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Abstract— This work presents an Evolutionary Artificial Neu-  conflicting objectives in multiclass problems. The solution
ral Network (EANN) approach based on the Pareto Differential  for these “multi-objective” problems is different from that
Evolution (PDE) algorithm where the crossover operator is of a single-objective optimization. The main difference is

determined using a Gaussian distribution associated with the S R
best models in the evolutionary population. The crossover that multi-objective optimization problems normally have not

operator used in a real-coded genetic algorithm is based on One but a set of solutions which are all equally good. The
confidence intervals. The PDE is used to localize the most different classification methods found in the literature [1],

promising search regions for locating the best individuals. Con- include a very important tool used in the last few years,
fidence intervals use mean localization and standard deviation Avrtificial Neural Networks (ANNS) [2].

estimators that are highly recommendable when the distribution L e .
of the random variables is Gaussian. It has always been an The training of Artificial Neural Networks by Evolutio-

issue to find good ANN architecture in both multiclassification Nnary Pareto-based algorithms [3] is known as Multiobjective
problems and in the field of ANNs. EANNs provide a better Evolutionary Artificial Neural Networks (MOEANNS), and
method to optimize simultaneously both network performance has been used to solve classification tasks [4], some of its
(based on the Correct Classification Rate(”) and the network main exponents being H. Abbass [5] and Y. Jin [3].

performance of each class (Minimum Sensitivity, A/ S). The . . . . I
pr(_)posal with respect to methodology _perforr_nan_ce is evaluated Differential EVOIU“_O“ (DE) [6], an evolutionary optimiza-
using a well characterized set of multiclassification benchmark tion method for F:ontmuogs search spaces, has been used by
problems. The results show that crossover performance based llonen [7] to train the weights of feed-forward neural net-
on confidence intervals is less dependent on the problem than works. Other authors, like Bhuiyan [8], use DE to optimize
crossover performance based on a random selection of three the architecture for Artificial Neural Networks.

parents in the PDE. This paper presents a new perspective on the Memetic

I. INTRODUCTION Pareto Differential Evolution (MPDE) algorithm because

As multiclass classification tasks are ubiquitous in théhe selection of three parents in the crossover operator is
real world, there is a growing interest in multiclassificatiorfuided by statistical distributions using Gaussian distribution.
problems in the machine learning community. A classifief his Multiobjective Evolutionary Algorithm (MOEA) [9] is
design method is usually an algorithm that develops @ased on Differential Evolution and on the Pareto domi-
classifier to approximate an unknown input-output mappingnce concept for solving multiclass classification problems.
function from finitely available data, i.e., training samplesMPDE is improved with a local search algorithm, concretely
Once this classifier has been designed, it can be usk@Proved Resilient Backpropagation (iRprop[10]. The
to predict class labels that correspond to unseen sampl8thodology proposed is tested throughout six datasets taken
Hence, the objective in developing a good classifier is tom the UCI repository [11], specifically Breast-Cancer,
ensure high prediction accuracy for unseen future data, i.8reast-Wisconsin, Heart-Disease, Heart-Statlog, Horse and
testing capability. Many techniques have been proposed Mgwthyroid.
improve the overall testing capability of classifier designed The rest of the paper is organized as follows. Section 2
methods (assuming, for example, the maximization of thghows an explanation of Accuracy and Sensitivity. Section
correct classification rate), but very few methods maintaid describes the algorithms presented, followed by the ex-
this capacity in all classes (assuming, for example, maxierimental design in Section 4. Section 5 shows the results
mization of the correct classification of each class). Thigbtained while conclusions and future research are outlined
second objective is very important in some research arefsSection 6.

