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Abstract- The class imbalance problem has been said to detection [FP97], text classification [LR94] and medical di
challenge the performance of concept learning systems. agnosis such as thyroid diseases [BM98]. Many classifier
Learning systems tend to be biased towards the major- schemes work under the assumption of balanced classes and
ity class, and thus have poor generalization for the mi- may suffer from biases towards the majority class when the
nority class instances. We analyze the class imbalance assumption does not hold.

problem in learning classifier systems based on genetic  The aim of the present work is to analyze the effects of
algorithms. In particular we study UCS, a rule-based the class imbalance problem on LCSs. Our analysis is cen-
classifier system which learns under a supervised learn- tered on UCS classifier system [BGO03], a learning classi-
ing scheme. We analyze UCS on an artificial domain fier system based on XCS specifically designed for super-
with varying imbalance levels. We find UCS fairly sen- vised classification problems. Due to the similarities be-
sitive to high levels of class imbalance, to the degree that tween both systems, we expect to extend the learning be-
UCS tends to evolve a simple model of the feature space havior and results to XCS.

classified according to the majority class. We analyze To isolate the class imbalance issue from other factors
strategies for dealing with class imbalances, and find fit- of complexity of LCSs, we design an artificial domain and
ness adaptation based on class-sensitive accuracy a usestudy UCS on different levels of class imbalance. We iden-

ful tool for alleviating the effects of class imbalances. tify a bias towards the majority class for high class imbal-
ance levels. In the literature, some methods, working at the
1 Introduction sampling level or at the classifier level [JS02], have been

proposed to alleviate this effect. Since we attribute tlaes bi

In the last decades, research in genetic algorithms (GA&wards the majority class examples to the generalization
and evolutionary computation (EC) has paid increasing apressure of the genetic algorithm, which is guided by the
tention to machine learning and data mining applicationsiccuracy-based fitness, we analyze strategies working at th
Particularly,classificationhas been one of the primary in- classifier level. Particularly, we adapt fithess computatio
terests of researchers working in data mining applicatiorso that we include class-sensitive accuracy. The aim of this
of genetic algorithms. Classification can be defined as th@oposal is to avoid UCS's bias towards the majority class
process of assigning a class label to a given example, given unbalanced datasets, while keeping the original UCS’s
a set of examples previously classified. Many approaché&ghavior in well-balanced datasets.
exist, such as decision trees, instance-based learnerg)ne  The remainder of this paper is organized as follows.
networks, and others. Section 2 describes the UCS classifier system. Section 3

Evolutionary learning classifier systems (LCSs) havgives the details on the domain generation. Next, we train
demonstrated to be highly competitive with respect to othadCS with varying levels of class imbalance and identify the
classifier schemes in a varied range of domains. Since teeurces of difficulty for UCS. Section 5 revises strategies
first proposal, developed by Holland [Hol75, Hol76], thefor dealing with class imbalances, and centers the frame-
field has benefited from numerous research and developerk for fithess adaptation in UCS. Section 6 shows the
ment, being XCS [Wil95, Wil98] one of the best repre-results when training UCS with fitness adaptation, finally
sentatives. At the current stage of maturity, researchetgning the approach in section 7 to achieve better coverage
have started to analyze the domain of competence of LC86the feature space. Finally, section 8 summarizes the main
[BHO5], and tested LCSs on challenging real-world classieonclusions and provides directions for further work.
fication problems [Ber02, BLG02, BB04, But04].

Research on real-world domains has identified severgl Description of UCS
sources of complexity for classifier schemes, such as the
geometry of class boundaries, sparsity of the availabie-tra UCS (sUpervised Classifier System) [Ber02, BGO03] is
ing dataset, presence of noise, and class imbalances, amantgarning classifier system derived from XCS [Wil95,
others [KKO1, BHO5]. Class imbalances correspond to th&/il98]. UCS is specifically designed for supervised learn-
case where one class is represented by a larger number ofiimg problems, while XCS follows a reinforcement learning
stances than other classes. The issue is of great importasceeme. In the following we give a brief description of
since it appears in many real-world domains, such as fraldiCS. For a more detailed description, the reader is referred



