
Induction of Classification Rules with
Grammar-Based Genetic Programming

Pedro G. Espejo, Cristóbal Romero, Sebastián Ventura, Ćesar Herv́as
Department of Computer Science and Numerical Analysis,

University of Cordoba,
14071 Cordoba, Spain

Email: {pgonzalez, cromero, sventura, chervas}@uco.es

Abstract— This paper presents an analysis of the suitability of
grammar-based genetic programming for the classification task
in data mining. The evolutionary technique is compared with
several classic algorithms for inducing decision trees and rules,
using classification accuracy as the comparison criterion.

I. I NTRODUCTION

Data mining (DM) consists of the extraction of useful, com-
prehensible and previously unknown knowledge, from huge
amounts of data stored in different formats [16]. Classification
is one of the most studied problems by DM and machine
learning (ML) researchers. It consists in predicting the value of
a (categorical) attribute (the class) based on the values of other
attributes (the predicting attributes). In the ML and DM fields,
classification is usually approached as a supervised learning
task. A search algorithm is used to induce a classifier from a
set of correctly classified data instances, called the train set.
Another set of correctly classified data instances, known as the
test set is used to measure the quality of the classifier obtained
after the learning process. Different paradigms have been used
in order to tackle classification: decision trees [10], inductive
learning [8], instance-based learning [1] and, more recently,
artificial neural networks [18] and evolutionary algorithms [4].
In this paper, we focus on decision tree, rule induction and
evolutionary techniques.

Decision tree methods use greedy algorithms. These algo-
rithms are generally fast, very effective, accurate and able
to classify data completely. Most decision tree methods use
recursive partitioning techniques that split the data space.
However, the greedy nature of these algorithms can overlook
multivariate relationships that can’t be found when attributes
are considered separately. Rule induction algorithms usually
employ a specific-to-general approach, in which rules are
generalized (or specialized) until a satisfactory description
of each class is obtained. Finally, evolutionary algorithms
(EA) are based on the use of probabilistic search algorithms
inspired by certain points of the Darwinian theory of evolution.
The flexibility and robustness of EAs allow the discovery
of complex relationships that are usually missed by other
algorithms.

In addition to the learning algorithm, another important
issue that must be considered in classification is the repre-
sentation formalism. Rules are one of the most often used
formalisms used to represent classifiers, and is the one we have

chosen for our work (a decision tree can be easily converted
into a rule set [12]). The rule antecedent (IF part) contains a
combination of conditions on the predicting attributes, and the
rule consequent (THEN part) contains the predicted value for
the class. This way, a rule assigns a data instance to the class
pointed out by the consequent if the values of the predicting
attributes satisfy the conditions expressed in the antecedent,
and so, a classifier is represented as a rule set. The rules used
in our work have the following format.

<classification rule> ::=
IF <antecedent> THEN <consequent>

<antecedent> ::=
<condition> |
<condition> AND <condition>

<consecuent> ::=
IS A <class label>

<condition> ::=
<attribute> <rel operator> <value>

<attribute> ::=
Predicting attribute

<rel operator> ::=
= | 6= | < | > | ≤ | ≥

<value> ::=
Value from the corresponding domain

<class label> ::=
Value from the class domain

The evolutionary algorithm analysed in our work is a variant
of genetic programming known as grammar-based genetic
programming(GGP) [15]. In GGP a grammar is defined, and
the evolutionary process proceeds guaranteeing that every indi-
vidual generated is legal with respect to the grammar. Besides,
the grammar can be used to define different characteristics of
the classifiers, and can improve efficiency, since the search
space is restricted. Our aim is to go more deeply into the use
of GGP for DM tasks. Whereas EAs are today extensively
applied to DM [4], this trend is mostly oriented to the use
of genetic algorithms (GA), and just a minority of this work
makes use of GP, not to mention GGP (see however [17]).

The rest of this paper is organized as follows. First, the
different algorithms used in our work are briefly presented:
classic decision tree and rule induction algorithms in Sec-
tion II and GGP in Section III. Section IV gives a thorough

 International Conference on Machine Intelligence, Tozeur – Tunisia, November 5-7, 2005 596

description of our GGP-based DM system. A description of
the experiments carried out and an analysis of the results
can be found in Section V. Finally, Section VI presents the
conclusions and suggested research directions.

II. CLASSIC CLASSIFICATION ALGORITHMS

Decision tree and rule induction algorithms have been
extensively used, first by ML and later by DM researchers,
in order to obtain high-quality classifiers.

