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Abstract— This work presents an Evolutionary Artificial Neu-
ral Network (EANN) approach based on the Pareto Differential
Evolution (PDE) algorithm where the crossover operator is
determined using a Gaussian distribution associated with the
best models in the evolutionary population. The crossover
operator used in a real-coded genetic algorithm is based on
confidence intervals. The PDE is used to localize the most
promising search regions for locating the best individuals. Con-
fidence intervals use mean localization and standard deviation
estimators that are highly recommendable when the distribution
of the random variables is Gaussian. It has always been an
issue to find good ANN architecture in both multiclassification
problems and in the field of ANNs. EANNs provide a better
method to optimize simultaneously both network performance
(based on the Correct Classification Rate,C) and the network
performance of each class (Minimum Sensitivity,MS). The
proposal with respect to methodology performance is evaluated
using a well characterized set of multiclassification benchmark
problems. The results show that crossover performance based
on confidence intervals is less dependent on the problem than
crossover performance based on a random selection of three
parents in the PDE.

I. I NTRODUCTION

As multiclass classification tasks are ubiquitous in the
real world, there is a growing interest in multiclassification
problems in the machine learning community. A classifier
design method is usually an algorithm that develops a
classifier to approximate an unknown input-output mapping
function from finitely available data, i.e., training samples.
Once this classifier has been designed, it can be used
to predict class labels that correspond to unseen samples.
Hence, the objective in developing a good classifier is to
ensure high prediction accuracy for unseen future data, i.e.,
testing capability. Many techniques have been proposed to
improve the overall testing capability of classifier designed
methods (assuming, for example, the maximization of the
correct classification rate), but very few methods maintain
this capacity in all classes (assuming, for example, maxi-
mization of the correct classification of each class). This
second objective is very important in some research areas
(such as medicine, remote sensing, economy, etc.) to ensure
the benefits of one classifier over another. Thus, in this paper
we have proposed the simultaneous optimization of the two
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conflicting objectives in multiclass problems. The solution
for these “multi-objective” problems is different from that
of a single-objective optimization. The main difference is
that multi-objective optimization problems normally have not
one but a set of solutions which are all equally good. The
different classification methods found in the literature [1],
include a very important tool used in the last few years,
Artificial Neural Networks (ANNs) [2].

The training of Artificial Neural Networks by Evolutio-
nary Pareto-based algorithms [3] is known as Multiobjective
Evolutionary Artificial Neural Networks (MOEANNs), and
has been used to solve classification tasks [4], some of its
main exponents being H. Abbass [5] and Y. Jin [3].

Differential Evolution (DE) [6], an evolutionary optimiza-
tion method for continuous search spaces, has been used by
Ilonen [7] to train the weights of feed-forward neural net-
works. Other authors, like Bhuiyan [8], use DE to optimize
the architecture for Artificial Neural Networks.

This paper presents a new perspective on the Memetic
Pareto Differential Evolution (MPDE) algorithm because
the selection of three parents in the crossover operator is
guided by statistical distributions using Gaussian distribution.
This Multiobjective Evolutionary Algorithm (MOEA) [9] is
based on Differential Evolution and on the Pareto domi-
nance concept for solving multiclass classification problems.
MPDE is improved with a local search algorithm, concretely
improved Resilient Backpropagation (iRprop+) [10]. The
methodology proposed is tested throughout six datasets taken
from the UCI repository [11], specifically Breast-Cancer,
Breast-Wisconsin, Heart-Disease, Heart-Statlog, Horse and
Newthyroid.

The rest of the paper is organized as follows. Section 2
shows an explanation of Accuracy and Sensitivity. Section
3 describes the algorithms presented, followed by the ex-
perimental design in Section 4. Section 5 shows the results
obtained while conclusions and future research are outlined
in Section 6.

II. RELATED WORK

A. Accuracy and Minimum Sensitivity

In this section we present two measures to evaluate a
classifier: the Correct Classification Rate or Accuracy,C,
and Minimum Sensitivity,MS. To evaluate a classifier, the
machine learning community has traditionally usedC to
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measure its default performance. Actually, we simply have
to realize thatC cannot capture all the different behavioral
aspects found in two different classifiers in multiclassification
problems. For these problems, two performance measures are
considered; traditionally-usedC andMS in all classes, that
is, the lowest percentage of examples correctly predicted as
belonging to each class,Si, with respect to the total number
of examples in the corresponding class,MS = min{Si}.
The pair made up of Minimum Sensitivity versus Accuracy
(MS,C) expresses two features associated with a classifier:
global performance(C) and the rate of the worst classified
class (MS). The selection ofMS as a complementary
measure ofC can be justified by considering thatC is the
weighted average of the Sensitivities of each class. For a
more detailed description of these measures, see [12].

