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Abstract

Modern personal computers, including laptops, notebooks and perhaps smart-
phones, often have a low-resolution camera and a powerful graphic card. In this
paper we present a system that uses these resources (camera and GPU) to build
a low cost virtual 3D Human Interface Device. To do this, we apply an optical
flow algorithm which is characterized by its high degree of parallelization. The
experimental results confirm the performance of our system.
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1 Introduction

Today, personal computers, laptops, notebooks and smartphones have an integrated
low-resolution camera (high-resolution in the case of smartphones). Besides, most of
them have a graphic processing unit (GPU), a specialized processor that offloads 3D /2D
graphics rendering from the microprocessor.

A new computing parading is to use a GPU as a stream processor. This concept
turns the massive floating-point computational power of a modern graphics accelerators
into general-purpose computing power. In certain applications, this allow us to increase
the performance in several orders of magnitude compared to a conventional CPU.

Recently, NVIDIA! began releasing cards supporting an API extension to the C
programming language CUDA (Compute Unified Device Architecture), which allows
specified functions from a normal C program to run on the GPU’s stream processors.
This makes C programs capable of taking advantage of a GPU’s ability to operate on
large matrices in parallel while still making use of the CPU when appropriate.

Being aware of these capabilities (CUDA compatible GPUs and a low-resolution
camera), in this work we present a system that uses these resources to build a Low Cost
Virtual 3D Human Interface Device (3D-HID). Users can interact with the environment

"http:/ /www.nvidia.com
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(real 3D world) by simply moving the camera (in the case of lightweight devices such as
smartphones) or moving objects (e.g. hand) in the vicinity of the camera (e.g. laptops).
In order to do this, we use an optical flow algorithm, which is characterized by its high
degree of parallelization.

In order to point out the aim of this paper, we briefly review some aspects that
will be considered. Thus, in section 2 we explain the optical flow algorithms. Section
3 is devoted to the built system. The experimental results are showed in section 4 and
finally, section 5 summarizes our conclusions.

2 Optical Flow

Optical flow is the 2D vector field projection of the 3D velocities of object points. In
Figure 1 a pair of frames of a classic test sequence is shown, with the true optical flow
overimposed. As can be seen, the motion of the objects in the scene is well represented
by the optical flow.

both frames and optical flow

Figure 1: Optical Flow example, from two frames (left) the motion of the scene is
measured for each pixel. The resulting vector field (red arrows) is shown in the right
side of the figure. Both frames are overimposed.

In the literature, optical flow algorithms are classified in: correlation based tech-
niques, frequency based techniques and gradient based techniques.

Correlation based techniques or block matching algorithms [1] try to maximize a
measure of similarity between patches (taken from two consecutive frames) centered
in a given pixel. The displacement that maximizes the selected measure divided by
the time interval within the acquisition of the frames is the velocity of the pixel (see
Figure 2).

Frequency based techniques use a set of tuned spatiotemporal filters to search for
the velocity of a pixel [3].

Gradient based techniques use the well known Optical Flow Constraint (OFC)
shown in equation 1 in order to compute the optical flow [4].
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Figure 2: Optical Flow computation using a block matching algorithm. The neighbor-
hood in the first frame (blue dotted square) is found in the second frame in different
position. This displacement defines the Optical Flow vector for each pixel.
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Equation 1 makes the assumption that intensity changes in a sequence of images are
only due to the movement of the objects in the scene: a single pixel will have constant
brightness in the different positions that it takes during the sequence. Unfortunately,
the Aperture Problem (see [5]) states that there is no way to recover the complete
optical flow vector using only local (one pixel) information.

In Figure 3 a synthetic example is shown. As can be seen, OFC holds for the
selected pixel (4,1), (=1, —1) velocity verifies the obtained equation: replacing % by
1, a—i by 2 and %{ by 3, u + 2v = —3 is obtained. Unfortunately, a suitable value that
verifies the OFC can be found for one of the components substituting the other by an
arbitrary value.

Some authors try to solve the aperture problem with the incorporation of some
kind of global information, involving a process of regularization [4]. Some researchers
perform a clustering of the OFCs themselves in order to find the most reliable one. Once
obtained, the corresponding normal flow to that OFC is obtained [6]. Another alter-
native is to analyze the measurements in the space of the velocities that is, performing
an estimation of the velocity with the results of many systems of OFC equations. Each
system of equations is obtained from one pair of pixels in order to estimate the velocity.
In this way, the analysis is performed directly in the domain of the data that we want
to recover, that is, the u, v space [7, 8, 9].

All the previously approaches are computationally expensive. For example, for a
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Figure 3: Optical Flow computation using OFC. As can be seen OFC holds for pixel
(4,1): ? =1, % =2 and % = 3, then OFC is u + 2v = —3, that holds for (-1, —1).

n X m pixels image, a search space of p x g pixels and a neighborhood of s x t pixels,
the number of floating point operations in the case of BMA is n x m X p X ¢ X s X
t. Similar numbers are obtained for gradient based approaches. Because of this, an
implementation using a GPU and CUDA speeds up the computation process.