to [Ber02, BGO03]. 2.4 Genetic Algorithm

The genetic algorithm is used as the search mechanism. It
has a multimodal task: to co-evolve simultaneously a set of
UCS evolves a population [P] of individuals. Each individ-rules which jointly represent the target concept.
ual is called classifier, and consists of a rule and a set of The GA is applied locally to the current [C]. This favors
parameters estimating the quality of the rule. A rule has theiching [Wil98]. The GA is triggered if the time elapsed
structure:condition — class. The condition specifies the since the last application of the GA in the current set (com-
set of examples that will be classified with the class codifieguted from the averages of classifiers in [C]) exceeds a
in the rule. thresholdf; 4. If GA triggers, then it selects two parents
The representation of the condition depends on the typ&om [C] with probability proportional to fitness and copies
of attributes. Within the scope of this paper, all attrisutethem. Then, the copies undergo crossover and mutation
are continuous, for which we use the hyperrectangle repvth probabilitiesy andp respectively.
resentation. Thus, the condition part is a set of intervals The resulting offspring are introduced into the popula-
[l;, u;]™, wheren is the length of the input. An input in- tion. First, each offspring is checked for subsumption with
stancer = (z1, ..., z,) satisfies the condition of a rule if each parent. If one of the parents is accurate and more gen-
Vi l; < z; < u,. The class is usually codified as an integereral than the offspring, then the offspring is not introdiice
The main parameters associated to a rule are: a) the & its parent’s numerosity is increased. Otherwise, the of
curacyacc, b) the fitnessF, c) the experiencezp, d) the spring is introduced into the population.

2.1 Representation

niche sizens, e) the last GA application tim& and f) nu- Inserting new classifiers into the population makes other

merositynum. Their use is described in the following. classifiers to be deleted, if the population is full. The dele
tion probability of a classifier is proportional to the param

2.2 Performance Component eterns. Additionally, if the classifier is sufficiently experi-

enced and its fitness is low, its probability to be deleted is

UCS learns incrementally according to a supervised learfyersely proportional to its fitness. Thus, the deletiotevo
ing scheme. Durindraining, examples coming from the ¢ aach classifier is:

training set are provided to UCS. Each example is codified P _ _
by a set of attributes = (1, ..., z,) and the given class dv=14 ™ F if exp > e @ndF < 6 3)
Then, UCS forms a match set [M] consisting of those clas- ns otherwise

sifiers whose conditions match the attributes of the input %\ here 7 is the average fitness of all the population, and

ample. From [M], the classifiers that correctly predict SIasanded , are parameters set by the user. The probability of
c form the correct set [C]. If [C] is empty, covering is trig- being Zleleted is:

gered, creating new classifiers with a condition matchieg th
example attributes and the same class as the example. Then, - dv )
the parameters of classifiers are updated and eventualy, th Pdet = ZN dv;

GA is applied (as described later). ) _ ]

In testmode, an input is given, and UCS predicts its as- WhereN is the population size.

sociated class. For each class, the system sums the fitness of NiS leads the search towards highly fit classifiers, and
all classifiers predicting this class. The class with thérhig the same time balances the allocation of classifiers in the
est value is chosen as the predicted class for inputnder ~ different niches.

testmode, parameter updates and the GA are disabled.

j=1

3 Dataset Design

2.3 Parameter Updates )
To analyze the class imbalance problem on UCS, we de-

The parameters of classifiers belonging to [M] are updategigned an artificial domain which allowed us to isolate the
First, the experiencee{p) is increased. It corresponds class imbalance factor from other complexity factors iden-
to the number of examples that the classifier has coveregtied in LCS [BG03]. The domain has two real attributes

Next, the classifier's accuracy is updated: ranging in the interval [0,1], and two classes distributed i
b ¢ classi ficati alternating squares drawing a checkerboard in the feature
ace — Mumber of correct & assifications (1) space. The problem is denotedcag:.
experence Similarly to [JS02], the complexity of the problem can

be tuned along three different dimensions: tlaset size
(s), the concept complexityc), and theimbalance level

F = (acc)” (2) between two classes)( Dataset sizes the size of the

completely-balanced training set. Thencept complexity
wherev is a parameter set by the user. A typical value is 1@lefines the number of boundaries between the two classes,
The niche set sizes stores the average number of classiwhich is identified as one of the most critical complexity

fiers in [C]. This is updated whenever the classifier belongactors in LCSs [BHO5]. Theémbalance levetetermines
to a correct set. the ratio of the number of examples between the minority
class and the majority class.