One point in (MS,C) spacedominatesanother if it is
above and to the right, i.e. it has greaterC and the best
MS. Let C andMS be associated with a classifierg, then
MS ≤ C ≤ 1− (1−MS)p∗, wherep∗ is the minimum for
estimated prior probabilities. Therefore, each classifierwill
be represented as a point in the white region in Figure 1,
hence the area outside of the triangle is marked as unfeasible.

Fig. 1: Unfeasible region in two dimensional(MS,C) space.

The area inside the triangle in Figure 1 may be feasible
or not (attainable), depending upon the classifier and the
difficulty of the problem.A priori, we could think thatMS
and C objectives could be positively correlated, but while
this may be true for small values ofMS and C, it is not
for values close to 1 in eitherMS or C. Thus competitive
objectives are at the top right corner of the white region. This
fact justifies the use of a MOEA.

III. L EARNING METHODOLOGY

The beginning of this section describes the neural networks
and the Fitness Functions employed. The proposed algo-
rithms are shown and the section concludes with a description
of the local search algorithm used.

A. Base Classifier

For multi-classification problems, we consider standard
feed forward Multilayer Perceptron (MLP) neural networks
with one input layer with independent variables or features,
one hidden layer with sigmoidal hidden nodes and one output
node.

Let a coded “1-of-J” outcome variabley, (that is the
outcomes have the formy = (y(1), y(2), ..., y(J)), where
y(j) = 1 if the pattern belongs to classj, and y(j) =
0, in other cases); and a vectorx = (1, x1, x2, ..., xK)
of input variables, whereK is the number of input (we
assume that the vector of inputs includes the constant term
to accommodate the intercept or bias).

Then, the output layer is interpreted from the point of
view of probability which considers the softmax activation
function. The activation function of thej-th node in the
hidden layer is given by:

gl(x,θl) =
exp fl(x,θl)

1 + exp fl(x,θl)
, for l = 1, ..., J

wheregl(x,θl) is the probability a patternx has of belonging
to classl, θl = (βl

0, ..., β
l
M ,w1, ...,wM ) is the vector of

weights of the output node,M is the number of hidden nodes,
wj = {wj

0, ..., w
j
K}, for j = 1, ...,M , is the vector of input

weights of the hidden nodej, andfl(x,θl) is the output of
the output node for patternx given by:

fl(x,θl) = βl
0 +

M∑
j=1

βl
jσ

(
wj

0 +
K∑

i=1

wj
i xi

)
, for l = 1, ..., J

whereσ(·) is the sigmoidal activation function.
In order to tackle this classification problem, the outputs

of the model have been interpreted from the point of view of
probability through the use of the softmax activation function
[13], which is given by:

pl(x,θl) =
exp fl(x,θl)∑J

j=1 exp fj(x,θj)
, for l = 1, ..., J (1)

where fj(x,θl) is the output of thej output neuron for
patternx andpl(x,θl) is the probability that patternx has
of belonging to classj.

Using the softmax activation function presented in expres-
sion 1, the class predicted by the MLP corresponds to the
node in the output layer whose output value is the greatest.
In this way, the optimum classification ruleC(x) is the
following:

C(x) = l̂, where l̂ = argmaxl pl(x,θl), for l = 1, ..., J

The best MLP is determined by means of a MOEA
(detailed in Section III-C) that optimizes the error function
given by the negative log-likelihood forN observations
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associated with the MLP model:

L∗(θ) =
1
N

N∑
n=1

[
−

J−1∑
l=1

y(l)
n fl(xn,θl)+ (2)

+ log
J−1∑
l=1

exp fl(xn,θl)

]

where y
(l)
n is equal to1 if pattern xn belongs to thel-th

class and equal to0 otherwise. From a statistical point of
view, this approach can be seen as nonlinear multinominal
logistic regression, where we optimize log-likelihood using
a MOEA.