A. Decision Trees

Decision tree learning systems are easy to use and under-
stand. A decision tree is a set of conditions organized in a
hierarchical structure. An instance is classified by following
the path of satisfied conditions from the root of the tree until
reaching a leaf, which will correspond with a class label.
The branches coming from each internal node correspond
to different values that can take the attribute represented by
the node. Usually, these branches are exclusive, that is, non-
overlapping.

Most existing tree induction systems proceed in a greedy
topdown fashion. To build a decision tree, it is necessary to
find at each internal node a test for splitting the data into
subsets. A basic task in tree building is to rank attributes
according to their usefulness in discriminating the classes in
the data, and then establish the appropriate conditions for each
of these attributes.

Many algorithms have been developed following this basic
approach. We have employed ID3 and C4.5 in our work, two
of the most well-known decision tree algorithms. ID3 [11] is a
simple algorithm to build decision trees that uses information
as a criterion for selecting the branching attribute of a node.
After the branching attribute is selected, the training cases are
divided by the different values of the attribute. C4.5 [12] is
the improved successor of ID3, and includes several enhance-
ments, including a better handling of nominal attributes with
many possible values, working with continuous attributes and
a pruning method for overfitting avoidance.

B. Rule Induction

Algorithms of this paradigm can be considered as heuristic
state-space search, which is based on the two key notions
of state and operator. A state is a description of a problem
situation in a given instant, and an operator is a procedure
which transforms a state into another. Solving a problem
consists in finding a sequence of operators which transforms
an initial state into a goal state. In rule induction, a state
corresponds to a candidate rule and operators correspond to
generalization and specialization operations that transform a
candidate rule into another. The choice of the operator to be
applied is determined by a heuristic function that evaluates
the effectiveness of each operator with respect to the given
candidate rule. The obtained rules can cover overlapping data
regions, that is, an instance can satisfy the antecedents of
several rules.

Many algorithms have been proposed for the induction
of classification rules. Three of these algorithms have been
chosen to be used in our work: One-R, AQ and CN2. One-
R [5] is a simple algorithm that constructs rules trying ev-
ery possible attribute/value combination, in order to choose
the conditions attaining a greater classification accuracy. In
AQ [7], a selector relates a variable to a value or set of values, a
conjunction of selectors forms a complex, and a disjunction of
complexes makes up a cover, which is used as the antecedent
of a rule. CN2 [3] was designed as an improvement of AQ,
adding a proper handling of noisy instances and eliminating
its dependence on specific training instances during the search.

III. G RAMMAR -BASED GENETIC PROGRAMMING

The evolutionary algorithms (EA) paradigm is based on
the use of probabilistic search algorithms inspired by certain
points of the Darwinian theory of evolution [13]. Several
different techniques are grouped under the generic denomi-
nation of EA. There is a general agreement that the four main
branches are: evolution strategies, evolutionary programming,
genetic algorithms and genetic programming. The essential
features shared by all EAs are:

• The use of a population (a group) of individuals (candi-
date or partial solutions) instead of just one of them.

• A generational inheritance method. Genetic operators are
applied to the individuals of a population to give birth to a
new population of individuals (the next generation). The
main genetic operators are crossover (recombination) and
mutation. Crossover swaps a part of the genetic material
of several individuals (usually two of them), whereas
mutation randomly changes a little portion of the genetic
material of one individual.

• A fitness-biased selection method. A fitness function is
used in order to measure the quality of an individual.
The better the fitness of an individual, the higher its
probability of being selected to take part in the breeding
of the next generation of individuals, and so, higher
is the probability that its genetic material will survive
throughout the evolutionary process.

Genetic programming (GP) is essentially considered as
a variant of genetic algorithms (GA) that uses a complex
representation language to codify individuals. The most often
used representation schema is based on trees, although other
options exist [2]. The original goal of GP, as its name implies,
was the evolution of computer programs. However, GP is
nowadays used to evolve other abstractions of knowledge, like
mathematical expressions or rule-based systems, for example.
The main difference between GA and GP lies in the fact
that GP individuals represent programs,1 therefore individuals
consist not only in data structures, but also in operations. This
way, tree individuals are usually seen as parse trees, where
leafs correspond to terminal symbols (variables and constants)
and internal nodes correspond to non-terminals (operators and

1Though the conception of what a program is can vary vastly, as we have
just seen.

