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ABSTRACT
This paper analyzes the scalability of the population size re-
quired in XCS to maintain niches that are infrequently acti-
vated. Facetwise models have been developed to predict the
effect of the imbalance ratio—ratio between the number of
instances of the majority class and the minority class that
are sampled to XCS—on population initialization, and on
the creation and deletion of classifiers of the minority class.
While theoretical models show that, ideally, XCS scales lin-
early with the imbalance ratio, XCS with standard configu-
ration scales exponentially. The causes that are potentially
responsible for this deviation from the ideal scalability are
also investigated. Specifically, the inheritance procedure of
classifiers’ parameters, mutation, and subsumption are ana-
lyzed, and improvements in XCS’s mechanisms are proposed
to effectively and efficiently handle imbalanced problems.
Once the recommendations are incorporated to XCS, em-
pirical results show that the population size in XCS indeed
scales linearly with the imbalance ratio.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-

ing

General Terms
Experimentation
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XCS [11, 12], one of best representatives of Michigan-style
Learning Classifier Systems (LCSs) [5], is a robust method
that has been applied to solve different types of machine

learning problems. LCS literature has usually considered
problems with similar proportions of instances per class.
Recently, learning from imbalanced domains has been iden-
tified as one of the main challenges for machine learning
techniques, and only few studies on the effect of class im-
balances on LCSs have been conducted [6, 9, 10]. While
population sizing and scalability in XCS has broadly been
studied on balanced domains [1], similar studies are lacking
for imbalanced domains.

The aim of this paper is to model the effect of learning
from imbalanced data in XCS and analyze the scalability
of the population size required as the amount of class im-
balance increases. We develop facetwise models that indi-
cate the impact of the imbalance ratio (ir) on the popula-
tion initialization and on the creation and deletion of classi-
fiers of the minority class. Moreover, we derive population
size bounds that guarantee that XCS will create and main-
tain these classifiers of the minority class. We design two
test problems of bounded difficulty to validate the model:
the one-bit problem and the parity problem. Results ob-
tained with the one-bit problem show that the population
size scales exponentially with the imbalance ratio, violat-
ing the model bounds. We investigate the causes of this
deviation from the ideal scalability and propose some ap-
proaches to alleviate the early deletion of classifiers of the
minority class. Once these recommendations are incorpo-
rated to XCS, the empirical results on both the one-bit and
the parity problems agree with the theoretical bounds, show-
ing that the population size in XCS scales linearly with the
imbalance ratio.

The remainder of the paper is organized as follows. XCS
is briefly described in section 2. Next, we develop theoret-
ical models for learning from imbalanced datasets, deriving
a population size bound to ensure the growth of minority
class niches. Section 4 introduces the test problems used in
the experimentation. In section 5, we run XCS with one of
the test problems, and empirical results show a deviation
from the ideal scalability of the population size. Section 6
analyzes the causes of the deviation, resulting in a set of rec-
ommendations on how to set the system when learning from
imbalanced data. These recommendations are grouped in
XCS+PMC. The theoretical model is empirically validated



using XCS+PMC in sections 7 and 8. Finally, we provide
further directions, summarize, and conclude.

2. XCS IN A NUTSHELL
This section provides a brief description of the XCS classi-

fier system. For a detailed description, the reader is referred
to [11, 12, 3].

XCS is an accuracy-based learning classifier system in-
troduced in [11] that computes fitness from the accuracy
of the reward prediction instead on the reward itself. The
accuracy-based approach makes XCS evolve a complete ac-
tion map (denoted as [O] [7]) of the environment, evolv-
ing not only high-rewarded rules (i.e., consistently correct
rules), but also consistently incorrect rules (i.e., rules with
zero prediction and low error).

XCS works as a model-free online learner. For each input
example, XCS forms the match set [M] consisting of all clas-
sifiers with matching condition. If not enough actions are
covered in [M], XCS triggers the covering operator, which
creates new classifiers with uncovered actions. Under pure
exploration, an action is selected randomly, and all classifiers
predicting that action form the action set [A]. The action is
sent to the environment and the received reward is used
to update the parameters of the classifiers in [A]. Eventu-
ally, the genetic algorithm is triggered in the action set [A],
and subsumption may be applied to avoid the presence of
accurate but unnecessarily specialized classifiers in favor of
accurate and general classifiers. Under exploit mode, given
an input instance, a vote for each action is determined by a
fitness-weighted average of all the matching classifiers that
advocate the action, and the most voted action is chosen as
the output.

