k (1)

where “∧” and “∨” can be implemented by different operators;
for example, “∨” can be the maximum operator [10] or the
arithmetic sum, so called “maximum voting scheme” [8]. “∧”
is always a t-norm, usually the minimum or the product. In
this paper, we will combine the product with the maximum
vote scheme to do the fuzzy inference.

D. The Adaboost algorithm

Let us define a set {g1, g2, . . . , gN} of simple, but possibly
unreliable binary classifiers. Boosting consists in combining
these low quality classifiers (so called “weak hypotheses”
in boosting literature) with a voting scheme to produce an
overall classifier that performs better than any of its individual
constituents alone. We will show later that a fuzzy rule can be
regarded as a particular case of weak hypothesis, and a fuzzy
rule base can be compared to a weighted combination of weak
hypotheses.

Weak hypotheses take feature values as input and produce
both a class number as well as a degree of confidence in the
given classification. In two-class problems, these two outputs
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Given: (x1, y1), . . . , (xm, ym), xi ∈ Rn, yi ∈ {−1,+1}
Initialize D1(i) = 1/m
Select the number of weak hypotheses N
For j = 1, . . . , N :

1) Get weak hypothesis gj : X→ R
2) Find numerically the value αj that minimizes

Zj(α) =
∑m

i=1 Dj(i) exp(−αyig
j(xi))

3) Update the weights:

Dj+1(i) =
Dj(i) exp(−αjyig

j(xi))
Zj

where Zj is a normalization factor, so that Dj+1 is a
distribution.

Output the final hypothesis

H(x) = sign

 N∑
j=1

αjg
j(x)


Fig. 1. Generalized Adaboost algorithm. Two classes version.

can be encoded with a single real number, gj(x) ∈ R, whose
sign is interpreted as the label of x and whose absolute value
is interpreted as the confidence in the classification, the higher
the better. AdaBoost is intended to produce a linear threshold
of all hypotheses:

sign

 N∑
j=1

αjgj(x)

 . (2)

An outline of the Adaboost algorithm is shown in Figure 1.
Observe that Adaboost can operate with any learning algorithm
that generates a confidence rated classifier, given a weighted
data set. There are different algorithms for assigning a number
of votes to a weak hypothesis, and for adjusting the weights
of the examples. For example, in confidence-rated Adaboost
[15] the number of votes of the weak hypothesis gj is given
by the value αj that minimizes the following function:

Z(α) =
m∑

i=1

wi exp(−αyig
j(xi)) (3)

and the weights of the examples are updated according to the
formula

wi ← wi exp(−αjyig
j(xi))/v (4)

where v is the value that makes
∑

wi = 1. There are
analytical approximations and even heuristics that may replace
this formula in specific problems.

E. Boosting fuzzy rules

Fuzzy rules are weak learners in fuzzy boosting. Each fuzzy
rule is a confidence rated classifier that can produce the output
’0’ if the pattern is not covered by its antecedent, or both a
class number and a confidence value between 0 and 1 else [5].
Therefore, boosting fuzzy rules can be based on an algorithm
able to fit one single fuzzy rule to a set of weighted examples.

This algorithm will be repeated so many times as rules in
the base, and the Adaboost algorithm produces the number
of votes each rule is assigned and recalculates the weight of
every example when the rule is added to the base.

For the sake of simplicity, we restrict the discussion for the
time being to two-class problems. A function Rj(·) can be
assigned to the rule

if x1 is Aj
1 and . . . and xn is Aj

n

then t(c1) = s1 and t(c2) = s2

Rj(x) is defined as the product of the membership degree of
instance x with the rule antecedent and the difference between
the degrees of truth of the two classes in its consequent:
Rj(x) = Aj(x)(s1 − s2). Assuming the product as the
conjunction operator ∧, the output of the fuzzy classifier given
in eq. 1 can be written as

sign

 N∑
j=1

Rj(x)

 .