B. Fitness Functions

When there is an available training datasetD =
{(xn,yn);n = 1, 2, ..., N}, wherexn = (x1n

, ..., xKn
) is

the random vector of measurements taking values inΩ ⊂
RK , and yn is the class level of then-th individual, we
define the Correctly Classified Rate (C) or Accuracy by:

C = (1/N)
N∑

n=1

(I(C(xn) = yn))

where I(·) is the zero-one loss function,yn is the desired
output for patternn and N is the total number of patterns
in the dataset. A good classifier tries to achieve the highest
possibleC in a given problem. However, theC measure
is a discontinuous function, which makes convergence more
difficult in neural network optimization.

Thus, instead ofC, we consider the continuous function
given in expression 2, also called Entropy (E). The advantage
of using the error functionE(g,θ) instead ofC is that this
is a continuous function, which makes the convergence more
robust.

As a first objective, we propose a strictly decreasing
transformation of theE(g,θ) as the fitness measure to
maximize:

A(g) =
1

1 + E(g,θl)
, 0 < A(g) ≤ 1

where g is the multivaluated function:

g(x,θ) = (g1(x,θ1), ..., gJ (x,θJ))

The second objective to maximize is theMS of the
classifier. That is, maximizing the lowest percentage of
examples correctly predicted as belonging to each class with
respect to the total number of examples in the corresponding
class.

C. Memetic Pareto Algorithm

We construct two MOEAs with a local search algorithm.
They are called the Memetic Pareto Differential Evolutionary
Neural Network (MPDENN) and the Memetic Pareto Diffe-
rential Evolutionary Neural Network using Confidence Inter-
vals with L2 Norm (MPDENN-L2), which tries to move the
classifier population towards the optimum classifier located
at the(1, 1) point in (MS,C) space. The MOEAs proposed

are based on the PDE [14] and the local search algorithm is
the Improved Resilient Backpropagation–iRprop+ [15].

The MOEAs used in this study consider a fully specified
ANN to be an individual which evolves architectures and
connection weights simultaneously. The ANNs are repre-
sented using an object-oriented approach and the algorithm
deals directly with the ANN phenotype. Each connection
is specified by a binary value, which indicates whether the
connection exists, and a real value representing its weight.

The MPDENN is based on the algorithm described in [16].
In MPDENN, local search does not apply to all the children
to be added to the population. Instead, the most representative
children in the population are optimized throughout several
generations. The pseudocode of MPDENN is shown in
Figure 2.

1: Create a random initial populationP0

2: while Stop condition is not metdo
3: Evaluate population
4: Adjust the size of the population
5: while The population is not completedo
6: Select parents
7: Cross parents
8: Mutate the child
9: Evaluate the child

10: Add the child to the population according to domi-
nance relationships with the main parent

11: end while
12: if Local search in this generationthen
13: if Number of individuals of the first Pareto front of

Pk < num then
14: Apply iRprop+ to the individuals in the first

Pareto front
15: else
16: Generatenum cluster in the first Pareto front

using K-means
17: Apply iRprop+ to thenum centers
18: end if
19: end if
20: end while

Fig. 2: MPDENN algorithm pseudocode.

The algorithm starts generating a random populationP0

of size M . The population is sorted according to the non-
domination concept explained in Section II-A. Dominated
individuals are removed from the population. Then the po-
pulation is adjusted until its size is between 3 and half the
maximum size by adding dominated individuals or deleting
individuals according to their respective distance from their
nearest neighbor. After that, the population is completed with
new children generated from three randomly selected indivi-
duals in the population. The child is generated by crossing
the three parents. The resultant child is a perturbation of
the main parent. This perturbation occurs with a probability
of Pc for each neuron. This perturbation may be structural,
according to expression (3), so that neurons are removed
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or added to the hidden layer; or parametric, according to
expression (4) (for the hidden layer) or (5) (for the output
layer), where the weights of the primary parent are modified
with the difference of the weights of the secondary parents.

ρchild
h ←

{
1 if (ρα1

h + N (0, 1) (ρα2
h − ρα3

h )) ≥ 0.5
0 otherwise

(3)

wchild
ih ← wα1

ih + N (0, 1) (wα2
ih − wα3

ih ) (4)

wchild
ho ← wα1

ho + N (0, 1) (wα2
ho − wα3

ho ) (5)

Afterwards, the mutation operator is applied to the child.
The mutation operator consists of adding or deleting neurons
in the hidden layer depending on aPm probability for each
of them. Taking into account the maximum number of hidden
neurons that may exist in an individual in a specific problem,
the probability will be used the same number of times as the
number of neurons that are found in the classifier. If the
neuron exists, it is deleted, but if it does not exist, then itis
created and the weights are established randomly, according
to expression (6).

