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Abstract 

 
 This paper deals with the learning of the 

membership functions for Mamdani Fuzzy Systems – 
the number of labels of the variables and the tuning of 
them – in order to obtain a set of Linguistic Fuzzy 
Systems with different trade-offs between accuracy and 
complexity, through the use of a two-level evolutionary 
multi-objective algorithm. The presented methodology 
employs a high level main evolutionary multi-objective 
heuristic searching the number of labels, and some 
distributed low level ones, also evolutionary, tuning 
the membership functions of the candidate variable 
partitions.  
 
1. Introduction 
 

Recent research on the design of linguistic fuzzy 
models (FMs) [1] with genetic algorithms has focused 
on methods aimed at generating fuzzy rule-based 
systems (FRBS) with an appropriate trade-off between 
two usually contradictory features, accuracy and 
interpretability in the sense of system complexity [2], 
[3], so as to obtain reliable and understandable models.   

One of the recent techniques used to improve the 
aforesaid trade-off between accuracy and 
interpretability of linguistic fuzzy systems has been 
Multi-Objective Evolutionary Algorithms (MOEAs) 
[4] - [12]. Some of these achieve the set of non-
dominated solutions with different trade-off between 
both features by selecting the set of rules [9], [12] best 
representing the example data, i.e., providing a set of 
solutions with different balance between the 
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complexity of the fuzzy rule base (RB) and system 
accuracy. 

In addition, there are many studies devoted to the 
design of different elements of fuzzy systems, such as 
tuning the meanings of the variables used in the rules 
[13], [14] (tuning of the membership functions), 
learning the number of labels for each variable 
(granularity) [15], [16] deriving the linguistic RB [17] - 
[21], setting up the inference system [22] -[23], and 
establishing the defuzzification method [24] amongst 
others. Likewise, there are studies focusing on 
combinations of some of these techniques [25], [26] to 
achieve a joint solution where different elements 
cooperate. These techniques can present major 
difficulties when we deal with complex models with 
large data sets (the scaling problem).  

In line with these ideas, in this paper we present a 
methodology for the design of linguistic fuzzy systems 
aimed at a more readily achievable accuracy by 
focusing on the learning of one of the most influential 
elements in this process, the variables membership 
functions, specifically combining the learning of the 
number of membership functions with the tuning of 
them. This is accomplished whilst taking into account 
the main objective in systems modeling, which is to 
develop reliable and understandable models by using a 
multi-objective evolutionary methodology that 
generates a set of FRBSs with different optimal trade-
off between accuracy and complexity.  

The evolutionary model proposed deals with large 
search spaces, in particular when complex models or 
large data sets are being dealt with. This difficulty is 
tackled by making a simple, high level, main 
evolutionary multi-objective search of the number of 
labels and some low level evolutionary distributed 
searches which tune the membership functions. Not 
only does the distributed tuning take advantage of 
available computer clusters in terms of computing 
power like [27] (where a two-level methodology for 
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granularity and RB learning was proposed in order to 
have a simple much more cost-effective approach than 
using individual super-computers of similar 
performance), but convergence is improved thanks to 
communications among distributed searches like 
genetic algorithm island model architecture. 

In order to explain how this is achieved, Section II 
describes the proposed model, Section III shows the 
experimental study developed, and finally Section IV 
presents some concluding remarks. 
 
2. Proposed Model 
 

This section describes the two-level parallel-
distributed methodology proposed in this work. First, 
we provide an overview of the method, and then give a 
detailed description of the high level node and the low 
level nodes in two subsections.  

Membership functions learning has been one of the 
most studied topics for improving the accuracy of 
system modelling with FRBSs, alongside its effects on 
interpretability [13]. By other hand, the influence of 
fuzzy partitions granularity has been studied [16]. 

The proposed model makes use of both these ideas, 
the learning of the granularity and the tuning of the 
terms of the variables. These processes are not 
independent because the tuning is coupled to the 
granularity previously selected. 

We propose to use a high level single search based 
on a multi-objective algorithm to find a set of optimal 
granularity combinations of the variables using 
accuracy and complexity as objectives. Coupled with 
the abovementioned high level search, in particular 
with the evaluation of its candidate solutions, the 
proposed model uses some low level parallel 
distributed evolutionary search processes to find the 
best tuning for the membership functions associated 
with each granularity combination candidate. Figure 1 
shows this schema. 

 

 
Figure 1.  Global scheme 

The two-level methodology proposed have an 
interesting feature taken from the distributed genetic 
algorithm field that improves its convergence beyond 
the use of parallel nodes which is the communications 

between them though a exchange pool. It will be 
describe in depth in Section 2.2. 
 