Noticing, the similarity between the above expression and eq.
2. it allows us to apply the boosting mechanism to descriptive
fuzzy rules. The space of weak hypotheses becomes identified
with the fuzzy partition A. A linear threshold of elements of
A is

sign

 N∑
j=1

αjAj(x)


and the values of αj , along with the N elements Aj selected
from A are obtained by the usual Adaboost algorithm. Positive
values of α correspond to rules for which s1 > s2 and
negative ones to rules with s2 > s1. Since the values of αj

that Adaboost produces are not constrained to the interval
[0, 1], it may happen that they no longer constitute valid
confidence rates. Therefore, the degrees αj in the consequents
are normalized to a range [−1, 1] once the entire rule base has
been generated.

Figure 2 shows the outline of the final algorithm, as pro-
posed in [9][5].

III. MEMBERSHIP TUNING IN FUZZY BOOSTING

It is clear from Figure 2 that there is a strong dependence
between the membership functions Aj and the weights αj .
A small change in any of the memberships implies a change
in the degrees in the confidence of rule number 1, which in
turn affects the weights of the examples and it might occur
that not only the weight of the remaining rules, but also their
linguistic expression, must be changed to keep a coherent set
of weights. Obviously, a membership tuning, as stated in [3],
can not be applied here.

Instead, we must resort to other techniques. The design
of fuzzy membership functions was originally solved with
statistical techniques based on frequencies, that were obtained
by measuring the percentage of experts who answer “yes” to
a question about whether an object belongs to a particular
set, or who were asked directly to grade the object on an
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Given: (x1, y1), . . . , (xm, ym), xi ∈ Rn, yi ∈ {−1,+1}
Initialize D1(i) = 1/m, sj

1 = 0, sj
2 = 0

Select the number of rules N
For j = 1, . . . , N :

• Find the fuzzy membership Aj ∈ A that minimizes
Z = minA∈A (

∑m
i=1 Dj(i) exp(−yiA(xi)),∑m

i=1 Dj(i) exp(yiA(xi)))
• Find numerically the value αj that minimizes

Zj(α) =
∑m

i=1 Dj(i) exp(−αyiA
j(xi))

• If αj > 0 then sj
1 = αj else sj

2 = −αj .
• Update the weights:

Dj+1(i) =
Dj(i) exp(−αjyiA

j(xi))
K

where K is another normalization factor, so that Dj+1

is a distribution.
End For
sj
1 = sj

1/ maxk,j(s
j
k), sj

2 = sj
2/ maxk,j(s

j
k); k = 1, 2; j =

1, . . . , N
Generate the rules

if x1 is Aj
1 and . . . xn is Aj

n then tr(c1) = sj
1 and tr(c2) = sj

2

Fig. 2. Adaboost algorithm applied to the induction of a descriptive, fuzzy
rule based classification system. Two classes version.

scale [17]. According to [16], these manual techniques to
estimate membership functions are four: direct rating, polling,
set valued statistics and reverse rating.

Soft computing approaches to design or tune membership
functions tend to leave the expert out of consideration; at most,
the expert guesses an initial solution. The generation of the
membership functions is guided to obtain the best numerical
performance and linguistic concerns are often secondary. We
could state that the primary objective of the automatic estima-
tion of the membership functions is to reduce the classification
error, thus they can be seen as supervised techniques [3].

On the other hand, there also exist unsupervised or self-
organizing methods. These techniques have deep roots in
information theory, and in fact some authors interpret all
of them in terms of the principle of maximum information
preservation [6]. These approach is less common in the fuzzy
community; some authors use fuzzy clustering or neurofuzzy
techniques [7], but the works that clearly relate the design of
fuzzy memberships with the Information Theory are scarce
[11]. It is remarked that these works should not be confused
with the algorithms that use fuzzy memberships as a tool
or ’soft histogram’ when estimating the mutual information
between continuous variables, which are an active area of
research [4].

Information theoretic techniques are able to detect the
statistical dependence between two variables, therefore its
application in the design of fuzzy partitions is intuitive: it is
clear that replacing a continuous variable by a linguistic vari-
able carries a loss of information, thus the best discretization
will be, roughly speaking, the one that maximizes the mutual

information between the output and the input. But there are
certain problems that arise in this procedure. The first, basic
one, is that we are not aware of an extended definition of
mutual information that can measure the statistical dependence
between two discrete random variables, one of them impre-
cisely observed. We will address this problem in the following
sections.

