
 

 

 

 

Abstract— In this paper we propose a multi-objective 

evolutionary algorithm with a mechanism to improve the 

interpretability in the sense of complexity for Linguistic Fuzzy 

Rule based Systems with adaptive defuzzification.  The use of 

parameters in the defuzzification operator introduces a series of 

values or associated weights to each rule, which improves the 

accuracy but increases the system complexity and therefore has 

an effect on the system interpretability.  To this end, we use 

maximizing the accuracy as an usual objective for the 

evolutionary process, and we define objectives related with 

interpretability, using three metrics: minimizing the classical 

number of rules, the number of rules with weights associated 

and the average number of rules triggered by each example.  

The proposed method was compared in an experimental study 

with a single objective accuracy-guided algorithm in two real 

problems showing that many solutions in the Pareto front 

dominate those obtained by the single objective-based one.  

I. INTRODUCTION 

t present, the problem of finding a balance between 

interpretability and accuracy in Linguistic Fuzzy Rule-

Based Systems (FRBS) has led to increased interest in 

methods that take into account both aspects [1] , [2].  Of 

course, the ideal would meet both criteria to a great extent, 

but because they are contradictory characteristics, this is not 

usually possible.  One way to achieve it is to improve the 

accuracy of the system while maintaining the interpretability 

as far as possible to an acceptable level [2]. 

In this context, the adaptive inference system and adaptive 

defuzzification methods have proven to be two important 

elements that could easily improve the accuracy of the 

system [3]- [5].  This is because they look for the best way to 

infer and defuzzify the contribution of each rule [4] and 

promote the cooperation between the rules [3].  These can 

also specially adapt the behaviour of fuzzy operators to the 

Rule Base (RB) or learning the fuzzy operators and RB 

together [5], obtaining a positive synergy between the two 

elements that allows the system to achieve a high level of 

accuracy with a minor loss of interpretability.  

For this model, in order to take into account the 

interpretability issues it is necessary to use a measure to 
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quantify the interpretability of the FRBS with adaptive 

defuzzification method.  This kind of measure could be used 

as an additional objective to optimize the interpretability of 

the adaptive parameters when the learning process is carried 

out.  In the literature, many authors work on the difficult 

trade-off between accuracy and interpretability of FRBSs, 

obtaining linguistic models not only accurate but also 

interpretable.  We may distinguish two kinds of approaches 

to manage the interpretability [6, 7]: 

1. Global Interpretability (system structure): The 

complexity of the model (usually measured as number of 

rules, variables, labels per variable, etc.).  

2. Local Interpretability (understanding of the model): A 

measure of semantic interpretation (inference system used, 

defuzzification method, conjunction operator, fuzzy 

partitions, etc.) 

Therefore, the adaptive defuzzification methods [4] 

introduce a loss of interpretability in principle in the local 

sense, with implications for overall meaning, while the 

parameters associated with each rule increase the complexity 

of the system structure with the inclusion of weights.  It is 

therefore desirable to minimize the elements that increase the 

system complexity. 

In this work, we focus our attention on measuring the 

interpretability of the FRBS with adaptive defuzzification.  

We propose, first, a mechanism to improve the 

interpretability in these systems.  This mechanism is based 

on two indexes needed to eliminate the weight of the rule 

and remove some rules in the same evolutionary learning 

process of adaptive defuzzification.  Another index proposed 

in this paper, based on the average number of rules that are 

triggered by each example, will also improve the 

interpretability [8]. 

Secondly, we propose to use a Multi-objective Genetic 

Algorithm (MOEA) [9, 10] in order to obtain a set of  

accurate and interpretable linguistic fuzzy models using the 

adaptive defuzzification with three objectives (maximize 

accuracy (minimize error) and minimize the two 

interpretability indices discussed above).  In this way, we 

obtain a set of solutions with a different balance between 

accuracy and interpretability [11]-[14].  