(such as medicine, remote sensing, economy, etc.) to ensure Il. RELATED WORK
the benefits of one classifier over another. Thus, in this pap&r

we have proposed the simultaneous optimization of the two Accuracy and Minimum Sensitivity

In this section we present two measures to evaluate a
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measure its default performance. Actually, we simply havA. Base Classifier

to realize thatC cannot capture all the different behavioral ) o ]

aspects found in two different classifiers in multiclassifian For multi-classification problems, we consider standard
problems. For these problems, two performance measures fgd forward Multilayer Perceptron (MLP) neural networks
considered: traditionally-used and M S in all classes, that with one input layer with independent variables or features

is, the lowest percentage of examples correctly predicted "€ hidden layer with sigmoidal hidden nodes and one output

belonging to each class;, with respect to the total number N°de- _ _

of examples in the corresponding clagd,S = min{S;}. Let a coded “1-of-J" outcome variablg, (that is the

The pair made up of Minimum Sensitivity versus AccuracyPutcomes have the forny = (v, y@, ..y, where

(MS, C) expresses two features associated with a classifig?’ = 1 if the pattern belongs to clasp and y'¥) =

global performancéC) and the rate of the worst classified0, in other cases); and a vector = (1,z1,%,...,2k)

class (MS). The selection ofMS as a complementary Of input variables, wherek is the number of input (we

measure ofC' can be justified by considering thét is the ~assume that the vector of inputs includes the constant term

weighted average of the Sensitivities of each class. Fort@ accommodate the intercept or bias).

more detailed description of these measures, see [12]. Then, the output layer is interpreted from the point of
One point in(MS,C) spacedominatesanother if it is view of probability which considers the softmax activation

above and to the right, i.e. it has greatérand the best function. The activation function of th@th node in the

MS. Let C and M S be associated with a classifigr then hidden layer is given by:

MS<C<1-(1-MS)p*, wherep* is the minimum for

estimated prior probabilities. Therefore, each classifiiir q(x,0)) = exp fi(x, 0:) 7

be represented as a point in the white region in Figure 1, 1+ exp fi(x, ;)

hence the area outside of the triangle is marked as unfeasibl ] - )
whereg, (x, 0;) is the probability a patterr has of belonging

to classl, 0, = (B, ..., B4, W1, ..., W) is the vector of
Optimum weights of the output nodé/ is the number of hidden nodes,

w; = {w],...,w)},for j =1,..., M, is the vector of input

weights of the hidden nodg and f;(x, ;) is the output of

forl=1,..,J

- the output node for pattern given by:
C 061 M , K
g fl(x,el)zﬁ(l)—FZﬂéa <w6+2wfajt> Jorl=1,...,J
8 o4 Jj=1 i=1
. whereo(+) is the sigmoidal activation function.
In order to tackle this classification problem, the outputs
o of the model have been interpreted from the point of view of
worst O - : . . 10 probability through the use of the softmax activation fimet
Classifier Minimum Sensitivity (MS) [13], which is given by:
Fig. 1: Unfeasible region in two dimension@l/ .S, C') space. 0
m(x,0;) = xpfil,O) g 1)

o . o . Yoy exp £(x,0;)
The area inside the triangle in Figure 1 may be feasible

or _not (attainable), dependi_ng_ upon the clz_assifier and thenere f;(x,0,) is the output of thej output neuron for
difficulty o_f th_e problem.A priori, we could think that\/ S _ patternx and p(x, 8,) is the probability that patters has
and C' objectives could be positively correlated, but whilegs belonging to class.

this may be true for small values d@ff S and C, it is not
for values close to 1 in eithe¥/S or C'. Thus competitive
objectives are at the top right corner of the white regiorisTh
fact justifies the use of a MOEA.

Using the softmax activation function presented in expres-
sion 1, the class predicted by the MLP corresponds to the
node in the output layer whose output value is the greatest.
In this way, the optimum classification rul€(x) is the
following:

IIl. LEARNING METHODOLOGY . .
C(x) = l,wherel = argmax; p;(x,0;),forl =1,...,J

The beginning of this section describes the neural networks
and the Fitness Functions employed. The proposed algo-The best MLP is determined by means of a MOEA
rithms are shown and the section concludes with a desamipti¢detailed in Section III-C) that optimizes the error fuocti
of the local search algorithm used. given by the negative log-likelihood foN observations
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associated with the MLP model: are based on the PDE [14] and the local search algorithm is
the Improved Resilient BackpropagatioRprop™ [15].