A. Mutual information between discrete random variables

Mutual information represents a general approach to de-
termine the statistical dependence between variables. We are
only concerned with discrete data, which we will show in later
sections that can be precise or imprecisely observed.

For the time being, let us consider the definition of mu-
tual information between two random variables, precisely
observed. For a system A, with a finite set of M possible
states {a1, a2, . . . , aM}, the Shannon entropy H(A) is defined
as [1]

H(A) = −
M∑
i=1

p(ai) log p(ai) (5)

where p(ai) denotes the probability of the state ai. The
entropy of the system A becomes zero if the outcome of
a measurement of A is completely determined (p(aj) = 1
and p(ai) = 0 for all i 6= j) and becomes maximal if all
probabilities are equal. The joint entropy H(A,B) of two
systems A and B is defined as

H(A) = −
MA∑
i=1

MB∑
j=1

p(ai, bj) log p(ai, bj) (6)

and this leads to the relation

H(A,B) ≤ H(A) + H(B) (7)

with equality only in the case of statistical independence
between A and B. The mutual information MI(A,B) can be
defined as

MI(A,B) = H(A) + H(B)−H(A,B) (8)

and it is greater or equal than zero, being zero only when A
and B are statistically independent.

The mutual information can be used to compare two differ-
ent crisp discretizations, as shown in the example that follows.
Observe that in this example all the values p(ai), p(bi) and
p(ai, bi) have been estimated by their relative frequencies
p̂(ai), p̂(bi) and p̂(ai, bi).

Example 1: Let us suppose that we have to discriminate
between three classes (apple, pear, banana), given the weight
of a piece of fruit. To design a rule-based classifier, we are
given a sample comprising five pieces, whose weights and
classes are given in table I. The weight will be divided into
three intervals, labeled “small”, “medium” and “large”. We
have to choose the best design between two alternatives:

1) sma. = [90, 100), med. = [100, 110), lar. = [110, 120]
2) sma. = [90, 110), med. = [110, 115), lar. = [115, 120]

Solution:.
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crisp weight class
1 111 pear
2 96 apple
3 116 pear
4 91 banana
5 101 apple

TABLE I
DATASET FOR THE EXAMPLE PROBLEM ’FRUIT’

The discrete values of the weight are as shown in the table
that follows:

weight discrete 1 discrete 2 class
1 111 large medium pear
2 96 small small apple
3 116 large large pear
4 91 small small banana
5 101 medium small apple

The entropies of the variables ‘discrete 1’, ‘discrete 2’ and
‘class’ are, respectively,

H1 = 0.4 log 0.4 + 0.2 log 0.2 + 0.45 log 0.4 = 1.0549

H2 = 0.9503

H3 = 1.0549

H1,3 = 1.3322

H2,3 = 1.3322

thus
IM1,3 = H1 + H3 −H1,3 = 0.7776

IM2,3 = H2 + H3 −H2,3 = 0.6730

so we can conclude that the first discretization keeps more
of the information of the weight about the class, and is the
preferred one.

B. Mutual information between a random variable and a
random set

Let us suppose now that we are not given the value of the
state of the system, but a set that contains it. In other words,
we have a tolerance in our numerical measures, and therefore,
when the value of the state is near the boundary of an element
of the partition we can not assign it a label but two of them.

In this case, we do not know the values of the sample
frequencies p̂(ai), p̂(bi) and p̂(ai, bi), but we can obtain sets
of values that contain them, p̂(ai) ∈ Γai , p̂(bi) ∈ Γbi and
p̂(ai, bi) ∈ Γai,bi . We can not estimate the mutual information
from a sample, but we can find a set that contains it:

MI(A,B) = {
∑

ai log ai +
∑

bi log bi

−
∑∑

ci log ci : ai ∈ Γai
, bi ∈ Γbi

ci ∈ Γai,bi
} (9)

This set will be formed by all the estimations of the mutual
information that are compatible with our knowledge. This is
made clear with the example that follows