To show the good performance of the proposed method, it 

is compared with a single objective accuracy-guided 

adaptive defuzzification algorithm [14] by applying both of 

them to initial linguistics models obtained from automatic 
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learning methods. Two real world problems with different 

complexities were considered, showing that the solutions of 

the accuracy based algorithm are dominated by those 

obtained by our model.  It can be seen that both objectives 

required are certainly contradictory as the obtained Pareto 

fronts clearly moves from the most accurate solutions to the 

most interpretable ones. 

The paper is structured as follows: Section 2 describes the 

adaptive Defuzzification used, its components and effects.  

Section 3 presents the foundations of mechanism and index 

to improve the interpretability with adaptive defuzzification 

methods.  Section 4 presents the multi-objective model, 

describing the main characteristics and genetic operators 

considered.  Section 5 is devoted to an experimental study 

that used the techniques described above in two real 

problems, to finally present the conclusions of the study 

developed. 

II. ADAPTIVE DEFUZZIFICATION METHODS 

There are various tendencies in the development of 

adaptive defuzzification methods reported in the literature.  

These employ one or more parameters in their expression to 

modify the behaviour of the defuzzifier or, in most cases, to 

achieve higher accuracy. 

Following the studies developed in [4], and because of its 

easy implementation and good performance, in the present 

work we considered using a method based on Adaptive 

Defuzzification (1):  
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(1) 

where hi is the matching degree between the input variables 

and the rule antecedent fuzzy sets, f(hi) is a functional of 

matching degree and Vi represents a characteristic value of 

the fuzzy set inferred from rule Ri , the Maximum Value 

(MVi) or the Centre of Gravity (CG).  As shown, it is an 

expression of defuzzification method acting in Mode B, i.e. 

the first defuzzifier individual contribution of each rule is 

inferred and then the final result is computed, namely by a 

weighted sum. 

Specifically, we considered the use of a functional term 

product 
iii

h)h(f  where αi corresponds to a parameter 

for each rule Ri, i = 1 to N, as well as the Centre of Gravity 

(CG) as characteristic value, due to its computational 

efficiency and similar results in other types of functions [4].  

The expression of the Adaptive Defuzzification method is 

shown in (2) 
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(2) 

The role of the individual parameter is interpreted as a 

modulation of the matching influence, which can be 

improved or attenuated.  We should note that this modulation 

is only linear for the product case.  Particularly, the study of 

the effect of  zone is as follows  

o i  hi ,  [1,):empowerment of hi ,   (3) 

o i  hi ,  [0,1]: penalty of hi . 

 

The product functional term with a different parameter for 

each rule has the effect of weighted rules [15].  The i value 

associated with rule Ri acquires the meaning of how 

significant or important that rule is for the inference process.  

An improved accuracy is the system modelling goal when 

using this kind of rule.  The following is an example of a set 

of weighted rules, where the weights are i : 

 

 

R1 : If X11 is A11 and …. and X1m is A1m then Y is B1 with α1 

R2 : If X21 is A21 and …. and X2m  is A2m then Y is B2 with α2 

... 

Rn : If Xn1 is An1 and …. and Xnm   is Anm then Y is Bn with αn 

 

 

The rule weight adaptation process will produce a rule 

subset with better cooperation among the rules composing it 

[16].  This fact has shown to be of special interest when the 

rule set has been generated using a quick data-driven fuzzy 

rule generation method.  These methods usually look for the 

best individual rule performance, and generate a linguistic 

RB with a low cooperation degree.  Using the product 

functional and a parameter learning process will be 

equivalent to looking for a subset of rules with the best 

global cooperation. 

Overall, the influence of rule weights on the 

interpretability of fuzzy systems is usually discussed.  Some 

authors consider they can be equivalently replaced by 

modifications in the membership functions in order to avoid 

negative effects on the interpretability [16], while others 

claim the importance of weights as a degree of certainty and 

their importance in some problems [17], [18].  The product 

functional term with a different parameter for each rule has 

the effect of weighted rules.  This value associated with the 

rule indicates the importance of that rule for the inference 

process. 