3. COMPLEXITY WHEN LEARNING
FROM CLASS IMBALANCES

In this section we investigate how class imbalances influ-
ence XCS’s learning mechanisms. We benefit from previous
studies that analyze the computational complexity of XCS
considering a uniform sampling of instances [1]. The aim
of this section is to extend the theory to class-imbalanced
problems.

XCS evolves a set of rules distributed in niches around
the problem space. A niche is a region in the solution space
consisting of classifiers that represent a specific schema [5]
and predict the same class. In imbalanced domains, the sup-
ply of instances in each niche is not uniformly distributed.
Since XCS is an online learner with an occurrence-based
reproduction mechanism, niches more frequently activated
(i.e, nourished niches) will be given more resources than in-
frequently activated niches (i.e., starved niches). Our aim
is to study XCS’s capabilities to provide solutions in these
starved niches. For this purpose, we first analyze the effect
of class imbalances on the following facets:

• Population initialization. We analyze if the covering
operator can supply enough classifiers representing
schemas of the minority class.

• Generation of correct classifiers of the minority class.

We analyze the probability that the GA generates cor-
rect classifiers of the minority class when there are not
representatives of the minority class in the population.

• Time of extinction of correct classifiers of the minor-

ity class. We derive the average life-time of correct
classifiers of the minority class.

Second, we use the facetwise analysis to derive a bound on
the population size to ensure that XCS will be able to main-
tain correct classifiers of the minority class and that these
classifiers will receive, at least, one genetic event before be-
ing removed. In the analysis, we consider problems that
consist of n classes in which one of the classes, addressed as
the minority class, is sampled in a lower frequency than the
others. Specifically, the minority class is sampled with prob-
ability 1/(1+ir), where ir is the ratio between the number
of instances of any class other than the minority class and
the number of instances of the minority class.

3.1 Population Initialization
In this section we analyze the effect of class imbalances

on the covering operator, which is responsible for initializing
the population. At each learning iteration, the environment
samples a new input instance, and XCS creates the match
set, which consists of all classifiers in the population that
match the current input instance. If some action is not rep-
resented in the match set, the covering operator is activated
to create a new classifier advocating that action with a con-
dition generalized from the current input. The amount of
generalization over the inputs is controlled with the param-
eter P#, and its value has to be high enough—close to 1—to
satisfy the covering challenge [2].

In our analysis, we assume that P# is appropriately set
to a high value to guarantee the covering challenge; conse-
quently, covering will be only activated in the first iterations
of the learning.

As ir increases, less instances of the minority class will be
sampled during the first iterations. Thus, for high class im-
balances, covering will be activated on examples of any class
other than the minority class, and so, all classifiers’ condi-
tions, regardless the action they advocate, will be mainly a
generalization of instances of any class other than the minor-
ity class. However, the covering operator should be applied
on enough instances of the minority class to initially sup-
ply the population with sufficient classifiers of the minority
class. In the following, we derive a lower bound of the prob-
ability of activating covering when the first instance of the
minority class is sampled. According to [1], the probability
that one instance is covered by, at least, one classifier is the
following:

P (cover) = 1 −

[

1 −

(

2 − σ[P ]

2

)`
]N

(1)

where ` is the input length, N the population size, and σ[P ]
the specificity of the population. During the first learning
stage of XCS, we can approximate that: σ[P ] ≈ 1 − P#.

For a given ir, let us assume the worst case where a) XCS
receives ir instances of the other classes before receiving the
first instance of the minority class, and b) the covering oper-
ator is triggered for each instance supplying n classifiers per
instance (where n is the number of classes). The probability
that XCS covers the first instance of the minority class is:

P (cover) = 1 −

[

1 −
1

n

(

2 − σ[P ]

2

)`
]n·ir

(2)

The equation supposes that N > n · ir, i.e., that XCS will
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Figure 1: Probability of activating covering on a mi-
nority class instance given a certain specificity σ[P ]
and the imbalance ratio ir. The curves have been
drawn from formula 3 with different specificities σ[P ]
and setting `=20.

not delete any classifier during the first ir iterations. Given
a fixed ` and σ[P ], the term in brackets in the right hand of
the equation decreases exponentially as the imbalance ratio
increases; thus, the probability of covering minority class in-
stances tends to one exponentially with the imbalance ratio.