The MOEAs used in this study consider a fully specified
ANN to be an individual which evolves architectures and
connection weights simultaneously. The ANNs are repre-
sented using an object-oriented approach and the algorithm
deals directly with the ANN phenotype. Each connection

is specified by a binary value, which indicates whether the

1 N J—1
L*<9>=NZ[— u filxn, @)+ (2)
=1
J—-1

+log > exp fi(xn, 01)

=1

n=1

where yﬁf) is equal tol if patternx, belongs to thd-th
class and equal t0 otherwise. From a statistical point of
view, this approach can be seen as nonlinear multinominﬁgll
logistic regression, where we optimize log-likelihoodngsi
a MOEA.

B. Fitness Functions

When there is an available training datasét
{(Xn,yn);n = 1,2,...,N}, wherex,, = (z1,,...,2xk,) IS
the random vector of measurements taking value$ it
R¥, andy, is the class level of tha-th individual, we

define the Correctly Classified Rat€)(or Accuracy by: 3
4
N
5:
C=(1/N) Y (I(C(xn) = yn) o
n=1
7.
where I(-) is the zero-one loss functiowy, is the desired g

output for patternn and N is the total number of patterns 9;
in the dataset. A good classifier tries to achieve the highesgp.

possibleC' in a given problem. However, th€ measure

is a discontinuous function, which makes convergence morg.
difficult in neural network optimization. 12:
Thus, instead of”, we consider the continuous function q3.

given in expression 2, also called Entrofy)( The advantage

of using the error functiorE (g, 0) instead ofC is that this 14

is a continuous function, which makes the convergence more

robust. 15:
As a first objective, we propose a strictly decreasingg.

transformation of theE(g,0) as the fithess measure to

connection exists, and a real value representing its weight
The MPDENN is based on the algorithm described in [16].
MPDENN, local search does not apply to all the children
to be added to the population. Instead, the most repregentat
children in the population are optimized throughout sdvera
generations. The pseudocode of MPDENN is shown in
Figure 2.

1: Create a random initial populatioR,
2: while Stop condition is not medo

Evaluate population
Adjust the size of the population
while The population is not complei@o
Select parents
Cross parents
Mutate the child
Evaluate the child
Add the child to the population according to domi-
nance relationships with the main parent
end while
if Local search in this generatidhen
if Number of individuals of the first Pareto front of
P, < num then
Apply iRprop™ to the individuals in the first
Pareto front
else
Generatenum cluster in the first Pareto front
using K-means

maximize: 17: Apply iRprop" to thenum centers
1 18: end if
Alg) = 7 +E(g,91)’0 <A(g) =1 19:  end if
20: end while

where g is the multivaluated function:

g(X7 e) = (gl(x? 61)7 "'7gJ(X7 eJ))

The second objective to maximize is theS of the

Fig. 2: MPDENN algorithm pseudocode.

The algorithm starts generating a random populatign

classifier. That is, maximizing the lowest percentage d¥f Size M. The population is sorted according to the non-
examples correctly predicted as belonging to each clags wigomination concept explained in Section Il-A. Dominated
respect to the total number of examples in the corresponditifividuals are removed from the population. Then the po-

class.