 International Conference on Machine Intelligence, Tozeur – Tunisia, November 5-7, 2005 597

functions). The set of all the allowed non-terminal symbols is
called the function set, whereas the allowed terminal symbols
constitute the terminal set. Two conditions must be satisfied to
ensure GP can be successfully applied to a specific problem:
sufficiency and closure. Sufficiency states that the terminals
and non-terminals (in combination) must be capable of repre-
senting a solution to the problem. Closure requires that each
function of the non-terminal set should be able to handle all
values it might receive as input. In practice, we often need to
evolve programs that handle values of different types, and this
makes difficult to meet the closure requirement.

One of the solutions recently proposed to circumvent the
closure problem is based on the utilization of grammars to
specify a language to which individuals must adhere. This
idea leads to grammar-based genetic programming (GGP).
GGP makes use of genetic operators that take into account the
grammar, in such a way that it is always guaranteed that every
individual generated is legal with respect to the grammar. As
well as providing a solution to the closure problem, the use of
a grammar offers some other advantages. The grammar can be
used to bias the inductive process to give certain characteristics
to individuals. In addition, efficiency can be improved, since
the grammar restricts the search space.

Two main (similar) approaches to GGP exist, described
in [15] and [17] respectively. Both approaches conform to
the basic description given above. The main difference be-
tween these GGP frameworks lies in the kind of grammar
used. Whigham’s GGP uses a context-free grammar, while
Wong’s GGP is in fact a hybrid of GP and inductive logic
programming [6] which makes use of a particular kind of
grammars known as logic grammars. Logic grammars allow
to represent context-sensitive information. In our work, we
follow the setting proposed by Whigham in [15].

IV. SYSTEM DESCRIPTION

We have developed a system that employs GGP to evolve
rule-based classifiers. However, a rule set can be interpreted
in several ways. When an instance is presented to the classi-
fication system, different approaches can be applied to find
a matching between the instance and the rule set. We are
interested in analysing this point, and therefore we compare
two different ways of interpreting a rule set:

• Rules are evaluated sequentially and the process stops
with the first rule whose antecedent is satisfied. The
instance is assigned to the class pointed out by the
consequent of the first matched rule. In this approach, the
order of evaluation of rules matters. We order the rules
in descending order of the class distribution rate, that is,
rules corresponding to majority classes are checked out
before the minority ones, so that classification accuracy
is maximized.

• Every rule is evaluated, counting the number of rules
satisfied per class, and the class with a higher number of
satisfied rules is chosen. If a tie occurs between several
classes, the one with a greater number of instances (the

majority class from among this subset of classes with
maximum satisfied antecedent count) is chosen.

We use the grammar to specify which relational operators
are allowed to appear in the antecedents depending on the data
types of the attributes and to determine the number of rules
allowed for each class (see below).

A. Individual Representation

In our GGP system each individual represents a complete
classifier, that is, a rule set.2 While every class is guaranteed
to have one rule at least, no other limit exists to the number
of rules per class. The format of rules is the one described
in Section I. The allowed relational operators are determined
by the data type of the attribute. We employ ’>’ and ’≤’ for
numerical attributes and ’=’ and ’6=’ for categorical attributes.

B. Evolutionary Procedure

We employ a tournament-based selection mechanism that
proceeds as follows. First a group of individuals is selected
from the population at random. Then for each of the selected
individuals, the fitness on the training examples is calculated.
The tournament members are sorted on fitness and the best
ones get a chance to reproduce and replace the worst ones.
The offspring are mutated. The dynamic of the evolutionary
process is slightly different from the usual, because the tour-
nament size we employ (50 individuals, in our experiments)
is bigger than the customary 2, 4 or so. Age of individuals
is taken into account. The age is the number of tournaments
in which an individual has taken part, and a maximum age is
defined to be one of the system parameters. The individuals
in the tournament whose age is greater than or equal to the
maximum are removed and labelled “old”, and those that
remain are called “young”. The young individuals are sorted
by fitness, so that the best ones are at the top of the list.
The old individuals are added back to the bottom of the list.
The ordered set of individuals is used to construct a set of
“families” each containing four individuals: two parents and
two unfit individuals which will be replaced when the parents
reproduce. In each family, the parents are crossed over, the
resulting offspring overwrite the two unfit individuals and
then they are mutated. However, crossover is not performed
if the fitness values of the two parents are identical. If they
are identical then the second parent is mutated, and the two
individuals that would have been replaced by offspring survive.

