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Abstract

In previous works, we have studied the prop-
erties of Genetic Fuzzy Classifiers, when used
with interval and fuzzy-valued data. For cer-
tain kind of problems, it was proved that they
were inherently better than those arising from
the bayesian point of view. The design of these
classifiers was based on the use of a fuzzy-
valued fitness function, built after a gener-
alized definition of the density function of a
fuzzy random variable.

Afterwards, we have been asked whether an
equivalent definition could be derived for ge-
netic fuzzy models, and what advantages we
would expect it to have. This paper is de-
voted to answer this question. We have ap-
plied our definition of density of a f.r.v. to
obtain a fuzzy characterization of our knowl-
edge about the conditional expectation of the
output, given a fuzzy input. Arising from this
characterization, we have obtained the expres-
sion used in fuzzy least squares, and propose
some different minimization criteria that can
be used with Genetic Fuzzy Systems.

Keywords: Genetic Fuzzy Sytems, Fuzzy
Models, Random Sets, Fuzzy Least Squares.

1 Introduction

Genetic Fuzzy Systems use fuzzy techniques to
obtain linguistically understandable rules from
crisp data [5]. Nevertheless, in fuzzy statis-

tics the terms “fuzzy classifier” and “fuzzy
model” are applied to extensions of discrim-
inant analysis and regression that can cope
with vague data [2]. This disparity in the use
of the same terms is a clear symptom that con-
nections between Fuzzy Statistics and Genetic
Fuzzy Classifiers and Models are not frequent.
Besides, some elements of fuzzy statistics can
be used with GFSs in a natural manner, and
we think that potentially can lead to the de-
velopment of more powerful learning methods.
In previous works [15], we have also suggested
that the kind of problems where GFSs are in-
herently better than their stochastic counter-
parts is composed by those problems includ-
ing imprecisely observed data. To justify this
assert, an extended definition of the classifica-
tion problem was proposed, and a fuzzy-valued
fitness function, adequate for that problem,
was introduced.

In this paper, we intend to apply the same
procedures to the modeling problem, and to
obtain its corresponding fuzzy fitness function.
Besides, the modeling problem is not as closed
as the classification one, and more than one
definition is possible. Contrary to the clas-
sification case, where the bayesian framework
provided us with a widely accepted definition
of the optimal classifier, there exist many def-
initions of statistical regression (a survey of
many of them can be found in [3].) We have
decided to evaluate the fuzzy extension of the
standard case first, and leave robust regression
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techniques to be done in future works. There-
fore, as we will show in the next section, in this
work we will define the output of the model as
the conditional expectation of the output ran-
dom variable, given a certain input.

This paper is structured as follows: first,
the statistical definition of modeling under
stochastic noise is introduced. Then, an exten-
sion to the modeling definition is introduced.
This extension copes with both stochastic
noise and observation errors, and is based
upon the relations between random and fuzzy
sets. In section four, it is shown, by means
of one example, how the fuzzy valued fitness
of the extended GFS is evaluated. The work
finishes with the concluding remarks and a dis-
cussion about the new opened research lines.

2 Statistical Models and GFSs

2.1 Least squared models and conditional

expectation

Let us suppose we have a set Ω that con-
tains objects ω, and let us admit also that
each one of them is assigned a numerical value
Y (ω). We are given a set of measurements
X(ω) = (X1(ω), X2(ω), . . .) over every object.
We will say that a model is a mapping that
associates every element of X(Ω) with a value
g(X), whose main objective is to minimize the
differences between Y (ω) and g(X(ω)) over Ω.

For example, let Ω be a set of people. We
observe the height and the weight of a ran-
domly selected person, and want to know its
expected percentage of body fat. Suppose
that someone measures and weights X(ω) =
(180, 82), and has Y (ω) = 20% of fat. We wish
that the difference between the value that our
model assigns to him, g(180, 82) = 22, and
the true value Y (ω) = 20 is as low as possible.
If we admit that there can exist two different
people that measure 180 cm. and weight 82
kg., but have a different percentage of fat be-
cause of their different body constitution, the
assigment g(x) = Y (X−1(x)) can not be de-
fined. In the example at hand, this means that
the model will assign the same value g = 22 to
all people that measure 180 cm. and weight
82 kg, therefore the optimal model should be

defined with respect to averaged weight differ-
ences.