pulation is adjusted until its size is between 3 and half the

maximum size by adding dominated individuals or deleting

C. Memetic Pareto Algorithm

individuals according to their respective distance fromirth

We construct two MOEAs with a local search algorithmnearest neighbor. After that, the population is completeéd w
They are called the Memetic Pareto Differential Evolutigna new children generated from three randomly selected indivi
Neural Network (MPDENN) and the Memetic Pareto Diffe-duals in the population. The child is generated by crossing
rential Evolutionary Neural Network using Confidence Interthe three parents. The resultant child is a perturbation of
vals with L2 Norm (MPDENN-L2), which tries to move the the main parent. This perturbation occurs with a probabilit
classifier population towards the optimum classifier lodateof P. for each neuron. This perturbation may be structural,
at the(1,1) point in (M S, C') space. The MOEAs proposed according to expression (3), so that neurons are removed
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or added to the hidden layer; or parametric, according toi: Create a random initial populatioR,
expression (4) (for the hidden layer) or (5) (for the output 2: while Stop condition is not medo
layer), where the weights of the primary parent are modified3: = Evaluate population
with the difference of the weights of the secondary parents4:  Adjust the size of the population
5. while The population is not compleido

. a le% [o% 6:

chitd ) 1 if (ot + N (0,1) (p* = pj?)) 2 0.5 .

Ph 0 otherwise .
)

8:

wip™ —wil + N (0,1) (wii? — wii?) @ ¥

10:
wie" ! = wid + N (0,1) (wp2 — wpd) (5)

Afterwards, the mutation operator is applied to the child.
The mutation operator consists of adding or deleting neuiron

in the hidden layer depending onfa, probability for each 11:
of them. Taking into account the maximum number of hidden2:
neurons that may exist in an individual in a specific problem13s:

the probability will be used the same number of times as the

number of neurons that are found in the classifier. If thaa:
neuron exists, it is deleted, but if it does not exist, theis it 15:
created and the weights are established randomly, accprdine:

Generate virtual parents:
Calculate the average of each of the weights of
individuals belonging taP;
CIM < individual generated from the averages
Calculate the standard deviation of each of the
weights of individuals belonging t@
Calculate the width of the confidence interval of
each of the weights
limit; — t S
1mit; <— n—l,a\/ﬁ
C”_Li — C”V'i — lzmztz
SetCIM as main parent an@ILL and CIUL as
secondary parents
Cross parents
Mutate the child
Evaluate the child

to expression (6). 17: Add the child in the population according to domi-
_ nance relationships with the main parent
pihild { 1 ifﬂi'”ld.: 0 6) 18 endwhie
0 otherwise 19: if Local search in this generatighen
Finally, the child is added to the population accordingZO: Apply local search
to dominance relationships with the main parent. In somé™- end 'T
generations, depending on the size of the first Pareto frort> end while

local search is applied to all the individuals in the first
Pareto front or the most representative individuals in this
front (obtained by the K-means algorithm [17]).

Fig. 3: MPDENN-L2 algorithm pseudocode.

On the other hand, the MPDENN-L2 is based on the From the confidence interval of expression (8), the three

MPDENN algorithm and in MPDENN, parents are randomlyindividuals built are considered to be the parents in the
selected from among individuals in the population whilerossover. These three parents are formed by: all the lower
MPDENN-L2 uses virtual parents generated from confidendamit values of the confidence intervals of the chromosome
intervals. These confidence intervals are generated useng gene individual, CILL = i, —tn_l,a%; all the upper limit
L2 norm. The rest of the algorithm works like MPDENN. values of the confidence intervals of the chromosome gene
The pseudocode of MPDENN-L2 is shown in Figure 3. individual, CIUL; = fji; + tn,l,a%; and all the means of
To generate virtual parents, it is necessary to calculathe confidence intervals of the chromosome gene individual,
the mean and standard deviation of each of the weights GIM; = ji;. These parents have statistical information on the
individuals in the population. Then, for each of the weightslocalization features and dispersion of the best indiviglira
the limits of the interval must be calculated according tehe population, that is, the genetic information that thtedit
expression (7). individuals share.