Example 2: Recall the previous example. Suppose that we
use the first discretization, and the following set of data:

small medium high

80 13010555 155

Fig. 3. One possible definition of the linguistic variable “weight”, as used
in the example problem “fruit.”

weight discrete values class
1 110 ± 1 large or medium pear
2 96 ± 1 small apple
3 116 ± 1 large pear
4 91 ± 1 small banana
5 101 ± 1 medium apple

Solution:. There are two sets of estimates that are compat-
ible with the example:

1) p̂(large) = 0.4, p̂(medium) = 0.2, p̂(small) = 0.4,
p̂(large,pear) = 0.4 etc.

2) p̂(large) = 0.2, p̂(medium) = 0.4, p̂(small) = 0.2,
p̂(large,pear) = 0.2 etc.

Operating with the first set, the mutual information is 0.7776,
and the second one gives the value 0.6730, therefore all we
can say about the amount of information that the discrete input
gives about the class number in that it is in the set IM =
{0.6740, 0.7776}. Observe that, if a second example would
have lied in a boundary, we would have obtained four sets of
estimates, and so on.

C. Mutual information between a random variable and a fuzzy
random variable

Recall that in the previous section we estimated a set of
values of the mutual information given a sample comprising
sets of labels, i.e. “weight is large or medium”. Now we want
to generalize it to the fuzzy case, where a numerical value is
transformed in a fuzzy set over the set of labels, say “weight
is large with degree 0.8” and “weight is medium with degree
0.2.”

It is immediate that, in this last case, all we can estimate
about the mutual information is a fuzzy restriction of its value.
The standard construction applies, and for each α-cut we
obtain a problem like that stated in the section before, whose
solutions can be stacked again to produce the fuzzy output.
The whole process is illustrated in the next example:

Example 3: Let us evaluate the mutual information between
the linguistic variable “weight”, (understanding “linguistic
variable” in the fuzzy sense,) as defined in Figure 3, and the
crisp variable “class.”

Solution:. The values of the memberships of the examples
in table I to the elements of the partition in Figure 3 are as
follows:
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Example value small medium high
1 111 0 0.88 0.12
2 96 0.18 0.82 0
3 116 0 0.78 0.22
4 91 0.28 0.72 0
5 101 0.08 0.92 0

There are 25 = 32 different combinations of the discrete
labels “small, “medium” and “high” that are compatible with
these values. For example, one of them is

Example num value linguistic value membership
1 111 medium 0.88
2 96 small 0.18
3 116 medium 0.78
4 91 small 0.28
5 101 small 0.08

for which the value of the mutual information between the
class and the linguistic value is 0.673, and the membership
of the value 0.673 to the fuzzy mutual information will
not be lower than 0.08. Repeating the process for all the
32 combinations, the result is M̃I = 0.72/0 + 0.22/0.22 +
0.18/0.40 + 0.28/0.50 + 0.22/0.67 + 0.12/0.78 + 0.12/1.06.
Different partitions have different fuzzy mutual informations.
For example, if the fuzzy sets “small”, “medium” and “high”
are respectively defined as (78.5; 91; 103.5), (91; 103, 5; 116)
and (103.5; 116; 128.5) , the estimation is M̃I = 0.40/0.50 +
0.4/0.67+0.6/0.78+0.4/1.05 which, under many criteria, is
preferable to the former one.

It is remarked that, if we had restricted ourselves to the
most compatible of the 32 combinations,

Example num value linguistic value membership
1 111 medium 0.88
2 96 medium 0.82
3 116 medium 0.78
4 91 medium 0.72
5 101 medium 0.92

the punctual estimation of the mutual information is 0, thus
if we had dropped the fuzziness of the estimation of the
mutual information, we could have concluded (wrongly) that
this linguistic partition completely loses the dependence w.r.t.
the class number. In an informal sense, the values of the mutual
information with lower memberships describe the amount of
information carried by the inputs with are less covered by the
fuzzy partition, which can be highly relevant to the classifier
being designed.