As usual, crossover swaps subtrees of two parents.3 The
number of swaps performed per crossover event is not fixed,
but depends on the number of nodes of the parents. In our
system, the crossover probability is the probability of crossover
per node, rather than indicate if two individuals will perform
crossover or not. Similarly, several mutations occur per muta-
tion event, in a number proportional to the number of nodes of
the individual. Several mutation operators are available. The

2So we follow the Pittsburgh approach [4].
3The subtrees to swap are selected randomly, but always guaranteeing that

the offspring will adhere to the grammar.

 International Conference on Machine Intelligence, Tozeur – Tunisia, November 5-7, 2005 598

mutation operator to be applied is randomly selected according
to given probabilities. The mutation operators are:
• Point mutation. A node (internal or leaf) is randomly

selected to be replaced with a function (of the same arity)
or terminal selected at random.

• Macromutation. One of the following operations is ran-
domly selected and applied:

– Replace subtree: subtree replaced with random sub-
tree.

– Copy subtree: two independent nodes (subtrees not
containing each other) are selected and one subtree
is copied, replacing the other.

– Swap subtrees: as above, but subtrees are swapped.
– Insert internal: a node is expanded by replacing it

with a non-terminal node. One of the branches of
the new non-terminal is linked back to the original
node, and any remaining branches are expanded with
new random subtrees.

– Delete internal: a node is collapsed as follows. Two
nodes are chosen, the second belongs to the subtree
of the first and is of the same type. The nodes are
reconnected, and any intervening nodes are removed
from the tree.

The evolutionary process ends when a predetermined num-
ber of tournaments has been performed, and the best individual
found in any generation is returned as output.

C. Fitness Function

The fitness function used in this work is classification
accuracy, that is, the fraction of correctly classified examples:

Acc =
#Correctly classified examples

#Examples
(1)

D. Grammar

Our system uses context-free grammars. This kind of gram-
mar can be represented as a four-tuple(N, Σ, P, S), whereN
is the alphabet of nonterminal symbols,Σ is the alphabet of
terminal symbols,P is the set of productions andS is the
start symbol. The productions are of the formx → y, where
x ∈ N andy ∈ {Σ ∪N}∗. Productions of the form

x → y
x → z

may be expressed using the disjunctive symbol ‘|’, as

x → y | z

An example grammar is shown below. This grammar has
been designed to be used with one of the datasets to which our
system has been applied (see Section V-A), the well-known Iris
dataset, in which three classes are distinguished: iris-setosa,
iris-versicolor and iris-virginica. Besides the class, this dataset
has four attributes, all of them numerical (x1, x2, x3, x4).

Σ = { x1, x2, x3, x4,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
true, false}

S → RULEA
RULEB
RULEC

RULEA → if COND then ‘Iris-setosa’|
RULEA
RULEA

RULEB → if COND then ‘Iris-versicolor’|
RULEB
RULEB

RULEC → if COND then ‘Iris-virginica’ |
RULEC
RULEC

COND → VAR > VAL |
VAR ≤ VAL |
COND and COND|
true | false

VAR → x1|x2|x3|x4

NUM → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

As can be noticed by looking at the shown grammars, the
rules produced by the evolutionary process can use any number
of attributes in their antecedents. This means that our system
is able to perform an implicit feature selection [4], that is, it
can select from the available attributes those that are relevant
to build a good solution.

V. COMPUTATIONAL EXPERIMENTS

We have compared the performance of ID3, C4.5, One-
R, AQ, CN2 and GGP on 7 public domain datasets. ID3
has not been applied to all datasets because it can’t handle
continuous attributes. For GGP we have used the two rule
set interpretation approaches described in Section IV. This
leads to two different GGP variants: GGP-1r (one rule, the
first whose antecedent is satisfied) and GGP-sr (several rules,
counting the number of satisfied antecedents per class). The
basic approach we follow consists in estimating the accuracy
reached by each algorithm for each dataset. The obtained
estimates will allow us to compare the performance of GGP
and some widely used classic algorithms, in order to assess
the suitability of GGP for classification.

A. Datasets

Experiments have been carried out on 7 public domain
datasets. All datasets are taken from the UCI Repository of
Machine Learning Databases [9]. The selected datasets present
a good variety with respect to different characteristics such as:
number of instances, number of classes, number of attributes
and data type of the attributes. A description of the used
datasets is given in Table I.