Finally, fithness is computed as a function of accuracy:



The domain generation process creates a well-balanced
dataset, and then proceeds to unbalance it by removing
some of the minority class instances. The original balanced
dataset is defined byinstances and concept complexity
which corresponds te? alternating squares. We randomly
draw s points in the feature space so that each checkerboard
square receives/c? instances. Since the original dataset
does not present any imbalanc¢és set to zero.

The unbalanced datasets are generated by removing pro-
gressively half of the examples of the minority class. For
¢ = 1, half of the minority class instances are removed from
the well-balanced dataset. In general, the dataset atimbal
ance leveli > 0 is generated by randomly removing half
of the examples of the minority class from the dataset ob-
tained at imbalance levél — 1). This means that given an
imbalance level > 0, the dataset generated contaifis?
instances in each majority class square, ah@" - ¢?) in-
stances in each square of the minority class. Thusg, fof,
the ratio between the minority class instances and majority
class instances is/2".

In our experiments, we set = 4096 andc = 4, and
only varied the imbalance level froin= 0 to¢ = 7. Figure
1 shows the resulting training datasets. Note that minority
class instances are progressively removed from the previou
level. The highest unbalanced dataset, shown in figure 1(h),
has only two instances into each minority class square.

Class boundaries are lineal, which fits perfectly with the
hyperrectangle codification used in UCS. This means that
the problem topology would not cause any main difficulty
to UCS’s learning process, as long as each square of the
checkerboard can be codified with only one rule. In fact, a
dataset can be correctly classified withrules.

4 Training UCS with Unbalanced Class
Datasets

We ran UCS with the following parameter settings (see

[BWO1] and [BGO3] for the notation): N=400, »=10, Figure 1: Training datasets for the checkerboard problem

3=0.2,054=25, x=0.8, 1=0.04,0=0.1, 64,,=20, GASub = with dataset size = 4096, concept complexity = 4, and

true, [A]Sub=falsef,., = 20, accy=0.99, Specify=true, imbalance levels from 0 to 7. Each figure shows the posi-

Ns =20, Ps =0.5. We trained UCS with the datasets showion of each training point and the class to which it belongs,

in figure 1 for 200,000 learning iterations. To analyze th@lotted with a different type of point.

boundaries evolved by UCS, we tested UCS with a dense

dataset which sampled the feature space with 10,000 uni- _ o

formly distributed points. Then, we drew the class predic@!l the feature space as belonging to the majority class.

tion of UCS for each point. For a dgeper analysis of UCS’s behavior, let's look at
Figure 2 shows the boundaries evolved by UCS on tH@€ population evolved by UCS far= 4, where UCS has

checkerboard problem. Boundaries of the minority clasdPruptly changed its behavior with respect to the previous

squares are plotted in black, while boundaries of the mg\mba_lance Ievels_. Table 1 shows some of the class_ifiers of

jority class squares are plotted in gray. For brevity, Weyonlthe final population, sorted by class and numerosity. For

show the results for imbalance levels fram= 2toi — 5, €ach classifier, we show its condition and class and the most

which reflect the most significant behavior of UCS. Figurenportant parameters. Each condition has two intervalpred

2(a) and 2(b) show the results for imbalance ratios of 1:#ates, one for each dimension. For each predicate we show

and 1:8 respectively. In both cases, UCS was able to evolfae lower and upper extremes of the interval. The majority

the correct boundaries. For lower imbalance levels, UCS@2ass is 0 and the minority class is 1.

boundaries were also correct. For imbalance levels 4 The table shows that, in fact, UCS evolved accurate and

and higher, UCS begins to find difficulties classifying thdnaximally general classifiers covering each of the squares

minority class examples. Note that UCS predicted almo&€longing to the minority class. Actually, the eight most
numerous rules are those that cover the eight minority class



Table 1: Most numerous rules evolved by UCS in thé
problem with imbalance leveék4, sorted by class and nu-
merosity. Columns show respectively: the rule number, the
condition and class (C), where 0 is the majority class and 1

@i =2 (b)i =3 the minority class, the accuracy (acc), fitness (F), and nu-
merosity (N).
id condition C acc F N