III. MECHANISM FOR INTERPRETABILITY IMPROVEMENT IN 

LINGUISTIC FUZZY SYSTEMS WITH ADAPTIVE DEFUZZIFICATION 

METHODS 

In this section, we propose a mechanism to improve the 

interpretability and several metrics to measure it when an 

adaptive defuzzification method with a product functional 

term is used in a linguistic fuzzy system.  



 

 

 

As stated in the previous section, the use of adaptive 

defuzzification methods with functional product type has an 

effect equivalent to the use of rules with weights [15].  These 

weights in the rules have a negative effect on interpretability 

[6, 7] and extend the system structure complexity.  For this 

reason, in order to reduce this negative effect, the mechanism 

and the metrics used should take these weights into account.  

At this point, we should remark that the mechanism and 

metrics are based on the influence of weights in the rules. 

 

A. Mechanism to improve the interpretability 

 

The mechanism to be described is based on two concepts: 

 

1. First, those rules with weights close to 0 represent a low 

influence of that rule and therefore could indicate a 

dispensable rule, continuing the evolutionary learning from 

the rest of the system without it.  Deleting a rule in the 

learning phase allows the evolutionary model to adjust the 

remaining weights to ignore that rule.  Results obtained 

working in this way are different than those obtained by 

eliminating the rules with low weight after the evolutionary 

process, because lower weights are also important for the 

systems accuracy. 

2. Secondly, the weight values close to 1 are those in 

which the rule is important and we consider that they could 

be used without any weight, and so remove this value in 

order to reduce the complexity of the system.  The greater 

the number of rules without a weight, the better the system 

interpretability. 

To apply these concepts, the parameters of adaptive 

defuzzification method used will perform in the range [0,1] 

(see expression 2 and 3). 

On the other hand, we establish two thresholds U0, U1 that 

define when rules are removed or act without weight, 

respectively (see Figure 1). 

 

 

 

 

 
 

 

 

 

Fig. 1.  Range of parameters for adaptive defuzzification and thresholds for 

mechanism for improvement. 

 

B. Metrics proposed 

As a result of improved mechanisms described earlier, we 

propose the following three metrics: 

 

- Number of final rules (#RF)) 

 

 This metric is based on the first idea: those rule weights 

close to 0 (between U0 and 0) represent a low influence of 

that rule and therefore could indicate a dispensable rule, 

continuing the evolutionary process learning the rest of the 

system without it.  

The expression of this index is: 

  

# RF = # R - (number of rule weights close to 0)     (4) 

  

where # R is the number of initial rules of the system. 

  

- Number of rules with weight (#RW)) 

 

 This metric however, is based on the second idea: weight 

values close to 1 (between U1 and 1) are those in which the 

rule is important and could be used without any weight, and 

so remove this value, thus reducing the system complexity. 

The expression of this index is:  

 

# RW = # R - (number of rule weights close to 1)      (5) 

  

- Average number of rules triggered by each example 

(MRTG) 

 

The reduction in the number of final rules and the number 

of rules with weight improves the interpretability of the 

system.  However, the interpretability of the system depends 

on the number of rules triggered at the same time, i.e., a 

maximum of seven rules is lesser interpretable than four.  So 

we define a new index that will measure the average number 

of rules triggered by each example. 

The expression of this index is: 
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where M is the number of examples and # R
j
TG is the number 

of rules triggered by the example j.  

 

C. A global Interpretability index based on the aggregation 

of two metrics 

In the present work, we propose an aggregation of two of 

the metrics (#RW and MRTG) in a global index based on the 

arithmetic mean, which is denoted as RW_MRTG index. 

First, the proposed indexes are normalized between 0-1.  

The aggregation operator should consider this fact: 
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The value of RW_MRTG ranges between 0 (the highest 

level of interpretability) and 1 (the lowest level of 

interpretability). 