 International Conference on Machine Intelligence, Tozeur – Tunisia, November 5-7, 2005 599

TABLE I

DATASETS

Name Instances Classes Attributes Numerical atts. Categorical atts.

Breast-wisconsin 683 2 9 9 0
Iris 150 3 4 4 0
Lymphography 148 4 18 0 18
Mushroom 8124 2 22 0 22
Pima 768 2 8 8 0
Satimage 6435 6 39 39 0
Tic-tac-toe 958 2 9 0 9

TABLE II

GGPPARAMETERS

Parameter Value

Population size 500
No. tournaments 1000
Tournament size 50
Maximum age 6
Stopping criterion No. tournaments
Crossover prob. (per node) 1/75
Mutation prob. (per node) 1/100

B. GGP parameters

Generally, the terminal set is made up of: the names of the
attributes in the dataset, an arbitrary selection of values taken
from the domains of the attributes and the logical values true
and false. The function set consists of the relational operators
(see Section IV-A) and the logical operator AND. The values
for the other parameters that control the GGP system are given
in Table II.

C. Results

Each algorithm is evaluated using stratified 10-fold cross-
validation. The dataset is randomly divided into 10 disjoint
subsets of equal size in a stratified way (maintaining the
original class distribution), and then, 10 runs are performed.
In each run, one of the 10 subsets is used as the test set
and the other 9 subsets are combined to form the train set.
Each of the 10 iterations of the cross-validation procedure
involved a single run of each algorithm. The performance
of each algorithm is estimated by averaging classification
accuracy (measured from the test set) over the 10 folds.
Average accuracies are shown in Table III.

We have performed a statistical analysis in order to assess
which algorithms are better than other ones. Analysis of
variance allows us to determine whether the mean accura-
cies are significantly different from each other, and multiple
comparison procedures (Bonferroni and Tamhane’s T2) tell
us which means differ [14]. All statistical tests have been
performed at a 0,05 significance level. In Table III a ‘+’
result is statistically better than a ‘−’ result, and a ‘∗’ result
is statistically better than all the other results. The accuracy
corresponding to the best performer is displayed in italics.

For Breast-wisconsin, GGP-sr is the best performing algo-
rithm, and it is statistically better than One-R, but no statistical
difference exists with respect to the other algorithms. For the

Iris dataset, C4.5, GGP-1r and GGP-sr achieve the same best
accuracy, being better than AQ and CN2. For Lymphography,
GGP-1r and GGP-sr have different average accuracies, but no
statistical difference exists between them. Both algorithms are
statistically superior to all the rest. For Mushroom, ID3, C4.5
and AQ present the same accuracy, and they are statistically
better than CN2 and GGP-1r. For Pima, C4.5 gives highest
performance and it is better than AQ and CN2. For Satimage,
C4.5 is the best performer, significantly better than all the rest.
Finally, for Tic-tac-toe, AQ offers the best result, statistically
better than C4.5, One-R, CN2, GGP-1r and GGP-sr.

To sum up, we can say that in three cases (Breast-wisconsin,
Iris and Lymphography) GGP is the best performing algorithm.
In other occasion (Pima), GGP is not worst than the best
performer. For the Mushroom dataset, GGP-1r is worst than
the best performer, but GGP-sr is not. Only for Satimage
and Tic-tac-toe both variants of GGP are worst than the best
algorithm.

Another point of interest for us is the performance com-
parison between the two proposed approaches for evaluating a
rule set (GGP-1r and GGP-sr). We can see that GGP-sr always
gives superior or equal results than GGP-1r, however, results
don’t differ significantly.

VI. CONCLUSIONS ANDFUTURE WORK

The main conclusion we can reach from our experiments
is that GGP is a competitive technique for classification,
since, generally, it can give superior or equal accuracy when
compared with other widely used algorithms.

With regard to the study of different ways of evaluating
a rule set (1r and sr), we can conclude that the advantage
of evaluating all the rules is minimal when compared with
the approach consisting in stopping when the first satisfied
antecedent is found. Although the difference between both
approaches is not statistically significant, it is clear that GGP-
sr always gives higher (or equal) accuracy than GGP-1r, and
this difference can be important from a practical point of view,
so the sr approach seems preferable when evaluating a rule set.