Provided that the probability of activating covering is 1−
P (cover), and recognizing that (1− r/n)n ≈ e−r, we obtain
that the probability of activating covering having sampled
a minority class instance is:

P (activate cov. on. min.) = 1 − P (cover) ≈ e−ir·e
−

`σ[P ]
2

(3)

which decreases exponentially with the imbalance ratio and,
in a higher degree, with the condition length and the initial
specificity. Figure 1 depicts the equation for ` = 20, n = 2
and different initial specificities, showing that the probabil-
ity of activating covering on the first sampled instance of
the minority class decreases exponentially with the imbal-
ance ratio.

The analysis made above shows up that the covering op-
erator fails to supply classifiers representing correct schemas
of the minority class for moderate and high imbalance ra-
tios. In classification tasks, dynamic resampling techniques
could be applied to overcome this problem [10]. However,
we are interested in the intrinsic capabilities of XCS to dis-
cover the minority class, and so, resampling techniques are
not considered in our analysis. Consequently, XCS will start
the search with a high general population that contains few
schemas of the minority class. So, the genetic search will
be the main responsible for obtaining the first correct clas-
sifiers of the minority class. In the next section we analyze
the probabilities that the GA generates new classifiers that
represent starved niches.

3.2 Generation of Correct Classifiers of the Mi-
nority Class

In this section, we analyze the probability of generating
correct classifiers of the minority class assuming that cover-
ing has not provided any classifier representing any schema
of the minority class. Since mutation is the primary opera-
tor for exploring new regions of the input space, we propose
a simplified model where only the effect of mutation is con-
sidered. We also assume low values of the probability of
mutation µ (µ < 0.5) as it is usual in practice.

Accurate classifiers of the minority class can be obtained
while exploring any class in the feature space. In the fol-
lowing, we derive the probabilities of generating a correct
classifier of the minority class when sampling instances of
any class, and gather them together deriving the probabil-
ity of generating new correct classifiers of the minority class.

3.2.1 Sampling Minority Class Instances
A minority class instance is sampled with probability

P (instmin) = 1/(1 + ir). As XCS chooses the class to be
explored randomly, two possible scenarios are possible: 1)
every 1/n times, XCS activates high rewarded niches of the
minority class, and 2) the other (n − 1)/n times, XCS ex-
plores low rewarded niches of another class. Next, we derive
the probabilities of obtaining a correct classifier of the mi-
nority class in both cases.

First, if the GA is triggered on a niche of the minority class
(assuming that there are not correct classifiers in the niche),
it will generate a correct classifier of the minority class if all
the bits of the schema are set to their correct value, and
the class of the classifier is not flipped. We consider the
worst case, that is, that all the bits of the schema need
to be changed. That gives the following lower bound on
the probability of generating a new correct classifier of the
minority class:

P (clmin | instmin ∧ nichemin) =
(µ

2

)km

· (1 − µ) (4)

where µ is the probability of mutation and km is the order
of the schema. That is, the formula defines a parabola on
the values of µ; for km=1, the probability is maximized at
µ = 0.5. However, this high value of µ may introduce too
much disruption in the genetic search. Increasing the order
of the schema km, the probability of obtaining a correct
classifier of the minority class decreases.

Second, if the GA is activated on a niche of any class other
than the minority class, not only all bits of the schema have
to be correctly set, but also the class has to be mutated to
the minority class. Thus, the lower bound on the probability
of generating a minority class classifier is:

P (clmin | instmin ∧ ¬nichemin) =
(µ

2

)km

·
µ

n − 1
(5)

As above, the probability of generating a new correct clas-
sifier of the minority class depends on the mutation proba-
bility µ and the order of the schema km. Moreover, it also
depends inversely on the number of classes of the problem.

3.2.2 Sampling Instances of other Classes
XCS can also create correct classifiers of the minority class

when sampling instances that do not belong to the minor-
ity class. The probability of sampling these instances is
P (¬instmin) = ir/(1 + ir). Two possible scenarios are pos-
sible when an instance of any class other than the minority
class is sampled: 1) a niche of the minority class is triggered,
and 2) a niche of another class is triggered. The first case
implies that all the bits of the schema must be specified.
The second case also requires that the class is flipped to the
minority class. Thus, the derived probabilities are:

P (clmin| ¬ instmin ∧ nichemin) =
(µ

2

)km

· (1 − µ) (6)

P (clmin| ¬ instmin ∧ ¬nichemin) =
(µ

2

)km

·
µ

n − 1
(7)



These probabilities are equivalent to the ones obtained in
formulas 4 and 5 respectively. They are guided by the prob-
ability of mutation µ and the order of the schema km.