ρchild
h ←

{
1 ifρchild

h = 0
0 otherwise

(6)

Finally, the child is added to the population according
to dominance relationships with the main parent. In some
generations, depending on the size of the first Pareto front,
local search is applied to all the individuals in the first
Pareto front or the most representative individuals in this
front (obtained by the K-means algorithm [17]).

On the other hand, the MPDENN-L2 is based on the
MPDENN algorithm and in MPDENN, parents are randomly
selected from among individuals in the population while
MPDENN-L2 uses virtual parents generated from confidence
intervals. These confidence intervals are generated using the
L2 norm. The rest of the algorithm works like MPDENN.
The pseudocode of MPDENN-L2 is shown in Figure 3.

To generate virtual parents, it is necessary to calculate
the mean and standard deviation of each of the weights of
individuals in the population. Then, for each of the weights,
the limits of the interval must be calculated according to
expression (7).

limiti ← tn−1,α
Si√
n

(7)

where n is the number of individuals in the population
andtn−1,α is the value of Student’st distribution withn−1
degrees of freedom and1− α as the confidence coefficient.

With the average value of each weight and its limits, an
interval is formed according to expression (8).

CIi =
[
µ̂i − tn−1,α

Si√
n

; µ̂i + tn−1,α
Si√
n

]
(8)

1: Create a random initial populationP0

2: while Stop condition is not metdo
3: Evaluate population
4: Adjust the size of the population
5: while The population is not completedo
6: Generate virtual parents:
7: Calculate the average of each of the weights of

individuals belonging toPk

8: CIM ← individual generated from the averages
9: Calculate the standard deviation of each of the

weights of individuals belonging toPk

10: Calculate the width of the confidence interval of
each of the weights

limiti ← tn−1,α
Si√
n

11: CILLi ← CIMi − limiti
12: CIULi ← CIMi + limiti
13: Set CIM as main parent andCILL and CIUL as

secondary parents
14: Cross parents
15: Mutate the child
16: Evaluate the child
17: Add the child in the population according to domi-

nance relationships with the main parent
18: end while
19: if Local search in this generationthen
20: Apply local search
21: end if
22: end while

Fig. 3: MPDENN-L2 algorithm pseudocode.

From the confidence interval of expression (8), the three
individuals built are considered to be the parents in the
crossover. These three parents are formed by: all the lower
limit values of the confidence intervals of the chromosome
gene individual, CILLi = µ̂i− tn−1,α

Si√
n

; all the upper limit
values of the confidence intervals of the chromosome gene
individual, CIULi = µ̂i + tn−1,α

Si√
n

; and all the means of
the confidence intervals of the chromosome gene individual,
CIMi = µ̂i. These parents have statistical information on the
localization features and dispersion of the best individuals in
the population, that is, the genetic information that the fittest
individuals share.

D. Local Search Algorithm

The Evolutionary Algorithms, EAs, are improved by the
incorporation of local search procedures throughout their
evolution. Some studies that were carried out on the con-
vergence process of a genetic algorithm in a concrete opti-
mization problem, show that although the genetic algorithm
quickly finds good solutions to the problem, it needs many
generations to reach the optimum solution and it has great
difficulties in finding the best solution when it is in a region
near a global optimum. It is well-known that certain local
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TABLE I: CHARACTERISTICS FORDATASETS

Dataset #Patterns #Training #Test #Input #Classes #Patterns p∗

patterns patterns variables per class
Breast-Cancer 286 215 71 15 2 (201,85) 0.2957

Breast-Wisconsin 699 524 175 9 2 (458,241) 0.3428
Heart-Disease 302 226 76 26 2 (164,138) 0.4605
Heart-Statlog 270 202 68 13 2 (150,120) 0.4411

Horse 364 273 91 58 3 (224,88,52) 0.1428
Newthyroid 215 161 54 5 3 (150,35,30) 0.1296

procedures are able to find the local optimum when the
search is carried out in a small region of the space. Therefore,
in the combination of EA and local procedures, EA was
going to carry out a global search inside the solution space,
locating ANNs near the global optimum, and the local proce-
dure would quickly and efficiently find the best solution. This
type of algorithm receives the name of Memetic or Hybrid
Algorithm [18].