1 [0.509,0.750] [0.259,0.492] 1 1.00 1.00 39

2 [0.000,0.231] [0.252,0.492] 1 1.00 1.00 38

3 [0.000,0.248] [0.755,1.0000 1 1.00 1.00 35

4 [0.761,1.000] [0.000,0.249] 1 1.00 1.00 34

5 [0.255,0.498] [0.520,0.730] 1 1.00 1.00 33

(©)i=4 d)i=5 6 [0.751,1.000] [0.514,0.737] 1 1.00 1.00 31

7 [0.259,0.498] [0.000,0.244] 1 1.00 1.00 27

8 [0.501,0.743] [0.751,1.000] 1 1.00 1.00 18

Figure 2: Space model evolved by UCS with imbalance ley- 9 [0.500,0.743] [0.751,1.000] 1 1.00 1.00 |9

els from 2 to 5. Black regions are those classified as thel0 [0.751,1.000] [0.531,0.737] 1 100 1.00 |8
minority class and gray regions are those classified as the

majority class. 18 [0.509,0.750] [0.246,0.492] 1 064 001 |1

19 [0.000, 1.000] [0.000,1.000] O 0.94 054 20

20 [0.000,1.000] [0.000,0.990] O 0.94 054 13

squares. Additionally, the table contains other less numer21 [0.012,1.000] [0.000,0.990] 0 0.94 054 10
ous rules predicting the majority class. The problem is that e

these rules are too general; instead of covering only the64 [0.012,1.000] [0.038,0973] 0 094 054 J1

squares of the majority class, they are generalized to the

whole feature space. Note that all rules predicting class 0
have interval predicates of type; € [0,1] andat, € [0, 1].

The accuracy of these rules is 0.94, which corresponds to
the case of covering accurately all the instances of the ma-

jority class and covering wrongly the instances of the minor
ity class. As the instances of the minority class are less fre

quent, their incidence in the accuracy of overgeneral rulegypje 2: Most numerous rules evolved by UCS in thé

is not very significant.

problem with imbalance levek3, sorted by class and nu-

To explain UCS's tendency to evolve these overgenyerosity. Columns show respectively: the rule number, the
eral rules, we checked whether overgeneral rules were alggngition and class (C), where 0 is the majority class and 1
evolved in lower imbalance levels. Surprisingly, we foungpe minority class, the accuracy (acc), fitness (F), and nu-

that all populations evolved with imbalance levels great%erosity (N).

than 1 contained the most general rul¢;( € [0,1] and

ats € [0,1]). The only difference was that the accu-

racy value was different in each imbalance level; i.e., the
accuracy of the overgeneral rule was greater for higher im-

balance levels. Table 2 shows the population evolved for 3

1 = 3. Note that the population contains the eight rules cof-

responding to the eight minority class squares and sevefal®

other overgeneral rules covering all the feature space. Ac-
curacy of overgeneral rules is 0.89 for= 3 and 0.94 for
i = 4.

We hypothesize that these overgeneral rules are createsk
due to the generalization pressure induced by the applicasg
tion of the GA to the correct sets (see [BPO1] for a study on27

evolutionary pressures on XCS). General rules tend to par-

ticipate in more correct sets, and consequently they hayé0

id condition acc F N
1 [0.251,0.498] [0.000,0.244] 1 1.00 1.00 39
2 [0.501,0.751] [0.760,1.0000 1 1.00 1.00 37
[0.000, 0.246] [0.259,0.500] 1 1.00 1.00 36
4 [0.259,0.499] [0.504,0.751] 1 1.00 1.00 33
[0.506, 0.746] [0.263,0.498] 1 1.00 1.00 30
6 [0.751,1.000] [0.502,0.749] 1 1.00 1.00 29
7 [0.752,1.000] [0.000,0.240] 1 1.00 1.00 27
8 [0.000,0.246] [0.759,1.000] 1 1.00 1.00 20
[0.000, 0.233] [0.584,1.000] 1 0.13 0.00 1
[0.000, 1.000] [0.000,1.000] O 0.89 0.31 13
[0.010, 1.000] [0.000,1.000] O 0.89 0.31 12
[0.051, 1.000] [0.017,0.926] O 0.89 0.31 1

more reproductive opportunities. For highly unbalanced
datasets, overgeneral rules have moderate fithess vaties, b
cause accuracy is biased towards the majority class. In addi