3.2.3 Time to Create Correct Classifiers of the Mi-
nority Class

Given the derived sampling probabilities and lower bounds
of formulas 4-7, we analyze the minimum time required
to generate the first correct representative of the minority
class. We assume that the genetic event is always applied
(θGA = 0) and only one classifier is created by the effect
of mutation. Under these circumstances, the probability of
generating a correct classifier of the minority class is the
sum of the following probabilities:

• The probability p1 of generating a minority class clas-
sifier when sampling a minority class instance. That

is, p1 = 1

1+ir
· 1

n

(

µ

2

)km

• The probability p2 of generating a minority class classi-
fier when sampling an instance of any class other than

the minority class. That is, p2 = ir
1+ir

· 1

n

(

µ

2

)km

The time required to discover the first representative is de-
rived from the addition of both probabilities:

t(clmin) =
1

P (clmin)
=

1

p1 + p2

= n

(

2

µ

)km

(8)

which depends linearly on the number of classes and expo-
nentially on the order of the schema, but does not depend
on the imbalance ratio.

Thus, even though covering fails to provide classifiers rep-
resenting schemas of the minority class, XCS will be able
to generate the first correct classifiers of the minority class
independently of the imbalance ratio. In the following, we
derive the time until the deletion of these classifiers. With
both the generation and deletion time, we calculate the mini-
mum population size to maintain these classifiers and ensure
the growth of the best representatives of the minority class.

3.3 Deletion Time of Minority Class Classi-
fiers

XCS deletes classifiers depending on their action set size
as and their fitness. Having a good estimation of as, deletion
would remove classifiers that belong to numerous niches and
have low fitness; consequently, it would maintain accurate
classifiers in starved niches. Nevertheless, overgeneral classi-
fiers, whose presence is numerous in imbalance domains [9],
tend to bias the action set size estimate of accurate classifiers
that belong to the same action sets. Under these circum-
stances, deletion may be better approached as a random
deletion. As we delete two classifiers every GA application,
we obtain that:

P (delete clmin) =
2

N
(9)

From this formula, we derive the time until deletion:

t(delete clmin) =
N

2
(10)

In the following, we use formulas 8 and 10 to derive the
minimum population size that guarantees the discovery, main-
tenance and growth of starved niches.

3.4 Bounding the Population Size
Herein, we use the formulas of generation and deletion

of minority class classifiers to derive two population size
bounds. First, we derive the minimum population size to
ensure that XCS will be able to create and maintain correct
classifiers of the minority class. Then, we derive the pop-
ulation size bound to ensure the growth of the niches that
contain these correct classifiers of the minority class.

3.4.1 Minimum Population Size to Guarantee Repre-
sentatives

Our first concern is to ensure that there would be correct
classifiers representing the niches of the minority class. Our
sake is to guarantee that, before deleting any classifier of
the minority class, another correct classifier of the minority
class will be created. Thus, we require that the time until
deletion be greater than the time until a correct classifier of
the minority class is generated.

t(delete clmin ) > t(clmin) (11)

That is:
N > 2n

(µ

2

)km

(12)

which indicates that, to guarantee that all the minority class
niches of the system have at least one correct classifier, the
population size have to increase linearly with the number
of classes and exponentially with the order of the schema;
however, it does not depend on the imbalance ratio.

3.4.2 Population Size Bound to Guarantee Reproduc-
tive Opportunities

Above, we discussed the minimum time required to gener-
ate the first correct classifiers of the minority class. Now, we
are concerned about the requirements to ensure that classi-
fiers of minority class will evolve to better ones.

To ensure the growth of niches of the minority class, we
should guarantee that the best classifiers in the niche re-
ceive, at least, one genetic opportunity. Otherwise, XCS
could be continuously creating and removing classifiers from
a niche, but not searching toward better classifiers. As be-
fore, we consider θGA = 0; moreover, we assume that the
selection procedure chooses one of the strongest classifiers
in the niche. Then, the time required for a minority class
classifier to receive a genetic event is inverserly proportional
to the probability of activation of the niche it belongs to:

t(GA nichemin) = n · (1 + ir) (13)

which depends on the imbalance ratio and the number of
classes.

To guarantee that these strong classifiers of the minority
class will receive a genetic opportunity before being deleted,
we require that:

t(delete nichemin ) > t(GA nichemin ) (14)

from which we derive the population size bound:

N > 2n · (1 + ir) (15)

That is, the population size has to increase linearly with the
number of classes and the imbalance ratio to warrant that
correct classifiers of the minority class will receive, at least,
one genetic event before being deleted.