Si % D. Local Search Algorithm
Vn The Evolutionary Algorithms, EAs, are improved by the

where n is the number of individuals in the popu|ationincorporation of local search procedures throughout their
andt,,_1 ., is the value of Studentsdistribution withn —1  €volution. Some studies that were carried out on the con-
degrees of freedom andd— « as the confidence coefficient. vergence process of a genetic algorithm in a concrete opti-
With the average value of each weight and its limits, afnization problem, show that although the genetic algorithm

interval is formed according to expression (8). quickly finds good solutions to the problem, it needs many
generations to reach the optimum solution and it has great

difficulties in finding the best solution when it is in a region
near a global optimum. It is well-known that certain local

lzmth — tn—l,a

Cl; = | — tn—l,a%;ﬂi + tn—l,a% (8)
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TABLE |: CHARACTERISTICS FORDATASETS

Dataset #Patterns  #Training  #Test #lnput  #Classes  #Patter p*
patterns  patterns variables per class
Breast-Cancer 286 215 71 15 2 (201,85)  0.2957
Breast-Wisconsin 699 524 175 9 2 (458,241) 0.3428
Heart-Disease 302 226 76 26 2 (164,138) 0.4605
Heart-Statlog 270 202 68 13 2 (150,120) 0.4411
Horse 364 273 91 58 3 (224,88,52) 0.1428
Newthyroid 215 161 54 5 3 (150,35,30) 0.1296

procedures are able to find the local optimum when the In all the experiments, the population size is established a
search is carried out in a small region of the space. Thexefordl = 25. The crossover probability i8.8 and the mutation
in the combination of EA and local procedures, EA waprobability is0.1. For iRprop", the parameters adopted are
going to carry out a global search inside the solution spacg} = 1.2, = = 0.5, A¢ = 0.0125 (the initial value of the
locating ANNSs near the global optimum, and the local proceA;;), Amin = 0, Amax = 50 and Epochs = 5, see [10] for
dure would quickly and efficiently find the best solution. §hi iRprop™ parameter description. The optimization process is
type of algorithm receives the name of Memetic or Hybridapplied 3 times during execution (eve3$.33% generations)
Algorithm [18]. and useswum = 5 cluster in the clustering algorithm. For
Many MOEAs use local optimizers to fine tune ANN confidence intervals, alpha takes values in the rdage1].
weights. This is called “lifetime learning” and it consists  To start processing data, each one of the input variables was
updating each individual with respect to approximatiomerr scaled in the rankf-1.0,1.0] to avoid the saturation of the
In addition, the weights modified during lifetime learninga signal.
encoded back to the chromosome, which is known as theln Table | we can see the features for each dataset. The
Lamarckian type of inheritance. This procedure has a higiotal number of instances or patterns in each dataset gppear
computational cost, something that we wanted to avoid. Faés well as the number of instances in training and testirgy set
this reason we propose the following: the number of input variables, the total number of instances
The local search algorithm is only applied in three generaer class and thg* value (the minimum of prior estimated
tions of evolution (the first to start, the second in the meddlprobabilities).
and the third at the end) once the population is completed. During the experiment, models are trained using the fitness
Thus, local search is not applied to those children who affénction A(g) (based onFE, see Section IlI-B) andV/ S
rejected. Local search does not apply to all individualdy on as objective functions, but when validated, we dseand
to the most representative. The process for selecting thed&S. A(g) is used instead o€’ in training because” is
individuals is as follows: if the number of individuals in @ discontinuous function, which makes convergence more

the first Pareto front is lower than or equal to the desiredifficult in optimization.