tion, the specific classifiers trying to cover minority exam<lass-sensitive rather than instance-sensitive coulg inel
ples have a lower GA exposure. Thus, overgeneral rulée identification of overgeneral classifiers predictingéa
tend to be created and maintained in the population. Iregions of the search space as belonging to the majority
balanced or low unbalanced datasets, overgeneral rules valass. The idea is to restrict classifiers to cover regions
have low fitness. For a well-balanced dataset, an overgeiermed by examples of a single class. Thus, we modify ac-
eral rule covering all the feature space has an accuracy afracy so that each class is considered equally important re
0.50. Thus, in these cases an overgeneral rule will not lgardless of the number of instances representing each class
very significant; in the case it is created, it will tend to beThe method will be referred adass-sensitive accuracy
removed from the population due to its low fithess. At least, Next section analyzes UCS under class-sensitive accu-
their numerosity will be smaller than that of overgeneratacy on the set ofhk problems at different levels of class
rules in high imbalance levels. imbalances. As a future work, we acknowledge that the
After analyzing why the overgeneral rules are createstudy could also be extended to the analysis of sampling
and maintained in the population as the imbalance level irstrategies and their comparison with the proposed strategy
creases, let’s return to the population shown in table 1. For
imbalance level i=4, UCS generalizes all the feature spage Class-Sensitive Accuracy
by the majority class. However, for i=3, the minority class
squares are correctly classified despite the presence Bf ov/e modify the way in which accuracy is computed in UCS
general rules in the population. The reason may be foura$ described as follows. For each classifier, we compute the
in the way that UCS selects the predicted class. Recall thatcuracy on each of the classes:; separately. We also
UCS computes a vote weighted by fitness for each of thr@ompute individually the number of examples that the clas-
classes represented in [M], and chooses the class with thifier covers of each class. We name it as the classifier’s ex-
highest vote as the prediction for the given example. Thuperience on that class, and denoteag;. The compound
if there are many overgeneral classifiers and their fitnesgcuracy is then obtained by the average of all individual
is moderately high, overgeneral classifiers can get a highaccuracies whose experience is higher than 0:
vote than accurate classifiers. This happens fer 4 and
higher imbalance levels. 1 zC:

acc = ——

acc; (5)

5 Strategies for Dealing with Class Imbalances #=llezp:>0

There are several methods that have been proposed in tweherec 's the number of classes of the problem, &id

literature to deal with class imbalances. Some of the betstthe number of different classes that the rule covers (i.e.
well-known approaches are applied at the sampling levéte number of classes whetgp; is greater than 0). Note
[JS02, HDWOO]. They are based on sampling appropriatefjpat we average only the accuracies of the classes such that
the training dataset so that they balance the a-priori probap; > 0. Changing accuracy also changes fitness so that
abilities of classes. This can be done eitbeersampling we expectthe GA to be guided towards classifiers predicting
the minority class examples andersamplinghe majority ~ only instances of a single class.
class examples. Both methods can be applied in any conceptWe ran UCS with class-sensitive accuracy in te
learning system, since they act as a preprocessing phase fapblem using the same parameter settings as in section 4.
lowing the learning system to receive the training instancerigure 3 shows the results. Figures 3(a) and 3(b) show the
as if they belonged to a well-balanced dataset. Thus, anyodels evolved with imbalance levels= 2 andi = 3
bias of the system towards the majority class due to the difespectively. In these cases, both UCS and UCS with class-
ferent proportion of examples per class would be expecte&gnsitive accuracy evolved correct models of the feature
to be suppressed. However, we caution that these megpace. However, UCS with class-sensitive accuracy shows
ods are changing somehow the available information in tre little tendency to evolve smaller minority class regions,
training dataset, and probably their success depends on thgving some parts of the feature space uncovered. Dur-
topology and geometry of class boundaries. ing learning, when a classifier that covers either a minority
Other contributions deal with the class imbalance prolsr a majority class region is enlarged by a genetic opera-
lem at the classifier system level [Hol98]. We have fotor and starts covering some examples of the opposite class,
cused on this approach. Having identified the class imbails accuracy is decreased to the half, and therefore its fit-
ance problem in UCS system, we propose a modification imess is abruptly decreased. Classifiers that cover mirority
the system which aims to alleviate the class imbalance eflass regions have more probabilities of suffering this ef-
fect without changing the system behavior on well-balanceféct, as long as there are more majority-class instances tha
datasets. minority-class ones. The result is that those regions close
The class imbalance problem reported in section 4 hdg the boundaries are often left uncovered.
been ascribed to the fact that fitness is based on accuracy,Figures 3(c) and 3(d) show the models evolved with im-
which presents a high bias towards the majority class ifalance levels = 4 andi = 5. The boundaries evolved by
stances, combined with the generalization tendency of théCS underclass-sensitive accuraatearly improve those
GA. This made UCS to evolve easily overgeneral classpnes evolved by raw UCS. Besides, the population obtained
fiers that covered all the feature space. Making accuragjpows that the tendency of evolving overgeneral rules is