U0 U1 0 1 



 

 

 

IV. MULTI-OBJECTIVE EVOLUTIONARY MODEL PROPOSED 

This section describes the proposed multi-objective 

algorithm which uses the mechanism to improve the 

interpretability in adaptive defuzzification systems described 

in the previous Section. 

The proposed algorithm uses three objectives: minimizing 

two indexes, # RF and RW_MRTG, to improve interpretability, 

and minimizing one index, the error, in order to improve the 

accuracy.  This time we use an evolutionary model based on 

the popular NSGA-II [19].  In the following subsections we 

state the main components and parameters of this algorithm.  

A. Coding scheme and initial population 

In this paper, we use a real coding scheme, where m is the 

number of parameters αi, one for each of the RB Ri.  Each 

takes values in the interval [0,1]. 

C = (α1, . . . , αm) | αi  {0, 1}  

The initial population is obtained as follows: An 

individual of the initial population has all the genes initially 

set to 1 in order to begin the evolutionary process with all the 

rules without weight.  The remaining individuals of the initial 

population are created randomly. 

B. Objectives and thresholds  

As was discussed above, in this algorithm we use these 

objectives to minimize: 

- The index of interpretability (# RF) representing the 

number of final rules in the system. 

- The index of interpretability (RW_MRTG) representing the 

mean arithmetic proposed. 

- The Mean Square Error (MSE) which measures the 

accuracy of the system. 
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(7) 

where S [i] denotes the fuzzy model the inference system of 

which uses the minimum t-norm as conjunction operator, the 

inference operator is minimum t-norm, and the adaptive 

defuzzification method is the one shown in expression (2).  

This measure uses a set of system evaluation data formed by 

P pairs of numerical data Zk =(xk,yk), k=1,..,P, with xk being 

the values of the input variables, and yk being the 

corresponding values of the associated output variables.  

The thresholds considered for the indexes # RF and #RW 

are the following: 

- If the parameter value is ≥ 0.9, it is considered that this 

parameter is 1 and therefore this rule has no weight. 

- If the parameter value is ≤ 0.1, we evaluate this parameter 

like 0 and the rule will be eliminated. 

 

Both thresholds have been chosen empirically by testing. 

C. Multi-objective Genetic Algorithm population 

NSGA-II [19] is one of the most known and used MOEA 

in the literature for solving multi-objective problems.  The 

offspring population is generated from the current population 

through selection, crossover and mutation.  The next 

generation is built from the current population and the 

offspring until it reaches the stop condition in this work, 

number of evaluations.  The NSGA-II algorithm has two 

features that make it one of the main and most important 

MOEA: One is the assignment of fitness based on Pareto 

ranking and crowding operator, and the other is the 

procedure for updating each generation through elitism. 

V. EXPERIMENTS 

To assess the goodness of the proposed approach, two real 

world problems with different complexities (different 

number of variables and available data) to be solved are 

considered (these data sets are available at, 

http://www.keel.es/) [20]: 

- Estimating the maintenance costs of medium voltage lines 

in a town (ELE). 

- Predicting the Abalone Age (ABA). 

In both cases, the well-known ad hoc data-driven learning 

algorithm of Wang and Mendel [21] is applied to obtain an 

initial set of candidate linguistic rules.  To do so, we will 

consider triangular-shaped strong fuzzy partitions.  Once the 

initial RB is generated, the proposed algorithm can be 

applied. 

Methods considered for the experiments are: 

- D: adaptive defuzzification method using a mono-objective 

genetic algorithm and considering only the sole purpose of 

accuracy [4]. 

- DI: is used by the adaptive defuzzification with the 

proposed improvement on interpretability and considering 

three objectives to minimize: MSE, #RF and RW_MRTG. 

A. Experimental Set-up 

We consider a 5-fold cross-validation model, i.e. 5 

random partitions of data each with 20%, and the 

combination of 4 of them (80%) as training and the 

remaining one as test.  For each of the 5 data partitions, the 

methods were run 6 times, showing for each problem the 

averaged results of a total of 30 runs. 