number of clusters«{um), a local search is carried out Once the Pareto front is built, two methodologies are con-

without needing to apply K-means [17]. But, if the number ofidered in order to build a neural network model which then

individuals in the first front is greater thaium, the K-means includes the information about the models within it. These

is applied to the first front to get the most representative: ~ are called MethodName-E and MethodName-MS. These

individuals, who will then be the object of a local search. methodologies provide single models that can be compared
This local search will improve the Pareto front Obtainedo other classification methods found in the literature. The

with respect to only one objective, specifically that whictProcess followed in these methodologies is the following:
seeks to minimize classification error. once the first Pareto front is calculated using training set
pagation) algorithm [10] is used because it is one of th& (E1)is chosen for MethodName-E, and the best individual

best techniques in terms of convergence speed, accuracy dhderms of M S (MST) is selected for MethodName-MS.
robustness. Once this is done, the values 6fand M S are obtained by

testing theEI and M ST individual models. Therefore we
obtain an individualEl; = (Cg, M S¢) and an individual
MSIg = (Cq,MSg). This is repeated 30 times and then
Six datasets taken from the UCI repository are considerazstimations are carried out of the average and standard-devi
for the experimental design. This design was conducteibn obtained from the individual®&I; = (Cs, M S¢) and
using a stratified holdout procedure with 30 runs, wherd/SI; = (Cq, MSg). The first expression is the average
approximately 75% of the patterns were randomly selectazbtained takingE into account as the primary objective,
for the training set and the remaining 25% for the test setand the second one is obtained by takiigs into account

IV. EXPERIMENTS
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TABLE II: STATISTICAL RESULTS FORPDENN, MPDENNAND MPDENN-L2 IN TESTING

Ca(% Sc (% Ca(% Sa (%

Methodology Dataset Mear(ttS)D Mea(nt%D Dataset Mear(atS)D MeaEat%D
PDENN-E Breast Cancer 66.68.16 38.0%12.62 Breast-Wisconsin 95.43.11 89.613.08
PDENN-MS 63.66:-3.59 56.32-7.49 95.121.04 90.0&-2.55
MPDENN-E 67.983.05 41.2413.07 95.221.06 89.8%3.24
MPDENN-MS 63.99-3.80 58.7H6.23 95.2G+0.99 90.1A&2.71
MPDENN-L2-E 69.34+3.36 30.16+:12.90 95.68+1.00 90.1A42.60
MPDENN-L2-MS 63.43-4.61 52.35-9.18 95.3@0.92 90.06-2.34
PDENN-E Heart-Disease  83.62.01 78.8@3.41 Heart-Statlog 76.071.38 63.742.99
PDENN-MS 82.41%2.67 78.6@3.94 76.441.89 65.88+:3.68
MPDENN-E 83.55-2.46 77.324.54 77.25-1.00 61.56-1.59
MPDENN-MS 83.33-2.38 79.214.45 76.341.59 62.892.43
MPDENN-L2-E 85.314-2.83 80.7&3.70 77.8%1.47 62.1244.24
MPDENN-L2-MS 85.314-2.83 80.783.70 77.65:1.52 62.44-4.10
PDENN-E Horse 57.9510.00 0.06:0.00 Newthyroid 97.281.99 83.9%11.72
PDENN-MS 57.9510.00 0.0&0.00 96.912.44 84.2%11.20
MPDENN-E 60.66-5.25 0.06:0.00 96.732.21 82.9110.51
MPDENN-MS 60.66-5.25 0.06:0.00 96.6@-2.12 82.45-10.35
MPDENN-L2-E 65.314-3.05 0.00+0.00 97.90+1.99 85.56:11.70
MPDENN-L2-MS 65.314-3.05 0.00+£0.00 96.732.74 83.6@12.46