To define the concept “averaged differences”
we need to assume that the mappings X and
Y fulfill all necessary conditions to be ran-
dom variables. Let us also define a new ran-
dom variable that quantifies the cost of assign-
ing the value y to an object, when its true
value is z, cost(y, z). For the problem stated,
if the model is a mapping g(x), and Y (ω) is
the value associated to the object ω, then the
merit value of the model can be numerically
quantified as

err(g) =

Z
Ω

cost(g(X(ω)), Y (ω)) dP (1)

where the error function is integrated with re-
spect to a probability measure P defined over
Ω.

If we choose cost(y, z) = (y − z)2, the ex-
pectation of the cost function is the mean
squared error, that gives rise to “least squares
regression”. Given that E[(Y − g(X))2] ≥
E[(Y −E[Y |X])2] for any function g, the con-
ditional expectation g(x) = E[Y |X = x] is
then the optimal definition of model:

g(x) =

R
ω:X(ω)=x

y dPR
ω:X(ω)=x

dP
=

Z
y f(y|x) dy (2)

where f(y|x) is the (Radon-Nikodym) condi-
tional density of the output variable condi-
tioned to a given input variable.

2.2 GFS and fuzzy data

There are many interval and fuzzy valued ex-
tensions of the modeling problem, in both the
statistics [8, 16] and the fuzzy rule learning
fields [11, 12, 13, 14]. Anyway, the most widely
used genetic methods for learning fuzzy mod-
els (Michigan, Pittsburgh and Iterative Learn-
ing [4]) are least-squares based.

In least-squares based learning methods, the
genetic algorithm is designed to minimize the
estimation of Eq. (1) over the population, us-
ing a standard experimental design (leave one
out, cross validation, etc.). But, being the op-
timal classifier defined by Eq. (2), it is im-
mediate that, whenever the quality of a fuzzy
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Figure 1: The specificity of the fuzzy output of a model carries information about the slope of the regression

function. Upper part: Both models have the same numerical error (0) but different fuzzy error. Lower

part: Fuzzy errors, according the the method explained in this paper. The right one is less specific, and
that means that the slope of ŷB(x) is higher in the sample points. Optimizing both the punctual error and

the specificity adds a regularization term to the objective function.

model is assessed by means of its mean squared
error over a sample, the best fuzzy models
must be nonparametric estimators of the con-
ditional expectation. Again, as we pointed
out in [15], from a statistical point of view,
the crisp problem is being solved, and not the
fuzzy one, and therefore least-squared based
GFS can not improve the accuracy of statis-
tical methods over crisp problems, no matter
the complexity of the genetic search. “Fuzzy”
means here that the parameterising of the dis-
criminant functions has a linguistic interpre-
tation compatible with the fuzzy logic postu-
lates.

When the output of a fuzzy model is defuzzi-
fied before it is compared to that of the other
models, some information that could help us
to select a good model is being discarded.
In fact, we suggest that the information be-
ing discarded embodies the difference between
standard (non linear least squares) statistical
regression and fuzzy models. For instance, ob-
serve that the specificity of the output car-
ries information about the slope of the model,
which can be used to find regular models (see
Figure 1.) Many other uses of the extra in-
formation are possible. In Figure 2 it is pro-

posed that the α-cut of the fuzzy error that
contains the value 0, in combination with the
specificity of the error, can be used to search
for regular models that are not further than
a certain distance from all the points in the
sample. This seems to us that some relations
with ε-insensitive SVMs [6] may exist.

3 An extended definition of the
modeling problem

In this section we will propose a definition of
fuzzy model based on the concept of fuzzy ran-
dom variable as a nested family of random
sets, which in turn are defined as imprecise ob-
servations of an unknown random variable, so
called the original random variable [10]. Con-
sequently, it will be considered that a fuzzy
valued dataset is a sample of a fuzzy random
variable, as defined in [7], whose α-cuts are
random sets. We will extend first the defini-
tion of modeling problem to the interval case,
and then apply the results to all cuts of the
fuzzy random variable sample.
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Figure 2: The value α shows the level cut of the

output of the fuzzy model for which all points in
the sample are covered. This value, combined with

the specificity of the fuzzy output, may be used to

find the most regular models that are not further
than a certain distance of all the elements in the

sample; the use of fuzzy fitness could be used to

relate fuzzy models and epsilon-insensitive SVMs.