Many MOEAs use local optimizers to fine tune ANN
weights. This is called “lifetime learning” and it consistsof
updating each individual with respect to approximation error.
In addition, the weights modified during lifetime learning are
encoded back to the chromosome, which is known as the
Lamarckian type of inheritance. This procedure has a high
computational cost, something that we wanted to avoid. For
this reason we propose the following:

The local search algorithm is only applied in three genera-
tions of evolution (the first to start, the second in the middle
and the third at the end) once the population is completed.
Thus, local search is not applied to those children who are
rejected. Local search does not apply to all individuals, only
to the most representative. The process for selecting these
individuals is as follows: if the number of individuals in
the first Pareto front is lower than or equal to the desired
number of clusters (num), a local search is carried out
without needing to apply K-means [17]. But, if the number of
individuals in the first front is greater thannum, the K-means
is applied to the first front to get the most representativenum
individuals, who will then be the object of a local search.

This local search will improve the Pareto front obtained
with respect to only one objective, specifically that which
seeks to minimize classification error.

As far as we are concerned,Rprop (resilient Backpro-
pagation) algorithm [10] is used because it is one of the
best techniques in terms of convergence speed, accuracy and
robustness.

IV. EXPERIMENTS

Six datasets taken from the UCI repository are considered
for the experimental design. This design was conducted
using a stratified holdout procedure with 30 runs, where
approximately 75% of the patterns were randomly selected
for the training set and the remaining 25% for the test set.

In all the experiments, the population size is established at
M = 25. The crossover probability is0.8 and the mutation
probability is0.1. For iRprop+, the parameters adopted are
η+ = 1.2, η− = 0.5, ∆0 = 0.0125 (the initial value of the
∆ij), ∆min = 0, ∆max = 50 andEpochs = 5, see [10] for
iRprop+ parameter description. The optimization process is
applied 3 times during execution (every33.33% generations)
and usesnum = 5 cluster in the clustering algorithm. For
confidence intervals, alpha takes values in the range[0.9, 1].
To start processing data, each one of the input variables was
scaled in the ranks[−1.0, 1.0] to avoid the saturation of the
signal.

In Table I we can see the features for each dataset. The
total number of instances or patterns in each dataset appear,
as well as the number of instances in training and testing sets,
the number of input variables, the total number of instances
per class and thep∗ value (the minimum of prior estimated
probabilities).

During the experiment, models are trained using the fitness
function A(g) (based onE, see Section III-B) andMS
as objective functions, but when validated, we useC and
MS. A(g) is used instead ofC in training becauseC is
a discontinuous function, which makes convergence more
difficult in optimization.

Once the Pareto front is built, two methodologies are con-
sidered in order to build a neural network model which then
includes the information about the models within it. These
are called MethodName-E and MethodName-MS. These
methodologies provide single models that can be compared
to other classification methods found in the literature. The
process followed in these methodologies is the following:
once the first Pareto front is calculated using training set
patterns, the best individual belonging to the Pareto fronton
E (EI) is chosen for MethodName-E, and the best individual
in terms of MS (MSI) is selected for MethodName-MS.
Once this is done, the values ofC andMS are obtained by
testing theEI and MSI individual models. Therefore we
obtain an individualEIG = (CG,MSG) and an individual
MSIG = (CG,MSG). This is repeated 30 times and then
estimations are carried out of the average and standard devia-
tion obtained from the individualsEIG = (CG,MSG) and
MSIG = (CG,MSG). The first expression is the average
obtained takingE into account as the primary objective,
and the second one is obtained by takingMS into account
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TABLE II: STATISTICAL RESULTS FORPDENN, MPDENNAND MPDENN-L2 IN TESTING

Methodology Dataset
CG(%) SG(%)

Dataset
CG(%) SG(%)

Mean±SD Mean±SD Mean±SD Mean±SD
PDENN-E Breast Cancer 66.66±3.16 38.09±12.62 Breast-Wisconsin 95.15±1.11 89.61±3.08