Linguistic partitions considered consist of triangular 

shaped linguistic terms, 5 for the electrical problem and 3 for 

the Abalone.  Minimum t-norm was used as operator of 

conjunction and implication.  In the case of MOEA (DI) the 

averaged values are calculated considering the most accurate 

solution from each Pareto obtained.  In this way, DI can be 

compared with the single objective method D. 



 

 

 

The values of the input parameters considered by D are: 

population size of 61, 1000 generations, 0.6 as crossover 

probability and 0.2 as mutation probability per chromosome.  

The values of the input parameters considered by DI are: 

population size of 200, external population size of 200, 1000 

generations and again 0.2 as mutation probability. 

B. Results and Analysis 

Table I shows the results obtained with WM, where #R 

stands for the number of rules, MSEtra/tst for the averaged 

error obtained over the training/test data, #RF, RW  and MRTG  

for the interpretability index.  This method obtains the initial 

knowledge bases that will be used by D and DI.  WM takes 

to index #RW the highest level of interpretability representing 

that all rules do not contain weights.  This index affects  

RW_MRTG index proposed too. 

 
TABLE I 

RESULTS OBTAINED BY WM METHOD 

Dataset #R MSEtra MSEtst #RF RW_   

MRTG   
#RW   MRTG 

ELE 65 56136 56359 65 0.38 0 10.7 

ABA 68 8.407 8.422 68 0.42 0 15.6 

 

 

The results obtained by both adaptive evolutionary 

defuzzification methods are shown in Table II, using the 

most accurate solution for the MOEA.  We also show t, 

which represents the results of applying a Student t-test (with 

95 percent confidence) to ascertain whether differences in 

the performance of the best results are significant when 

compared with those of the other algorithm in the table.  The 

interpretation of the t column is: 

* represents the best averaged result. 

+ means that the best result has better performance than 

that of the related row. 

 Analysing the results shown in Table 2, we can highlight 

the following facts: 

 

- The proposed method DI obtains the best results in training 

and test compared with D in both problems, when using the 

most accurate solution for DI.  In the ELE problem, DI 

improves by about 5% and 4% in training and test, 

respectively, and in the ABA problem it obtains an 

improvement of around 6 % 

- In terms of interpretability,  the solution included in Table 

II, while only being the most accurate for DI, clearly 

obtains  more interpretable models.  DI results improve all 

the interpretability indices employed.  The two new ones, 

the number of rules without weights and the medium 

number of rules triggered by an example, have shown their  

 

 

usefulness with significant improvements for both 

problems. 

Figure 2 shows the Pareto front obtained with DI method, 

and the solution obtained by D in the same data partition and 

seed of ABA.  We can observe that the obtained Pareto front 

is quite wide.  In fact, the number of non dominated 

solutions is always equal to the external population size.  

Moreover, the solution obtained with D is dominated by 

several solutions from DI.  Furthermore, there is no 

overfitting in the results obtained with the proposed method. 

The Pareto front obtained allows selecting solutions with 

different degrees of accuracy and interpretability.  Figure 2 

represents that an improvement in any interpretability index 

produces lack of precision and an improvement in the 

precision produces lack of interpretability.  This figure 

clearly shows that both targets (accuracy and interpretability) 

are actually contradictory.  In the extremes of the Pareto 

front, an improvement in one objective represents a small 

loss in the other objective.  On the contrary, in the mid part 

of the Pareto front, improvements in one objective 

deteriorate the other objectives. 

Figure 3 presents an illustrative RB obtained with DI. We 

can observe the rules eliminated, the weights of the rules and 

the rules without weight (rules with weight equal 1). 

VI. CONCLUSION 

Adaptive defuzzification using weighting factors in the 

degree of matching through a product is a simple mechanism 

to improve the accuracy of linguistic fuzzy models 

significantly, but has the disadvantage of increasing the 

system complexity, resulting from the effect of adding 

different factors or weights in each of the rules of the 

knowledge base.  In order to decrease this effect, in this 

paper we introduce a mechanism for reducing complexity 

using thresholds for those weights, so when the weight has a 

high level, the level is eliminated and when the weight has a 

low level, the rule is removed.  
 