3.1 Interval-valued data

Recall eq. 2: to succeed, a learning algo-
rithm should be able to estimate the values
E[Y |X = x] from a sample of measures taken
from a subset of Ω. Suppose that we are given
samples from two random sets Γ and ΓY , that
model the imprecise observations of X and Y ,

X(ω) ∈ Γ(ω) ω ∈ Ω (3)

Y (ω) ∈ ΓY (ω) ω ∈ Ω (4)

and need to define the conditional expecta-
tion E[Y |X] of the underlying, imprecisely ob-
served random variables.

Let us suppose that Y is a discrete random
variable, Y (ω) ∈ {y1, y2, . . . , yny}. Then,

g(x) =

Z
y f(y|x) dy =

nyX
i=1

yi P (yi|x). (5)

We need to estimate the values P (yi|X =
x). For a given small value h > 0, we can try

to give a couple of upper and lower bounds for
the value P (yi|X ∈ (x − h, x + h)). Follow-
ing [1], the limit when h tends to 0 of these
quantities is the value we need, P (yi|X = x).
Applying the definition of conditional proba-
bility, we have that P (yi|X ∈ (x−h, x+h)) =

P ({yi} ∩ {ω ∈ Ω | X(ω) ∈ (x − h, x + h)})
P ({ω ∈ Ω | X(ω) ∈ (x − h, x + h)}) . (6)

The bounds of P ({yi} ∩ {ω ∈ Ω | X(ω) ∈
(x − h, x + h)}) are P i(x, h) =

= P ({yi} ∩ {ω ∈ Ω | Γ(ω) ⊆ (x − h, x + h)})

and P i(x, h) =

= P ({yi}∩{ω ∈ Ω | Γ(ω)∩(x−h, x+h) �= ∅})

and the bounds of P ({ω ∈ Ω | X(ω) ∈ (x −
h, x + h)}) are P (x, h) =

= P ({ω ∈ Ω | Γ(ω) ⊆ (x − h, x + h)})

and P (x, h) =

= P ({ω ∈ Ω | Γ(ω) ∩ (x − h, x + h) �= ∅}).

thus we can know that the conditional expec-
tation E[Y |X] is contained in the interval de-
fined as follows (observe that the denominator
of Eq. (6) does not depend on i)

[y, y](Γ, h) =

Lny

i=1 yi [P i(x, h), P i(x, h)]

[P (x, h), P (x, h)]
(7)

where [a, b] ⊕ [c, d] = {u + v | u ∈ [a, b], v ∈
[c, d]}, and the quotient must be understood
as an interval valued operation, [a, b]/[c, d] =
{u/v | u ∈ [a, b], v ∈ [c, d]}.

In words, when the model was fed with a
real input x, its output was g(x). Now we
have fed the model with an interval Γ, and we
knew that x was contained in Γ. Its output
has been the interval [y, y], which has been
constructed to contain g(x).

Given that [y, y] is a set valued function,
the average error of the model is not longer
known (or, alternatively, we could say that the
average error is a set valued statistic.) Any-
way, we can find upper and lower bounds for
it. Let SQ([a, b]) = {t2 | t ∈ [a, b]} and
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[a, b] � [c, d] = {u − v | u ∈ [a, b], v ∈ [c, d]}
be the interval-valued square and substraction
functions, respectively. Then, the error is con-
tained in the interval

[cost, cost] = SQ([y, y](Γ, h) � ΓY ). (8)

For example, let [y, y] = [0, 4] and ΓY =

[2, 3]. Then, [cost, cost] = SQ([0, 4] � [2, 3]) =
SQ([−3, 2]) = [0, 9]. This means that the
squared error between two unknown points, if
one of then is contained in [0, 4] and the other
one in [2, 3], can be any value between 0 and 9,
and we can not give a more precise indication
without further assumptions.

Therefore, from Eq. (8) we can conclude
that the average squared error of the model
over the whole population is contained in the
interval

err([y, y]) =

»Z
Ω

cost(ω) dP,

Z
Ω

cost(ω) dP

–
(9)

3.2 Fuzzy data

If we are given a fuzzy dataset, both the out-
put of the classifier and its expected error will
be fuzzy sets, as we show in this section.