PDENN-MS 63.66±3.59 56.32±7.49 95.12±1.04 90.00±2.55
MPDENN-E 67.98±3.05 41.27±13.07 95.22±1.06 89.89±3.24

MPDENN-MS 63.99±3.80 58.77±6.23 95.20±0.99 90.17±2.71
MPDENN-L2-E 69.34±3.36 30.16±12.90 95.68±1.00 90.17±2.60

MPDENN-L2-MS 63.43±4.61 52.35±9.18 95.30±0.92 90.06±2.34
PDENN-E Heart-Disease 83.64±2.01 78.80±3.41 Heart-Statlog 76.07±1.38 63.77±2.99

PDENN-MS 82.41±2.67 78.60±3.94 76.47±1.89 65.88±3.68
MPDENN-E 83.55±2.46 77.32±4.54 77.25±1.00 61.56±1.59

MPDENN-MS 83.33±2.38 79.21±4.45 76.37±1.59 62.89±2.43
MPDENN-L2-E 85.31±2.83 80.78±3.70 77.89±1.47 62.12±4.24

MPDENN-L2-MS 85.31±2.83 80.78±3.70 77.65±1.52 62.44±4.10
PDENN-E Horse 57.95±10.00 0.00±0.00 Newthyroid 97.28±1.99 83.91±11.72

PDENN-MS 57.95±10.00 0.00±0.00 96.91±2.44 84.23±11.20
MPDENN-E 60.66±5.25 0.00±0.00 96.73±2.21 82.91±10.51

MPDENN-MS 60.66±5.25 0.00±0.00 96.60±2.12 82.45±10.35
MPDENN-L2-E 65.31±3.05 0.00±0.00 97.90±1.99 85.56±11.70

MPDENN-L2-MS 65.31±3.05 0.00±0.00 96.73±2.74 83.60±12.46

as the primary objective. So, the opposite extremes of the
Pareto front are taken in each of the executions. Hence,
the first procedure is called MethodName-E and the second
MethodName-MS.

V. RESULTS

Table II presents the values of the mean and standard
deviation forC andMS in 30 runs for all the experiments
performed. It can be seen that the MPDENN-L2 algorithm
produces good results with respect toC and MS. In fact,
from a descriptive point of view, the MPDENN-L2-E algo-
rithm obtains the best result inCG in all the datasets and the
best result inMSG in three datasets.

In the Heart-Disease and Horse datasets, some algorithms
get the same results with both methodologies. This is because
the first Pareto front, in the 30 executions, is formed by a
single individual.

In Figure 4, we can see the graphic results obtained
by the MPDENN-L2 algorithm for the Breast-Cancer and
Heart-Disease datasets in the training(MS,A(g)) and test
(MS,C) spaces. For the(MS,A(g)) space, the Pareto
front is selected for one specific run output of the 30 done
for each dataset, concretely the execution that presents the
bestE individual in training, whereA(g) and MS are the
objectives that guide MPDENN-L2. The(MS,C) testing
graphs showMS andC values throughout the testing set for
the individuals who are reflected in the(MS,A(g)) training
graphs. Observe that the(MS,C) values do not form Pareto
fronts in testing, and the individuals that had been in the first
Pareto front in the training graphics may now find themselves
located in a worse region in the space. In general the structure
of a Pareto front in training is not maintained in testing.

Sometimes it is very difficult to obtain classifiers with a
high percentage of classification and a high percentage of
sensitivity, and for this reason some fronts have very few
individuals.

We can see that an increase inA(g) in Breast-Cancer
causes a decrease inMS in training, and that an increase
in C causes a decrease inMS for testing. The result is a
Pareto front that is quite dispersed and has a fair number of
models. However, for the Heart-Disease dataset, we observe
a Pareto front with a single individual. This is because during
the evolutionary process, there was no individual who was
not dominated by the individual of the Pareto front.

In the graph of Breast-Cancer in training, we have identi-
fied the two ends of the first Pareto front. The testing graph
shows the position of these models in space(MS,C).

The ANalysis Of the VAriance of one factor (ANOVA
I) statistical method or the non parametric Kruskal-Wallis,
(K-W) test were used to determine the best methodology
for training MLP neural networks (with respect to their
influence onC and MS in the test dataset), depending on
the satisfaction of the normality hypothesis ofC and MS
values. The results of the ANOVA analysis for testC values
show that for the six datasets, the effect of the six training
methodologies is statistically significant at a 5% level of
significance. The results of the ANOVA or KW analysis
for C and MS show that for the six datasets, the effect
of the methodologies is statistically significant at a 5% level
of significance.