Using a multi-objective evolutionary algorithm to learn 

the  parameters leads to greater precision, fewer rules, fewer 

rules with weights and fewer average number of rules 

triggered per example.  Thus, interesting results are obtained 

by significantly reducing the complexity compared with 

conventional adaptive defuzzification, maintaining and also 

improving the accuracy, as shown in the experimental study.  

Moreover, future works will consider also including other 

RB learning methods and interpretability indexes such as 

inconsistency, redundancy and similarity rules. Furthermore, 

we pretend to study the influence of the thresholds in the 

interpretability and accuracy. 

  

 

 



 

 

 

 

 

TABLE II 

RESULTS OBTAINED FOR THE TWO PROBLEMS 

Dataset Method MSEtra t-test MSEtst t-test #RF RW_MRTG   #RW MRTG 

ELE 
D 32791 + 35862 + 65 0.87 65 10.7 

DI 32439 * 35484 * 45.3 0.46 34.3 6.0 

ABA 
D 4.823 + 4.826 + 68 0.91 68 15.6 

DI 4.790 * 4.809 * 22.5 0.51 11.1 4.3 

 

Fig. 2.  Example of the Pareto front with DI for the Abalone problem 

. 

MSE tra 31789 #RF 45 MRTG 5.9

MSE tst 34891 #RP 34 RP_MRTG 0.46

Weights Weights Weights

Rules DI method Rules DI method Rules DI method

R1 0.6 R23 0.2 R45 1.0

R2 R24 R46

R3 1.0 R25 R47

R4 0.3 R26 0.3 R48 0.5

R5 1.0 R27 0.6 R49 0.8

R6 0.8 R28 1.0 R50 0.7

R7 R29 0.8 R51 1.0

R8 R30 0.7 R52 0.5

R9 0.5 R31 0.2 R53 0.5

R10 0.4 R32 R54 1.0

R11 R33 0.2 R55 1.0

R12 R34 1.0 R56

R13 1.0 R35 R57

R14 0.6 R36 0.3 R58 1.0

R15 0.3 R37 0.5 R59 0.6

R16 0.3 R38 0.7 R60

R17 1.0 R39 0.8 R61 0.8

R18 0.7 R40 R62 0.7

R19 0.4 R41 0.4 R63 0.4

R20 R42 R64

R21 0.8 R43 R65

R22 0.6 R44 0.8

Delete this 

rule

 

Fig. 3.  An illustrative RB obtained with DI for ELE problem 



 

 

 

REFERENCES 

[1] J. Casillas, O. Cordón, F. Herrera and L. Magdalena. Interpretability 

issues in fuzzy modeling. Springer-Verlag, 2003. 

[2] J. Casillas, O. Cordón, F. Herrera and L. Magdalena. Accuracy 

improvements in linguistic fuzzy modeling. Springer-Verlag, 2003. 

[3] J. Alcalá-Fdez, F. Herrera, F. Márquez, and A. Peregrín, “Increasing 

fuzzy rules cooperation based on evolutionary adaptive inference 

systems”, Int J Intell Syst, vol. 22 no. 9, pp. 1035–1064, 2007. 

[4] O. Cordón , F. Herrera , F. A. Márquez and A. Peregrín, “A study on 

the evolutionary adaptive defuzzification methods in fuzzy 

modeling”, International Journal of Hybrid Intelligent Systems. Vol. 

1, no. 1, pp. 36–48, 2004. 

[5] F. A. Márquez, A. Peregrín, and F. Herrera, “Cooperative 

evolutionary learning of linguistic fuzzy rules and parametric 

aggregation connectors for Mamdani fuzzy systems”, IEEE Trans 

Fuzzy Syst, vol. 15, no. 6, pp. 1162–1178, 2007. 