Besides, we feel that the main advantage of using GGP for
classification tasks comes from the use of a grammar. We have
used grammars to determine which relational operators can
appear in the antecedent of rules, but grammars can be used
to easily determine different characteristics of the classifiers to
be constructed. In addition, efficiency can be improved, since
the grammar restricts the search space. We think grammars

 International Conference on Machine Intelligence, Tozeur – Tunisia, November 5-7, 2005 600

TABLE III

AVERAGE ACCURACY (%)

Dataset ID3 C4.5 One-R AQ CN2 GGP-1r GGP-sr

Breast-wisconsin 93,99 94,56 91,56− 93,57 92,57 94,99 96,56+

Iris 94,00+ 92,00 81,99− 57,33− 94,00+ 94,00+

Lymphography 36,67 39,33 44,00 3,33 76,33* 76,95*
Mushroom 100,00+ 100,00+ 98,52 100,00+ 95,78− 94,74− 98,08
Pima 74,48+ 72,27 66,67− 65,61− 67,96 68,48
Satimage 85,77* 59,71 81,34 48,20 66,00 72,79
Tic-tac-toe 94,57 84,54− 69,92− 95,62+ 86,54− 74,21− 75,66−

offer a great potential for DM tasks that must be studied more
deeply.

The work presented in this paper is only a first step in
the study of the applicability of GGP for DM. Our aim
is to extend the scope of the present work, increasing the
number of datasets and taking into account other quality
factors for performance comparison, like the size of classifiers
and execution time of algorithms. Another interesting avenue
to go more deeply in this research way would be to extend the
application of GGP to other data mining tasks, like association
rule mining or clustering.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
provided by the Spanish Department of Research of the Min-
istry of Science and Technology under TIC2002-04036-C05-
02 (Department of Computer Science, University of Cordoba)
Projects. FEDER also provided additional funding. We also
thank all the donors and maintainers of the datasets used in
this work.

REFERENCES

[1] D. W. Aha, D. F. Kibler, and M. K. Albert, “Instance-based learning
algorithms,”Machine Learning, vol. 6, pp. 37–66, 1991.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,Genetic Pro-
gramming - An Introduction; On the Automatic Evolution of Computer
Programs and its Applications. Morgan Kaufmann / dpunkt.verlag,
1998.

[3] P. Clark and T. Niblett, “The CN2 induction algorithm,”Machine
Learning, vol. 3, no. 4, pp. 261–283, 1989.

[4] A. A. Freitas,Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag, 2002.

[5] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,”Machine Learning, vol. 11, no. 1, pp. 63–91,
1993.

[6] N. Lavrac and S. Dzeroski,Inductive Logic Programming: Techniques
and Applications. Ellis Horword, 1994.

[7] R. S. Michalski, “On the quasi-minimal solution of the general covering
problem,” in Proceedings of the Fifth International Symposium on
Information Processing, 1969, pp. 125–128.

[8] R. S. Michalski, “A theory and methodology of inductive learning,”
Artificial Intelligence, vol. 20, no. 2, pp. 111–161, February 1983.

[9] P. M. Murphy and D. W. Aha, UCI Repository of Machine
Learning Databases, web, Department of Information and
Computer Science, University of California at Irvine, 1994,
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[10] S. K. Murthy, “Automatic construction of decision trees from data:
a multi-disciplinary survey,”Data Mining and Knowledge Discovery,
vol. 2, no. 4, pp. 345–389, December 1998.

[11] J. R. Quinlan, “Induction of decision trees,”Machine Learning, vol. 1,
pp. 81–106, 1986.

[12] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[13] W. M. Spears, K. A. De Jong, T. B̈ack, D. B. Fogel, and H. de Garis,
“An overview of evolutionary computation,” inEuropean Conference on
Machine Learning, ser. Lecture Notes in Computer Science, P. Brazdil,
Ed., vol. 667. Springer, 1993, pp. 442–459.

[14] A. C. Tamhane and D. D. Dunlop,Statistics and Data Analysis: from
Elementary to Intermediate. Prentice Hall, 1999.

[15] P. A. Whigham, “Gramatical bias for evolutionary learning,” Ph.D. dis-
sertation, School of Computer Science - University College - University
of New South Wales - Australian Defence Force Academy, 1996.

[16] I. H. Witten and E. Frank,Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
2000.

[17] M. L. Wong and K. S. Leung,Data Mining using Grammar-Based
Genetic Programming and Applications. Kluwer Academic Publishers,
2000.

[18] J. M. Zurada,Introduction to Artificial Neural Systems. West Publishing
Company, October 1992.

 International Conference on Machine Intelligence, Tozeur – Tunisia, November 5-7, 2005 601