Because there exists a significant difference in mean forC
andMS using the Snedecor’s F or the K-W test; we perform,
in the first case, under the normality hypothesis, a post hoc
multiple comparison test of the meanC andMS is perfor-
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Fig. 4: Pareto front in training(MS,A(g)) and (MS,C) associated values in the testing of one specific run out of the30
runs carried out.

med and obtained with different levels of the factor. A Tukey
test under normality is carried out as well as a pair-wise T-
test. Table III shows the results obtained (in first columnC
and then forMS). If we analyze the test results forC, we
can observe that the MPDENN-L2-E methodology obtains
results that are, in mean, better than or similar to the results
of the second best methodology. In four databases there were
significant differences when comparing the MPDENN-L2-E
to the second best methodology inE (in 3 of these cases, the
p-value is 0.10 and in the other, 0.05). On the other hand, the
results in mean forMS show that MPDENN-L2-E is the best
methodology in two databases, while in two others it is not,
although there are no significant differences. MPDENN-L2-
MS is the best methodology in one database (in this database,
MPDENN-L2-E shows significant differences with respect to
other methodologies inE).

VI. CONCLUSIONS

In this paper we study the use of two memetic algorithms
based on differential evolution. One of them uses the ran-
dom selection of parents (MPDENN) while the other uses
statistical information distribution about individuals in the
population to generate three virtual parents, who will then
be used to generate a new individual (MPDENN-L2). In
these algorithms, we have proposed applying local search
to the most representative individuals in the population,

selected through clustering techniques, to optimize the most
promising individuals.

The best results forCG and MSG are obtained with
MPDENN-L2, because the patterns of the datasets follow
Gaussian distribution. Note that in the Horse dataset, all
algorithms obtain 0 inMSG because it is a not balanced
dataset, and therefore resampling methods should be applied.
Because MPDENN-L2 gets the best results, we recommend
applying confidence intervals to generate virtual parents in
differential evolution in those datasets that present Gaussian
distribution.

This study suggests several future research directions.
First, virtual parents can be generated from confidence
intervals that are constructed differently. This can obtain
good results in those databases that do not present Gaussian
distribution or that have an unknown distribution of data.
Second, resampling techniques can be used to solve imba-
lanced problems. Finally, we are studying the possibility of
combining the ends of the first Pareto front to achieve a more
robust classifier.
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TABLE III: P OST HOCTUKEY TEST AND T-TEST

Dataset Means Ranking of theC Means Ranking of theMS

Breast Cancer
µ5 ≥ µ3 ≥ µ4 ≥ µ6 ≥ µ1 ≥ µ2; µ4 ≥ µ2 ≥ µ6 > µ3 ≥ µ1 > µ5

(◦)µ5 > µ3

Breast-Wisconsin
µ5 ≥ µ2 ≥ µ6 ≥ µ1 ≥ µ3 ≥ µ4; µ5 ≥ µ4 ≥ µ6 ≥ µ2 ≥ µ3 ≥ µ1

(◦)µ5 > µ1

Heart-Disease
µ5 ≥ µ6 ≥ µ1 ≥ µ3 ≥ µ4 ≥ µ2; µ6 ≥ µ5 ≥ µ4 ≥ µ2 > µ3 ≥ µ1;
(∗)µ5 > µ1 (∗)µ5 > µ1

Heart-Statlog
µ5 ≥ µ6 ≥ µ3 ≥ µ2 ≥ µ4 ≥ µ1; µ2 ≥ µ1 ≥ µ4 ≥ µ6 ≥ µ5 ≥ µ3

(◦)µ5 > µ3

Horse µ5 ≥ µ6 ≥ µ3 ≥ µ4 ≥ µ1 ≥ µ2 – – –
Newthyroid µ5 ≥ µ1 ≥ µ2 ≥ µ3 ≥ µ6 ≥ µ4 µ5 ≥ µ2 ≥ µ1 ≥ µ6 ≥ µ3 ≥ µ4

PDENN-E(1); PDENN-MS(2); MPDENN-E(3); MPDENN-MS(4); MPDENN-L2-E(5); MPDENN-L2-MS(6)
(∗)(◦)The average difference is significant for MPDENN-L2-E with p-values= 0.05 or 0.10.µA ≥ µB : methodology A

yields better results than methodology B, but the differences are not significant;µA > µB : methodology A yields better
results than methodology B with significant differences. The binary relation≥ is not transitive.
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