In this section we derived a theoretical model for learn-
ing under class imbalances. The analysis revealed a fail-
ure of covering to provide schemas of the minority class for
high imbalance ratios, giving the responsibility for generat-
ing correct classifiers of the minority class to the GA. Under
this scenario, we developed a population size bound that
indicated that XCS should be able to create and maintain
correct classifiers of the minority class regardless of the im-
balance ratio; furthermore, we derived a second bound de-
noting that the population size should increase linearly with
the imbalance ratio to ensure the growth of starved niches.
In the next section we describe the test problems used to
validate the theoretical models developed.

4. FACETWISE DESIGN OF TEST PROB-
LEMS

Goldberg illustrates the big importance of designing types
of problems characterized by various dimensions of problem

difficulty to permit a successful understanding of complex
systems [4]. We follow this approach closely to design two
test problems of bounded difficulty, in which we can easily
control the complexity introduced by the imbalance ratio.
First, we design the one-bit problem which completely iso-
lates the complexity introduced by the imbalance ratio from
other complexity factors, such as linkages between variables
or misleading fitness pressure. Second, we design a more
complex problem that requires a stronger pressure toward
optimal classifiers and also permits to control the imbalance
ratio: the imbalanced parity problem.

4.1 The Imbalanced One-Bit Problem
The one-bit problem is defined as follows. Given a binary

input of length `, the output is the value of the left-most
bit. The problem contains four niches and only one building

block or schema per niche; moreover, the order of the schema
is one. Its complete action map consists of two maximally
general and accurate classifiers predicting class ’0’ and class
’1’ respectively (i.e., the classifiers O#

`−1
:0 and 1#

`−1
:1),

and two maximally general but incorrect classifiers predict-
ing class ’0’ and class ’1’ (i.e., 1# `−1

:0 and O#
`−1

:1).
The imbalance complexity is controlled by sampling an

instance of the minority class with probability Psmin. At
each learning iteration, the environment chooses an instance
randomly. If it is an instance of class ’0’, it is automatically
given to XCS. Otherwise, the instance is passed to XCS
with probability Psmin. If it is not accepted, a new instance
is randomly sampled, which undergoes the same decision
process. In the experimentation, we control the imbalance
complexity by increasing the proportion of majority class
instances w.r.t. the minority class instances (imbalance ratio
ir). So, the probability of sampling a majority class instance
is Pmaj = ir/(1 + ir), and the probability of sampling a
minority class instance is Pmin = 1/(1 + ir).

4.2 The Imbalanced Parity Problem
The parity problem is a two-class binary problem origi-

nally introduced in [8]. The problem is defined by the length
of the input ` and the number of relevant bits k, where ` ≥ k.
Given a binary string of length `, the output is the number
of one-valued bits in the first k bits modulo two. The diffi-
culty of the problem is that all the k first bits form a single
building block, and so, they have to be processed together.

Besides, there are p = ` − k bits that are not relevant for
determining the class, and so, they should be generalized.

The imbalance complexity is introduced by starving the
class labeled as ’1’. Besides ` and k, the problem is also
defined by the imbalance ratio ir, where ir ≥ 1. For ir =
1, the problem is equal to the parity problem. For ir >
1, ir−1

ir
2`−1 instances of the class labeled as ’1’ are taken

out uniformly from the minority class niches. Regardless
of the imbalance ratio, XCS is expected to evolve the same
complete action map as in the parity problem.

5. XCS ON THE ONE-BIT PROBLEM
To validate the model derived in section 3, we first ran

XCS with the one-bit problem with condition length ` = 20
and imbalance ratios from ir=1 to ir=1024. The system was
configured as follows: α=0.1, ε0 = 1, ν=5, θGA=25, χ=0.8,
µ=0.04, θdel=20, δ=0.1, θsub=200, P#=0.8. We used tour-
nament selection, two point crossover and niched mutation
[3] for the genetic algorithm. Subsumption was applied on
the GA but not in the action set, and β was set as suggested
in [9] to get good parameter estimates. In each experimen-
tation, we ran XCS during 10, 000 · ir iterations to ensure
that the system received the same number of instances of
the minority class for all ir.

The experimentation was made as follows. For each im-
balance level, we ran XCS with different population sizes
and took the minimum population size required to solve the
problem. After training, we tested XCS with all the training
instances, and measured the percentage of correct classifi-
cations of instances of the majority class (TN rate) and the
percentage of correct classifications of instances of the mi-
nority class (TP rate). All the results were averaged over 10
different random seeds. We considered that XCS succeeded
if the product of TP rate and TN rate was greater than a
certain threshold θ (we set θ = 95%).