as the primary objective. So, the opposite extremes of tf&ometimes it is very difficult to obtain classifiers with a
Pareto front are taken in each of the executions. Henckigh percentage of classification and a high percentage of
the first procedure is called MethodName-E and the secosénsitivity, and for this reason some fronts have very few
MethodName-MS. individuals.
We can see that an increase if{g) in Breast-Cancer
V. REsSULTS causes a decrease M S in training, and that an increase
Table Il presents the values of the mean and standaitl C' causes a decrease M S for testing. The result is a
deviation forC' and M.S in 30 runs for all the experiments Pareto front that is quite dispersed and has a fair number of
performed. It can be seen that the MPDENN-L2 algorithninodels. However, for the Heart-Disease dataset, we observe
produces good results with respectdband A S. In fact, a Pareto front with a single individual. This is becausemiyri
from a descriptive point of view, the MPDENN-L2-E algo-the evolutionary process, there was no individual who was
rithm obtains the best result ifi; in all the datasets and the not dominated by the individual of the Pareto front.
best result inM S¢ in three datasets. In the graph of Breast-Cancer in training, we have identi-
In the Heart-Disease and Horse datasets, some algorithfieal the two ends of the first Pareto front. The testing graph
get the same results with both methodologies. This is becaushows the position of these models in spasés, C).
the first Pareto front, in the 30 executions, is formed by a The ANalysis Of the VAriance of one factor (ANOVA
single individual. ) statistical method or the non parametric Kruskal-Wallis
In Figure 4, we can see the graphic results obtaing@-W) test were used to determine the best methodology
by the MPDENN-L2 algorithm for the Breast-Cancer andor training MLP neural networks (with respect to their
Heart-Disease datasets in the trainifig S, A(g)) and test influence onC and M S in the test dataset), depending on
(MS,C) spaces. For thgM S, A(g)) space, the Pareto the satisfaction of the normality hypothesis @fand .S
front is selected for one specific run output of the 30 donealues. The results of the ANOVA analysis for t€stvalues
for each dataset, concretely the execution that preseats #how that for the six datasets, the effect of the six training
best E' individual in training, whered(g) and M S are the methodologies is statistically significant at a 5% level of
objectives that guide MPDENN-L2. ThéM S, C) testing significance. The results of the ANOVA or KW analysis
graphs show\/ .S andC values throughout the testing set forfor C' and MS show that for the six datasets, the effect
the individuals who are reflected in tli@/.S, A(g)) training  of the methodologies is statistically significant at a 5%elev
graphs. Observe that tHé/.S, C') values do not form Pareto of significance.
fronts in testing, and the individuals that had been in trst fir Because there exists a significant difference in meadfor
Pareto front in the training graphics may now find themselveand M S using the Snedecor’s F or the K-W test; we perform,
located in a worse region in the space. In general the steictun the first case, under the normality hypothesis, a post hoc
of a Pareto front in training is not maintained in testingmultiple comparison test of the me&hand M S is perfor-

2545



0,675

0,67
0,665 |

0,66

Breast-Cancer (Training)

EI(MS,Ag)) [

0,8

0,6

Breast-Cancer (Testing)

EI(MS,C)

e 0 0 8 § o

Minimum Sensitivity (MS)

Minimum Sensitivity (MS)

g
= . z MSI(MS,C)
4 o © ® g -
0,655 - o 3 044
00 @ <
0,65 1 o 1-p*=0.7043
0645 1] © Remaining Fronts o 0.2 4 O Remaining Fronts
@ First Front MSI(MS,A(g)i}—> [ ) ® First Front
0,64 T T T T 0 T
0 01 0,2 03 04 0,5 0,6 0,7 0,2 0,4 0,6 0,8
Minimum Sensitivity (MS) Minimum Sensitivity (MS)
Heart-Disease (Training) Heart-Disease (Testing)
0,8 1
[ ]
0,75 1 o 08 - °°
0,7 = °
o 0,6 1
= z o
& 0,65 o
- 5 00
) ° ° 3 04 1
4 (e}
0610 oo 1-p*=0.5395
0,55 O Remaining Fronts 0.2 1 O Remaining Fronts
@ First Front @ First Front
0,5 T T T T T T 0 T T
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 0,4 0,6 0,8

Fig. 4: Pareto front in trainingM S, A(g)) and (M S, C) associated values in the testing of one specific run out oBthe
runs carried out.