IV. NUMERICAL ANALYSIS

The practical application of the concepts mentioned in the
preceding section pose some difficulties:

• The number of times that the mutual information must be
estimated grows exponentially with the number of inputs,
and with the number of elements in the training set.

• We have reasoned that the estimation of the mutual
information associated to a partition is a fuzzy set. But,
when two different partitions are compared, depending on
how overlapped their estimations are, it is not immediate

Figure Fuzzy partition centroid of IM
A (-1;0;1) 0.247
B (-2;0;-2) 0.278
C (-3;0;-3) 0.345
D (-4;0;-4) 0.361
E (-5;0;-5) 0.273
F (-6;0;-6) 0.197

TABLE II
VALUES OF THE CENTROID OF THE FUZZY MUTUAL INFORMATION FOR

THE PARTITIONS EVALUATED IN FIGURE 4

how to select one, and we must use a fuzzy ranking [18]
or a multicriteria search.

In this paper, whose results have a preliminary nature, the
solutions that we have applied to these problems are:

• Only a fraction of the points of the training is used
to estimate the mutual information. In the experiments
shown in this section, a 1% of the points was chosen.

• Not all compatible combinations of labels need to be
evaluated. We have restricted ourselves to those com-
binations for which no examples have a membership
under 0.45. This restriction and the preceding one make
it possible to evaluate a fuzzy partition with less that
ten thousand evaluations of the mutual information. The
restriction may seem excessive, but we intend to include
this procedure in a genetic algorithm that automates the
search.

• Since the fuzzy part of the estimation of the mutual
information carries information about the examples that
are less covered by the fuzzy labels, it is meaningful to
use a fuzzy ranking that gives more weight to the values
of mutual information that with higher membership. We
have chosen Yager’s ranking [18], the same centroid-
based defuzzification used in control systems.

The problem we have selected to evaluate the method is the
Gauss problem, proposed in [6]. 4000 points taken from two
overlapping bi-dimensional Gaussian distributions (centered in
(0, 0) and (2, 0)) with different covariance matrix (I and 4I).
The Gauss problem is quadratic. The density of the points in
the left part (see Figure 4) is lower than the density in the right
area, and contributes very little to the global error, thus small
changes can produce large deviations of the decision surface.

We have chosen to do a graphical analysis, which gives
us more insight into the method than a numerical table.
In Figure 4 we have plotted the optimal decision surface
(dotted line) and the decision surface obtained by the boosting
algorithm when the fuzzy partitions shown in Table II are used.
The partition that is used in the original implementation of
fuzzy Adaboost is labeled ’F’. Observe that the value of the
centroid of the mutual information is highly correlated with
the output obtained by fuzzy Adaboost, as desired. Further
experimentations are needed, but these preliminary results are
coherent with both the definition of the fuzzy entropy and the
fuzzy ranking that was selected.
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Fig. 4. Decision surfaces obtained by the fuzzy Adaboost algorithm for the partitions mentioned in Table II. The partition which keeps the highest amount
of information, according to our estimator, is labeled ’D’. The numbers shown beside the labels are the centroids of the fuzzy mutual information of the input
variables about the class.

V. CONCLUDING REMARKS AND FUTURE WORK

Most of the soft computing techniques suitable to design or
tune fuzzy membership functions are supervised, and oriented
to reduce the classification error of an specific algorithm.
In this paper we have proposed an unsupervised criterion,
unrelated to this error, to select the fuzzy partitions. We
have needed an unsupervised algorithm because we intend to
combine it with fuzzy boosting, for which we have stated that
a tuning is not appropriate.

As a result, it has been proposed a fuzzy quality index of a
partition that takes into account how much information is lost
when certain memberships are used. The usefulness of this
approach might transcend its application to fuzzy boosting:
observe that, contrary to most other criteria found in the
literature, this index copes in a natural way with missing values
(that can be codified with a membership of 0.5 for all labels

in the corresponding variable) and is not based in heuristics
neither in simplifications of the problem.

The main drawbacks of the algorithm are in its exponential
growth in time and memory with the dimension of the training
set. In future works, we intend to design a resampling based
estimator of the fuzzy mutual information, integrate it in a
genetic search and test it in various benchmark problems.
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