Figure 2 shows the minimum population size required by
XCS at different imbalance ratios. The points indicate the
empirical values, and the dashed line draws an exponential
curve that fits the points for high class imbalances. Two
different regimes can be observed in the figure. In the lowest
imbalance ratios, i.e., from ir=1 to ir=8, the population size
required to solve the problem is constant. On the other
hand, for the highest imbalance levels, i.e., from ir=256 to
ir=1024, the population size increases exponentially (fitted
by the curve with dashed line). Between ir=8 and ir=256
there is a transition region.

For ir > 1024, XCS failed regardless of the population
size, even though ε0 was decreased to ensure that overgeneral
classifiers were not considered as accurate. Specifically, for
ir=2048 we tried population sizes up to N=6,000, which is
the population size predicted by the exponential curve. XCS
was not able to solve the one-bit problem in any of the runs.

While facetwise models derived in the previous section re-
vealed that the population size should increase linearly to
ensure the growth of starved niches, empirical results show
that the population size scales exponentially, and that XCS
only can solve the one-bit problem up to ir=1024. In the
next section, we study the causes that are potentially re-
sponsible for the deviation of the empirical results from the
theoretical models.
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Figure 2: Scalability of the population size (N) with
the imbalance ratio (ir) in the imbalanced one-bit

problem with ` = 20. The points indicate the empir-
ical values of the minimum population size required
by XCS. The dashed line shows the curve defined
by the function f(ir) = 68 · e0.021·ir, which grows ex-
ponentially and fits the scalability of the population
size for the highest imbalance ratios.

6. ANALYSIS OF THE DEVIATIONS
BETWEEN THEORY AND EXPERIMENTS

Last section evidenced a deviation of the empirical results
from the models derived in section 3. This section studies
the causes that are potentially responsible for that devia-
tion. We analyze the effect of the mutation scheme in the
discovery of new minority class classifiers, the initialization
of the parameters of minority class classifiers, and the effect
of subsumption on the whole population; we also introduce
the need of stabilizing the population before testing. The
analysis results in a series of recommendations that aim at
protecting minority class classifiers from an early deletion.

6.1 Niched Mutation versus Free Mutation
In the theoretical model derived in section 3, we assumed

an unrestricted or free mutation, which permitted to create
new classifiers of the minority class from any niche of the
solution space. However, the experiments made in section
5 used a niched mutation, as defined in [3], which tries to
preserve the niche by forcing new classifiers to match the in-
put instance from which the action set was created. Under
niched mutation, the first correct classifiers of the minor-
ity class can only be created if a minority class instance is
sampled. Thus, the time until generation of the first repre-
sentant of the minority class is:

t(clmin | niched mutation) = n · (1 + ir) ·

(

2

µ

)km

(16)

which depends linearly on the imbalance ratio and the num-
ber of classes, and exponentially on the order of the schema.
Thus, with niched mutation, the minimum population size
to guarantee that the niches of the minority class will have
correct representatives is the following (see equation 11):

N > 2n · (1 + ir)

(

2

µ

)km

(17)

which indicates that N should increase linearly with the im-
balance ratio to maintain correct classifiers in the minority
class niches.

This equation indicates that free mutation incentives the
discovery of minority class classifiers by permitting to expore

beyond the niche. This is a crucial factor when covering can-
not supply correct schemas of the different classes. Nonethe-
less, this is not the only factor that may hinder XCS from
learning minority class niches in highly imbalance datasets.
Even with niched mutation, the model indicates that the
population size should increase linearly with the imbalance
ratio; however, the experimentation showed that the scala-
bility of the population size was exponential at the highest
imbalance levels.

6.2 Inheritance Error of Classifiers’ Parame-
ters

The parameters of new classifiers created by the genetic
algorithm are initialized as a copy or a discounted value of
their parents [3]. If the classifier participates frequently in
action sets, the values of its parameters would be quickly ad-
justed to their theoretical values. Nonetheless, when learn-
ing from imbalance data, classifiers that belong to starved
niches are infrequently updated, and so, have inaccurate pa-
rameters values during a longer time.