3 The System

System architecture is divided in four main blocks: Video Input, Optical Flow Algo-
rithm, Motion Estimator and Control (see figure 4).

Each subsystem comprises several basic computing units (called basic-units). Thus,
the execution of several basic-units of different images is concurrent (like works pipelined
CPUs). This solution is adequate even for single core CPUs; simply the degree of
concurrence is smaller.

The communications between basic-units use circular buffers. This leads to an
increasing of memory consumption but allows more efficient asynchronous execution of
the basic-units.

Because of the low image resolution, only a smoothing with a small Gaussian
kernel is needed in order to decrease the acquisition noise. This benefits the parallel
implementation of the whole system because the separability of the filtering.

We will use optical flow field estimation in order to measure/detect the motion in
the image sequence acquired with the cameras. The goal is to use the translations in
X, Y and Z along with rotation in Z as input signals to the proposed virtual interface.

In order to discriminate the predominant motion in the scene, we use the following
operators:

e X and Y translations are measured as the average optical flow in the image:
S I TN (Fe Fy)i g ) .
(X,Y)r = 2iz0 2y=0 (FeFy) 2 where (X,Y)r is the traslation vector, (Fy, Fy);

nm
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is the Optical Flow Vector for pixel (i,7), n, m are the number of rows and
columns in the image.

e 7 translation is measured with the divergence of the optical flow averaged across

oy v (Fe,Fy)i g . . .
the image: Zp = Zizo ZJ*(;”Z (Fo Fy)ig The previous expression is evaluated and
averaged for each optical flow value across the whole image.

e 7 rotation is measured with the rotational of the optical flow averaged across the

i=n Jj=m
. i—0 > j—0 VX, Fy)i;
lmage: ZR — =0 J ()nm xs by )i, g

We implemented two algorithms using CUDA, the proposal in [7] and an hierarchical
implementation of Lucas-Kanade algorithm available with OpenCV library [10]. Fi-
nally, a bottleneck in Otero et. al. algorithm [7] leads us to choose Lukas-Kanade
algorithm [10]. The output of this algorithm is evaluated with the previous operators.
The highest output defines the predominant motion in the scene.

. GPU Optical Flow . .
Video Input ecrthen Motion Estimator

Control

Image Capture H Image Filter H Optical Flow H Motion Estimator H Movement Filter H Output ‘
‘ Image Capture H Image Filter H Optical Flow H Motion Estimator H Movement Filter }—>
‘ Image Capture H Image Filter H Optical Flow H Motion Estimator }—»

Figure 4: System Architecture

4 Experiments

The hardware setup comprises a laptop and two cameras with different resolution, the
usual integrated in the screen frame and an off the shelf usb camera, with the following
technical specs:

e CPU AMD Athlon 64 3000+ (1.8 GHz) AM2.
e GPU nVidia GeForce 9500 GT.
e RAM 1024 MB Dual Channel 800 MHz.
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e Web cam 1 Logitech Quickcam E2500.
e Web cam 2 Logitech Webcam C200.

The system detects easily the motion in different axis, only when velocity module
falls below a threshold some errors may appear, mainly due to image acquisition and
illumination issues (flickering or low illumination).

Low illumination leads to noise in the image and to the false detection of small
movements due to the noisy pixels that appear and disappear. We decided to filter the
movements that are below a threshold in order to minimize that error.

During the experiments we found that X and Y translations are easily detected
but Z translation is easily detected as X or Y motion, because small displacements
in X or Y directions (by the user) lead to relatively high values compared with the
divergence of the optical flow field.

When the algorithm was running in the CPU we obtained 17 frames per second,
with the performance of other tasks being degraded.

Using CUDA implementations the frame rate increases to 30 frames per second,
the hardware limit of the cameras. Standard GPU tasks are not degraded and the CPU
can be fully dedicated to other tasks. Thus, the user experience is real-time alike.

Another kind of movement useful as input signal in the virtual interface is rotation
in Z axis. The amount of motion cannot be accurately measured but if we use a
threshold it can be used to simulate a click.

Summarizing, X and Y translations are correctly detected and measured. Z trans-
lations cannot be accurately measured and it is not useful as input signal. Z rotation
cannot be accurately measured but a suitable threshold can be used and then, it serves
as binary signal.

5 Conclusions

In this work we have showed how to build a Virtual 3D Human Interface Device by
using standard resources of the current computers: the integrated camera (or Web cam)
and the graphic processing unit (GPU). The system applies optical flow techniques and
uses CUDA (Compute Unified Device Architecture, nVidia) to exploit the capabilities
of the GPU as stream processor.

X and Y translations are correctly detected and measured by the system. Z trans-
lations are detected but not accurately measured and Z rotation cannot be accurately
measured but a suitable threshold can be used and then serves as binary signal.

Summarizing, the presented solution is simple, the frame rate is now limited by
the resolution of the camera (30 frames per second vs 17 in the case of CPU’s based
solutions), users experience is real-time alike, computer’s performance is not being
degraded and powerful/additional hardware it is not necessary. Therefore, we have
built an efficient and low cost 3D interface.
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