Table 3: Most numerous rules evolved by UCS with class-
sensitive accurcy, at imbalance leve#4. Columns show
respectively: the rule number, the condition and class (C),
where 0 is the majority class and 1 the minority class, the ac-
curacy for each classf anda,), fitness (F), and numeros-

ity (N).
(@)i=2 (b)i=3 id condition C ap al F N
1 [0.485,0.756] [0.483,0.753] 0 1 100 34
2 [0.000,0.253] [0.502,0.756] O 1 1.00 34
3 [0.252,0.505] [0.750,1.000] O 1 1.00 32
4 [0.753,1.000] [0.749,1.000] 0 1 1.00 31
5 [0.737,1.000] [0.238,0.515] 0 1 1.00 29
6 [0.499,0.772] [0.000,0.277] 0O 1 1.00 27
7 [0.000,0.244] [0.000,0.248] 0 1 1.00 27
8 [0.225,0.544] [0.223,0529] O 1 - 100 27
9 [0.252,0.499] [0.000,0.207] 1 - 1 100 21
10 [0.752,1.000] [0.000,0.242] 1 1 100 18
11 [0.751,1.000] [0.502,0.738] 1 1 100 15
(©i=4 (@i=35 12 [0.506,0.734] [0.761,1.000] 1 1 100 15
13 [0.510,0.741] [0.252,0.479] 1 1 100 13
14 [0.000,0.233] [0.757,1.000] 1 1 100 12
15 [0.000,0.240] [0.254,0.485] 1 1 100 11
16 [0.252,0.488] [0.516,0.743] 1 1 100
17 [0.252,0.498] [0.516,0.692] 1 1 100 B
18 [0.000,0.227] [0.757,1.0000 1 - 1 100 @4
19 [0.504,0.772] [0.000,0277] O 1 - 100 {4
(e)i=6 Mi=7 ditions slightly exceed the class boundary, decreasirig the

accuracy to 0.5. This leaves some uncovered regions in the

Figure 3: Space model evolved by UCS with class-sensiti\}cgature space. Taking this fact to the extreme, the system

) : would maintain only those rules that classify instances of
accuracy, for imbalance levels ranging from 2 to 7. Blac
. o L . the same class.
regions are those classified as the minority class, whilg gra : . . .
. o o : Herein, we modify the class-sensitive accuracy function
regions are those classified as the majority class. White re- . " o :
0 give more opportunities to classifiers approaching class

gions are uncovered domain regions. boundaries while they are not much experienced. We expect
that giving them more recombination opportunities, new

avoided. Table 3 depicts the most numerous rules evolvégtter classifiers will be generated before the overgeneral

by UCS under class-sensitive accuracy for imbalance levénes are removed from the population. The modification

i = 4. Now, we show the individual accuracy for each clas&nly applies if the classifier has some class accuracies with

rather than the compound accuracy. Note that the poplittle experience ¢zp; < 0,..) and other class accuracies

lation does not contain any overgeneral rule, and the mo4ith high experiencedrp; > f...). In the remaining cases,

numerous rules are those that predict correctly each of tM¢ use the accuracy function of formula 5. In the former

16 squares. case, the compound accuracy is weighted according to each

Finally, figures 3(e) and 3(f) show the models evolvedlass experience:

with imbalance levels = 6 andi = 7. As the imbalance c

level increases, the system is able to discover fewer minor- ace — 1 Z ace; - w; (6)

ity class regions. For the highest imbalance level, UCS can

only discover four regions of the minority class. Looking

at the population evolved, not detailed for brevity, we hywherew; weights the contribution of each class accuracy to

pothesize that the problem is attributable to the fact that t the compound accuracy depending on the classifier's expe-

imbalance ratio is so high (1:128) that the problem almogience in each class. It is computed as follows:

derives to a sparsity problem. There are so few instances caps )

of the minority class squares that UCS can hardly evolve Bace if 0 <expi <Oace

. . w; = Ce-ace— .C_ exp; (7)
generalizations. Zz—”“”?t“ucc if exp; > Ogec

¢ i=1lexp; >0

Ceebace

7 Weighted Class-Sensitive Accuracy whereC,. is the number of experienced classes (i.e., the
number of classes whose accuracy experience is higher than
Class-sensitive accuracy causes a high deletion pressured, ) andd,.. is a threshold below which the class accuracy
wards overgeneral classifiers. So, it tends to remove the considered inexperienced. Thus, for each rule we com-
classifiers closer to class boundaries as long as their cqfute separately the accuracy for each class;| and the



fact, for the highest imbalance levels there are so few repre

sentatives of the minority class regions that we may debate
whether these points are representative of a sparse region o
whether they can be attributed to noise cases. In the latter
case, we would acknowledge that UCS should not evolve
any distinctive region for these cases and thus, the result
obtained in these cases would be desirable.