The parameter that controls the initial deletion probabil-
ity of a classifier is the action set size as. Having an initial
overestimated value of this parameter may cause an early
deletion of accurate but infrequently activated classifiers.
To avoid that, we suggest to initialize the action set size of
a new classifier to 1, minimizing the deletion probability of
a minority class classifier before being updated for the first
time. This approach may be applied cautelously in prob-
lems where classifiers that do not match any input could
be created. In this case, deletion policies of non-activated
classifiers may be applied.

6.3 The Effect of Subsumption
Subsumption deletion is a mechanism introduced in [12]

with the aim of increasing the pressure toward generalization
to obtain highly accurate and compact populations. The
main idea behind subsumption is to delete accurate but spe-
cific classifiers if other accurate but more general classifiers
exist in the population (a classifier is considered to be a sub-
sumer if its experience is higher than θsub and its error is
lower than ε0).

Although subsumption is a powerful tool to obtain a highly
accurate and maximally general population, it may hinder
XCS’s performance in highly imbalanced datasets if it is
not adjusted properly. That is, in imbalanced datasets, an
overgeneral classifier of the majority class may receive ir
positive rewards before receiving the first negative reward.
Consequently, XCS may consider these classifiers as accu-
rate during ir iterations. If ir > θsub some correct but more
specific classifiers of the majority class may be subsumed by
overgeneral classifiers. Thus, our approach is to set θsub ≥ ir
to avoid this situation.

6.4 Stabilizing the Population before Testing
Finally, we are concerned about the composition of the

final population. As the GA is continuously applied, new
classifiers are generated until the end of the learning. Thus,
there may be some classifiers in the final population that
have been poorly evaluated, and so, their parameters may
not be reliable. In highly imbalanced datasets, as instances
of the minority class are rarely sampled and classifiers of the
majority class receive genetic events frequently, the presence
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Figure 3: Scalability of the population size (N) with
the imbalance ratio (ir) in the imbalanced one-bit

problem with ` = 20. The points show the empiri-
cal values of the minimum population size require-
ments. To compare the empirical results with the
theory, we plot a curve (in dashed line) that departs
from the minimum population size required at ir=1
and increases linearly with slope equal to 1 with the
imbalance ratio.

of overgeneral classifiers with inaccurate estimations of their
parameters in the final population will be stronger.

To avoid classifiers with inaccurate estimations in the final
population, we introduced some extra runs at the end of the
learning process with the GA switched off. In that way,
we could stabilize classifiers parameters and get a consistent
population.

Summarizing, we attribute the deviation from the model
to a combined effect of the mutation scheme, the parame-
ter inheritance procedure, subsumption and parameter esti-
mates of inexperienced classifiers. Based on the analysis, we
propose a set of recommendations which are gathered un-
der the name XCS+PMC (XCS with mechanisms Protect-
ing the Minority Class). In the following section, we repeat
the experiments with the one-bit problem, and compare the
empirical results with the theoretical model.

7. RESULTS WITH XCS PROTECTING THE
MINORITY CLASS: XCS+PMC

We repeated the experimentation with the one-bit prob-
lem presented in section 5, but following the recommenda-
tions given in section 6. So, niched mutation was replaced
by free mutation; as of new classifiers was initialized to 1,
as proposed in section 6.2; subsumption was configured in
relation to the imbalance ratio, that is, θsub = ir; and, af-
ter learning, we ran Nconds runs without applying the GA,
where Nconds = 1000 · ir.

Figure 3 shows the minimum population size required to
solve the one-bit problem with imbalance ratios from ir=1
to ir=4096. Note that in the experiments made in section 5
XCS could only solve the problem up to ir=1024. The points
show the empirical values of the minimum population size
required at different imbalance ratios, while the theoretical
bound is shown by the dashed line.

The scalability of the population size shows two different
facets. From ir = 1 to ir = 128, XCS could solve the
one-bit problem with a constant population size (N=35).
For higher imbalance levels, i.e., from ir=128 to ir=4096,
the population size had to be slightly increased to solve the
problem; for ir=4096, XCS succeeded with N=50. That is,

in this second facet the population size needed to increase
linearly but with a slope close to zero.

Results obtained with the one-bit problem indicate that
the population size bound to ensure the growth of niches of
the minority class is valid but a little over-estimated (see
formula 15). We hypothesize that, as the one-bit problem
is really simple, XCS can solve it only maintaining some
correct classifiers in niches of the minority class without the
need of a strong genetic pressure to evolve these classifiers
to better ones. Under this assumption, the results obtained
fit formula 12, which indicate that population size does not
need to increase with the imbalance ratio to maintain correct
classifiers of the minority class. Thus, the empirical results
support that XCS can maintain representatives in niches of
the minority class regardless of the imbalance ratio.