med and obtained with different levels of the factor. A Tukeyselected through clustering techniques, to optimize thetmo
test under normality is carried out as well as a pair-wise Jpromising individuals.

test. Table Il shows the results obtained (in first colu@in The best results folC; and MSs; are obtained with

and then forM S). If we analyze the test results fa¥, we MPDENN-L2, because the patterns of the datasets follow
can observe that the MPDENN-L2-E methodology obtain&aussian distribution. Note that in the Horse dataset, all
results that are, in mean, better than or similar to the tesullgorithms obtain 0 inM S; because it is a not balanced

of the second best methodology. In four databases there welaaset, and therefore resampling methods should be dpplie
significant differences when comparing the MPDENN-L2-EBBecause MPDENN-L2 gets the best results, we recommend
to the second best methodology#ih(in 3 of these cases, the applying confidence intervals to generate virtual parents i
p-value is 0.10 and in the other, 0.05). On the other hand, tlfferential evolution in those datasets that present Gaus
results in mean fof/ .S show that MPDENN-L2-E is the best distribution.

methodology in two databases, while in two others it is not, This study suggests several future research directions.
although there are no significant differences. MPDENN-L2First, virtual parents can be generated from confidence
MS is the best methodology in one database (in this databag®grvals that are constructed differently. This can obtai
MPDENN-L2-E shows significant differences with respect t@ood results in those databases that do not present Gaussian
other methodologies ). distribution or that have an unknown distribution of data.
Second, resampling techniques can be used to solve imba-
lanced problems. Finally, we are studying the possibility o

In this paper we study the use of two memetic algorithmgombining the ends of the first Pareto front to achieve a more
based on differential evolution. One of them uses the rapppyst classifier.

dom selection of parents (MPDENN) while the other uses

statistical information distribution about individuala the ACKNOWLEDGEMENTS

population to generate three virtual parents, who will then This work has been partially subsidized by TIN 2008-
be used to generate a new individual (MPDENN-L2). IM06681-C06-03 project of the Spanish Ministerial Commis-
these algorithms, we have proposed applying local searsfon of Science and Technology (MICYT), FEDER funds
to the most representative individuals in the populatiorand the P08-TIC-3745 project of the “Junta de And&lic
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TABLE Ill: POST HOCTUKEY TEST AND T-TEST

Dataset Means Ranking of tt@

Means Ranking of thé/ S

Breast Cancer M5 = 13 = 14 = Jis = [h

(° s > ps
. . > o > e > g >
Breast-Wisconsin éf;’;u— ‘;2; Mo = 11 = 13
5 1
. > e > > s >
Heart-Disease éffiu— /f o HL = Hs = 4
5 1
> e > g > iy >
Heart-Statlog ?OESM_ M>6 - Ha = iz = Ha
5 3
Horse M5 > e = H3 2> fla 2 [
Newthyroid — ps > p1 > g > pg > pie

> 2;
> l4;
> H2;

> 13

B4 2> po > pe > p3 2> ph1 > fis
M5 = g > e = [ = (U3 = [
K6 =[5 = [a 2= [ > [i3 2> (15

(") >
M2 = [ 2[4 2 e = 5 = 43

>y
> g

M5 > o > (41 > [le = 3 >[4

PDENN-E(1); PDENN-MS(2); MPDENN-E(3); MPDENN-MS(4); MAENN-L2-E(5); MPDENN-L2-MS(6)
(*)(°)The average difference is significant for MPDENN-L2-E withigtues= 0.05 or 0.10u 4 > pp: methodology A
yields better results than methodology B, but the diffezsrare not significantj.4 > pp: methodology A yields better
results than methodology B with significant differencese Bimary relation> is not transitive.

(Spain). The research of Manuel Cruz Hesz has been [15] C. Igel and M. Hisken, “Improving the rprop learning algorithm,”
funded by the “Junta de Andalia®, grant reference P08-
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