@i=2 (b)i=3 '
8 Conclusions

This paper analyzed UCS’s behavior on class unbalanced
datasets. We found that for low unbalanced datasets, UCS’s
boundaries are not biased by the majority class instances.
However, UCS tends to evolve overgeneral rules covering
large regions of the feature space. For low unbalanced
datasets, the ruleset behaves as a default hierarchy ad thu
the predicted boundaries are not affected significantly by
these overgeneral rules. For moderate and high unbalanced
datasets, overgeneral rules interfere with specific rubes c
ering the minority class regions to the extreme that all the
feature space gets classified by the majority class. In our do
main, this happened for imbalance ratios equal to or greater
than 1:16. We would like to extend this study to other prob-
lems to see if this ratio is generalizable to other domains,
although we suspect that this will depend on the distribu-
tion of classes in the feature space.
@i=6 Mi=7 We studied strategies to help UCS discover the correct
boundaries regardless of the number of examples each con-
Figure 4: Space model evolved by UCS with weightedained. We identifed UCS'’s bias towards the majority class
class-sensitive accuracy, for imbalance levels rangiom fr attributable to the generalization pressure of the geiaétic
2 to 7. Black regions are those classified as the minorigorithm, coupled with the fitness guidance provided by the
class, while gray regions are those classified as the majorgurrent accuracy computation. Thus, we proposed a fitness
class. White regions are uncovered domain regions. adaptation based on class-sensitive accuracy, which-penal
izes rules covering examples belonging to different classe
Results showed that UCS was able to discover the right
experience for each classifp;). The contribution of théth  poundaries, while avoiding the tendency to evolve over-
class to the global accuracy is weighted by the ratiengf,  general rules. Besides, UCS maintained its performance
t0 fac., if this class accuracy is inexperienced. If the rest ofy well-balanced datasets, although we observed some dif-
the classes have experienced accuracies, their contiibutiicylties covering the examples near the class boundaries.
to the global accuracy is the same among them. Weighted class-sensitive accuracy made UCS's learning
The new expression gives more opportunities to inacCémoother so that rules approaching class boundaries had
rate classifiers, smoothing the abruptness introducedmby fnore opportunities. Results showed better coverage of the
mula 5 during the first,. participations in [M] predicting  feature space.
an specific class. Parametgy.. defines the opportunities  \ve studied UCS's behavior on a particular type of clas-
given to a classifier. If it is too low, the behavior is thesification problem. As the original balanced problem im-
same as in formula 5. If itis too high, the system gives to@osed no difficulties to UCS system, we could vary the im-
many opportunities to inaccurate classifiers. It shoulddbe shajance level and attribute the differences to this. Howeve
depending on théc 4 threshold, becausi: 4 defines the the study would be much enhanced analyzing jointly the
GA application frequency on [C]. In all experiments madgontribution to each of the complexity factors (datase siz
hereinfac. = 2-0ga = 50. and concept complexity) to UCS’s behavior and studying to
Figure 4 shows the models evolved with weighted clasgyhat degree class imbalance is related to them. We could
sensitive accuracy. As expected, uncovered regions that gflso extend the analysis towards other types of problems
peared previously in figure 3 have now been reduced. Coyith different topologies, including problems with multi-
erage has improved. However, minority class regions affe unbalanced classes. Finally, the addition of unbathnce
harder to discover, since the new average function intreeal-world datasets could serve as a testbed for validating
duces more pressure towards more general rules. Lookiggr results.
at the population evolved, we see that overgeneral rules ten  proposals for dealing with class imbalances at the sam-
to appear especially for the highest imbalance levels, bling level could be analyzed under this extended testbed.
to a lower extent than with the original UCS approach. Irtjass-sensitive accuracy has alleviated significantlythe
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