8. INCREASING THE DIFFICULTY: THE
PARITY PROBLEM

In the last section we used a simple problem to demon-
strate that XCS could maintain minority class classifiers at
high class imbalances with very little increase of the popu-
lation size, validating formula 12. Now, our aim is to em-
pirically show how the population size increases in a more
complex problem, the parity problem, where it is necessary
a stronger guide toward optimal classifiers.

We ran XCS with the parity problem setting ` = 20 and
k = 3. The system was configured as described in sec-
tion 7. Figure 4 shows the minimum population size re-
quired to solve the parity problem for imbalance ratios up
to ir = 4096. The points show the empirical values at dif-
ferent imbalance ratios, while the theoretical bound is plot
in dashed line.

As in the one-bit problem, the scalability of the popula-
tion size in the parity problem shows two different facets.
First, for low imbalance ratios—from ir=1 to ir=128—the
problem can be solved without increasing the population
size. This behavior was already observed in the one-bit

problem. Our hypothesis is that, for these low imbalance
ratios, the estimation of as is accurate, and so, the popu-
lation size bound is over-sized. Thus, XCS appears to be
really efficient for moderate imbalance ratios.

On the other hand, for the highest imbalance ratios, i.e.,
from ir=128 to ir=4096, the population size requirements
increase linearly with the imbalance ratio. In these cases,
the empirical results fit the population size bound derived
in formula 15, validating that the theory predicts correctly
the population size scalability in imbalanced datasets.

9. FURTHER WORK
Apart from modeling the scalability of the population size

with class imbalances, the theoretical analysis provided in
this paper also served to detect different aspects that may
be improved to learn from imbalanced data more efficiently.
One of the most important ones is the covering operator.
As observed in section 6, the probability that covering gen-
erates correct classifiers of the minority class decreases ex-
ponentially with the imbalance ratio. In this way, mutation
is the main responsible for creating correct classifiers of the
minority class. We identified that the time to create these
classifiers depended exponentially on the order of the schema
km. In some problems, km can also depend on the imbal-
ance ratio (e.g., the position problem [10]). In this case,
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Figure 4: Scalability of the population size (N) with
the imbalance ratio (ir) in the imbalanced parity

problem with ` = 20 and k = 3. The points show
the minimum population size required at each im-
balance level to solve the problem. To compare the
empirical results with the theory, we plot a curve (in
dashed line) that departs from the minimum popu-
lation size required at ir=1 and increases linearly
with slope equal to 1 with the imbalance ratio.

an initial supply of correct classifiers of the minority class
should be crucial to speed up the learning and decrease the
population size requirements in XCS. In further work, we
will investigate other covering-based mechanisms to provide
these initial classifiers of the minority class.

10. SUMMARY AND CONCLUSIONS
This paper investigated the capabilities of XCS to dis-

cover and maintain niches that are nourished infrequently.
We derived theoretical models that analyzed the effects of
class imbalances on the covering operator, the creation and
deletion of correct classifiers of the minority class, and the
number of genetic opportunities that these classifiers receive.
From this, we obtained a population size bound indicating
that XCS could maintain niches of the minority class regard-
less of the imbalance ratio, but the population size needed
to increase linearly with ir to ensure the growth of better
classifiers in the minority class niches.

We used a facetwise approach to design two test prob-
lems that permitted us to control the difficulty introduced
by the imbalance ratio: the one-bit problem and the parity

problem. We empirically showed that the population size in
standard XCS scales exponentially with the imbalance ratio
in the one-bit problem. The causes of the deviation from
the model were attributed to the mutation scheme, the pa-
rameter inheritance procedure, subsumption, and the effect
of unstable parameter estimates of unexperienced classifiers.
The study resulted in a set of recommendations which were
incorporated to XCS+PMC.

XCS+PMC could solve the one-bit problem up to ir=4092
with a population size nearly constant. Although solving a
problem as the one-bit could seem a trivial task for a learner,
the results obtained are really important since they demon-
strate that, if genetic pressures lead to the creation of classi-
fiers that represent a niche of the minority class, XCS will be
able to maintain this niche. Furthermore, we introduced the
imbalanced parity problem to validate the bound in a prob-
lem that requires a stronger pressure toward optimal classi-
fiers. The results showed again two different facets. For low
imbalance ratios, the population size remained constant. For

high class imbalances, the population size increased linearly,
showing that the theory predicts correctly the scalability of
the population size with the imbalance ratio.
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