Fuzzy datasets can be regarded as samples
of a fuzzy random variable eX × eY . Every in-
stance of the variable combines two types of
noise: random noise, originated in the selec-
tion of the object (“we choose a person at ran-
dom”) and observation error, originated in an
imprecise measure (“the weight of the person
is high, where ‘high’ is one of the values of the
linguistic variable ‘weight”’).

The α-cuts eXα and eYα are random sets (for
example, the 0.5-cut of the value ’high’ can
be the interval [80,110]). Therefore, for ev-
ery value of α we can build an interval model,
as shown in the preceding section, whose out-
put is an interval of values (“if the weight is
[80,110], then the percentage of body fat is be-
tween 20 and 30”). It is intuitive to conclude
that the output of the model, if presented a
fuzzy input, will be a fuzzy set defined over
the set of outputs (“if the weight is high, and
height is low, then the body fat is high”.) The

same can be said about the average error of
the fuzzy model; it will be a fuzzy set.

To obtain this last value, it suffices to admit
that the best description we can make about
the probability P ({yi} ∩ {ω ∈ Ω | X(ω) ∈
(x−h, x+h)}), given that the original random
variable X is contained in the fuzzy random
variable eX, is a fuzzy set ePi, whose α-cuts are
intervals [P α

i , P
α
i ], where P α

i =

= P ({yi}∩{ω ∈ Ω | [ eX(ω)]α ⊆ (x−h, x+h)})

and P
α
i , P α and P

α
are defined similarly, as

we did in the preceding section.
Therefore, the fuzzy output of the model

will be the set ey( eX, h), defined by its α-cuts:

[ey( eX, h)]α =

Lny

i=1 yi [P α
i (x, h), P

α
i (x, h)]

[P α(x, h), P
α
(x, h)]

(10)

and its average error is another fuzzy set,

ferrα =

»Z
Ω

costα(ω) dP,

Z
Ω

costα(ω) dP

–
(11)

where [costα, costα](ω) =

= SQ([ey( eX(ω), h)]α � [eY (ω)]α). (12)

or, alternatively, we can define a f.r.v.

gcost(ω) = SQ(ey( eX(ω), h) � eY (ω)) (13)

where SQ and � are the standard square and
substration fuzzy arithmetic operators [9], and
define the averaged error of the fuzzy model as
the expectation of this variable.

Lastly, if we are given a sample (w1, . . . , wn)
of Ω, the sample mean of gcost is the fuzzy set

1

n

nM
i=1

SQ(ey( eX(ωi), h) � eY (ωi)) (14)

and, given the definition of the cost function,
it can be proved that fulfills the properties re-
quired in [17] and that this last value converges
in distribution to ferr = E[gcost].

We propose to use Eq. (14) as the fuzzy-
valued fitness function in genetics-based fuzzy
models. Contrary to the fitness that was de-
veloped to learn fuzzy classifiers [15], the fuzzy
fitness of a fuzzy model has a very intuitive
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weight fuzzy weight fat fuzzy fat

1 76 (74,75,76) 17 (12,17,19)
2 88 (87,88,89) 24 (21,24,27)

3 82 (81,82,83) 20 (18,20,22)

4 80 (79,80,81) 21 (18,21,22)
5 72 (71,72,73) 12 (11,12,13)

Table 1: Dataset for the example problem
’body fat’

Figure 3: Definition of the linguistic variables

“weight” (upper part) and “body fat” (lower part),

as used in the example problem.

meaning: it consists in replacing the opera-
tions that are needed to evaluate a crisp model
by their fuzzy arithmetic-based counterparts.
In the next section, this expression will be
made clear by means of a numerical example.

4 Example of fitness evaluation in
the fuzzy model

Let us suppose that we have to guess the per-
centage of body fat, given the weigth of a per-
son. To design the model, we are given a sam-
ple comprising five people, whose weights and
percentages are given in table 1. Weights are
triangular fuzzy numbers, designated by three
numbers: leftmost, center and rightmost val-
ues.

Let us also suppose that the GFS has to
evaluate the fitness of the rule base that fol-
lows:

if weight is small then fat is small

if weight is medium then fat is medium

if weight is high then fat is high

where the linguistic variable “weight” takes
the values shown in figure 3. We wish to as-
sign a fitness value to this rule base, given the
mentioned dataset.