[6] J.M. Alonso and L. Magdalena, “A Conceptual Framework for 

Understanding Fuzzy Systems” in Proc. of IFSA World Congress 

(IFSA-EUSFLAT’09) , Lisbon, Portugal, 2009, pp. 119-124. 

[7] M. Zhou and J. Q. Gan, “Low-level interpretability and high-level 

interpretability: a unified view of data-driven interpretable fuzzy 

system modeling”, Fuzzy Sets and Systems, vol. 159, no. 23, pp. 

3091–3131, 2008. 

[8] F. Cheong and R. Lai, “Constraining the optimization of a fuzzy logic 

controller  using an enhanced genetic algorithm”,  IEEE Trans. Syst., 

Man, Cybern. -Part B:Cybernetics, vol. 30, no. 1, pp. 31-46, 2000. 

[9] C. A. Coello, D. A. Van Veldhuizen, and G. B. Lamont, editors. 

Evolutionary algorithms for solving multi-objective problems. 

Kluwer Academic Publishers, 2002. 

[10]  K. Deb. Multi-objective optimization using evolutionary algorithms. 

John Wiley & Sons, NY, USA, 2001. 

[11] M.J. Gacto, R. Alcalá, and F. Herrera, “Adaptation and Application of 

Multi-Objective Evolutionary Algorithms for Rule Reduction and 

Parameter Tuning of Fuzzy Rule-Based Systems,” Soft 

Computing,vol. 13, n. 5, pp. 419–436, 2009. 

 

 

 

[12] H. Ishibuchi and  T. Yamamoto, “Fuzzy rule selection by multi-

objective genetic local search algorithms and rule evaluation measures 

in data mining”, Fuzzy Sets and Systems , vol. 141, no.1, pp. 59–88, 

2004. 

[13] A.A. Márquez, F.A. Márquez, and A. Peregrín. “Cooperation between 

the Inference System and the Rule Base by using Multiobjective 

Genetic Algorithms”. Proc of HAIS’08 Int Conf of Hybrid Artificial 

Intelligence Syst, Burgos, 2008, pp. 739–746. 

[14] A.A. Márquez, F.A. Márquez and A. Peregrín, “Rule Base and 

Inference System Cooperative Learning of Mamdani Fuzzy Systems 

with Multiobjective Genetic Algorithms”. Proc of  IFSA World 

Congress (IFSA-EUSFLAT’09), Lisbon, Portugal, 2009, pp. Pág. 

1045-1050. 

[15] J.S. Cho and D.J. Park, “ Novel fuzzy logic control based on 

weighting of partially inconsistent rules using neural network”, 

Journal of Intelligent and Fuzzy Systems, Vol 8, pp. 99-100, 2000. 

[16] D. Nauck and R. Kruse, “How the learning of rule weights affects the 

interpretability of fuzzy systems,” in Proc. Seventh IEEE Int. 

Conf.Fuzzy Syst., 1998, pp. 1235–1240. 

[17] H. Ishibuchi and T. Nakashima, “Effect of rule weights in fuzzy 

rulebased classification systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 

4, pp. 506–515, 2001. 

[18] H. Ishibuchi and T. Yamamoto, “Rule weight specification in fuzzy 

rule-based classification systems,” IEEE Trans. Fuzzy Syst., vol. 13, 

no. 4, pp. 428–435, 2005. 

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist 

multiobjective genetic algorithm: NSGA-II”. IEEE Trans Evolut 

Comput, vol. 6, no 2, pp. 182–197 , 2002. 

[20] J. Alcala-Fdez, L. Sánchez, S. García, M.J. del Jesús, S. Ventura, J.M. 

Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, 

and F. Herrera. Keel: A software tool to assess evolutionary 

algorithms for data mining problems. Soft Computing, vol.13, nº3, 

p.p. 307–318, 2009. 

[21]  L.X. Wang, and J.M. Mendel. “Generating fuzzy rules by learning 

from examples”, IEEE Trans Syst, Man, Cybernetics, vol. 22, no. 6, 

pp. 1414–1427, 1992.

 