Let us evaluate first this model over the
crisp dataset given by the column “weight”
in table 1. We have used COG defuzzifica-
tion (the output of the model is computed as
a weigthed sum of the output of each rule,
where the weights are the areas of the trun-
cated memberships of the output.) The results
are as follows:

X Y g Cost

75 17 16.25 0.56
88 24 25.45 2.12
82 20 22.05 4.18
80 21 20 1
72 12 14.55 6.48

therefore, the cost of this model is (0.56 +
2.12 + 4.18 + 1 + 6.48)/5 = 2.86.

If we apply an interval input to the same
model (the support of the fuzzy examples,) its
output is an interval of values. Observe that,
since the rule base in this example defines a
monotonic continuous mapping, we just need
to compute the output at the boundaries of
the intervals, but this may not be true with a
different rule base. The interval outputs and
costs are as follows:

Sample Sample Model

Input Output Output Cost

[74, 76] [12,19] [15.74, 16.76] [0,22.62]

[87, 89] [21,27] [24.81, 26.29] [0,28.01]
[81, 83] [18,22] [21.21, 22.69] [0,22.03]

[79, 81] [18,22] [18.79, 21.21] [0,10.29]

[71, 73] [11,13] [13.71, 15.19] [0.5,17.59]

therefore the cost is contained in the interval
[0.10, 20.11] (i.e., when data is precisely mea-
sured, we estimated that the mean squared er-
ror was 2.86. With interval-valued data, all we
can say without assuming a random distribu-
tion of the observation error is that the error
is contained in the interval [0.10, 20.11].)

Finally, if the model is applied a fuzzy in-
put, its outputs and costs are shown in table
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Sample Sample Model
Input Output Output Cost

(74, 75, 76) (12,17,19) (15.74, 16.25, 16.76) (0, 0.56, 22.62)
(87, 88, 89) (21,24,27) (24.81, 25.45, 26.29) (0, 2.12, 28.01)
(81, 82, 83) (18,20,22) (21.21, 22.05, 22.69) (0, 4.18, 22.03)
(79, 80, 81) (18,21,22) (18.79, 20, 21.21) (0, 1, 10.29)
(71, 72, 73) (11,12,13) (13.71, 14.55, 15.19) (0.5, 6.48, 17.59)

Table 2: Output of the example model when the input is a fuzzy set. The triplets (a, b, c) represent
the lower limit, mode and upper limit of the corresponding fuzzy numbers. The error of the model
is (0.10, 2.86, 20.11), and its membership function is plotted in Figure 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

"membership.dat" u 1:2

Figure 4: Fuzzy membership assigned to the ex-

ample model.

2. Observe that neither the output, the costs
nor the average error are triangular fuzzy num-
bers; the fuzzy valued fitness of this rule base
is plotted in figure 4. As we mentioned in the
introduction, this fuzzy fitness carries informa-
tion about the punctual error of the model (the
mode), the mean slope of the model (its non-
specificity) and the degree to which the exam-
ples are covered, as shown in Figure 2 (which
is 0 in this case, since there is one example
which does not intersect with the support of
the the output of the model.) The relative
importances that are given to this factor, by
means of a fuzzy ranking or a multicriteria al-
gorithm, will determine the kind of model that
will be obtained.

5 Concluding remarks and open
problems

This paper is a followup of [15]. In that work,
we proposed a fuzzy fitness function that can
be used with genetic fuzzy classifiers. Now
we have completed the study with this pa-
per, where an equivalent fitness function has
been derived for Genetic Fuzzy Models. Ei-
ther in stochastic classifiers or models, when
data is vague, it is needed to introduce addi-
tional hypotheses, as a probability distribution
(uniform, gaussian, etc.) over the measure-
ment errors. Fuzzy algorithms do not need
this extra information. Therefore, for this kind
of problems, GFSs are inherently better than
their stochastic counterparts. Obviously, this
is not longer true if data are “defuzzified” be-
fore they are fed to the learning algorithm.
In this last case, since the optimal decisions
are the Bayes classifier or the conditional ex-
pectation, we can not expect GFS to outper-
form statistical methods, and the benefits of
the fuzzy approach are restricted to the field
of linguistic understandability.
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