2.1. High level multiobjective search:  
granularity of the variables  

 
As mentioned above, a single node performs a 

multi-objective search in order to find the granularity 
of the variables. It uses a multi-objective schema 
implemented using one of the best-known and 
frequently-used MOEAs for general multi-objective 
optimization in the literature: the NSGA-II [28]. It is a 
parameterless approach with many interesting 
principles: a binary tournament selection based on a 
fast non-dominated sorting, an elitist strategy and a 
crowding distance method to estimate the diversity of a 
solution. A fuller description may be found in [28]. 

The two objectives considered by the MOEA are 
the mean square error (as a measure of accuracy) and 
the number of rules (as a measure of interpretability in 
the sense of complexity) of the FRBS obtained. 

The coding scheme used in the evolutionary high 
level search is the one shown in Figure 2. Every 
chromosome of the multi-objective algorithm encodes 
the number of linguistic labels for each variable. More 
specifically, each chromosome has as many genes as 
the problem has variables. Hence, genes are integer 
values indicating the number of linguistic terms in their 
respective variables, likewise for antecedents and 
consequents. The minimum and maximum number of 
linguistic terms that each variable may have is 
predetermined, and they are uniformly distributed in 
the universe of the variable.  

Genes are randomly initiated to a value between the 
predetermined minimum and maximum values.  
 

 
Figure 2.  MOEA chromosome coding 

 
2.2. Low level distributed search: tuning of 

membership functions 
 

The evaluation of the population of the MOEA in 
the high level node is carried out in some subordinate 
nodes for every chromosome in its population. 

The subordinate nodes perform a low level 
distributed search of the tuning of the membership 
functions of the variables. It is achieved in three stages: 
first, each node receives the number of linguistic terms 
for each variable, then it generates the associated RB 
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and finally it performs the evolutionary tuning of 
membership functions in collaboration with other 
nodes, returning the RB and its accuracy computed 
with the training dataset to the high level node.  

The tuning of the membership functions is 
performed using LA-tuning [29], which only manages 
the displacement and the amplitude of a label. This is a 
good approach because it works with fewer parameters 
than classic tuning [14] obtaining good results. 

In [29], the authors used a real coded CHC [30] to 
perform the LA-tuning, which presents a good trade-
off between exploration and exploitation, making it a 
good choice in problems with complex search spaces. 
The genetic model of CHC makes use of a 
“Population-based Selection” approach. N parents and 
their corresponding offspring are combined to select 
the best N individuals to form part of the next 
population.  

We have modified the CHC model, adding an 
individuals exchange mechanism whereby each node 
can share its individuals with other ones. This 
architecture is known as Multi-deme parallel GA or 
“island model” GA [31] in the GA area which each 
node corresponds to a deme. 

In our proposal, the goal of such mechanisms is to 
improve the convergence based on the movement of 
good quality information about terms tuned among 
nodes with the same variable granularity. In this way, 
each node periodically is informed of the best results 
information (granularity and tuning) stored in an 
exchange pool and it can use this data that match the 
granularity of any of its own variables to create a new 
individual for its own population. Particularly, it 
generates a hybrid chromosome from the foreign 
individual and the best individual of its population at 
that moment. 

Each hybrid chromosome competes with a 
randomly selected individual from the population in a 
binary tournament selection procedure to determine 
which remains in the population.  

Figure 3 shows a global scheme of a node in the 
distributed evolutionary model based on the original 
CHC [30]. 

Two parameters have to be considered in this 
scheme: the migration rate and the migration 
frequency, which respectively represent the percentage 
of individuals that a node can send/receive to/from the 
network and how many evaluations are performed in 
each migration. 

 
Figure 3. Scheme of a node in the distributed 

evolutionary model based on CHC 
 
3. Experimental Study 
 

In order to analyze the practical behavior of the 
proposed methodology, we built several FMs in two 
real-world problems [32], [33], with different 
complexities (different number of variables and 
amount of data). 

Table 1 summarizes the different models used in 
the experimental study, where LA-tN stands for LA-
tuning [29], the method considered as reference, and N 
being the granularity selected in all the variables. The 
DN methods are the proposed two level multi-objective 
distributed models, where N is the maximum number 
of labels used by the algorithm. We also decided to test 
the performance of the two level multi-objective 
methodology proposed sequentially, which are denoted 
by SN, to study the advantages of the distributed model 
against the sequential model (S models do not use 
chromosome exchange mechanism). 

Table 1. Methods considered for comparison 
Ref. Method Description 
[29] LA-tN LA-tuning with N labels for each variable

- SN Two-level Sequential evolutionary multi-
objective methodology with up to N labels 
for each variable 

- DN Two-level Distributed evolutionary multi-
objective methodology with up to N labels 
for each variable 

 
3.1. Applications and Comparison Method 

 
To evaluate the goodness of the proposed approach, 

two real-world problems with different complexities 
were considered: 
• An electrical distribution (EL) problem [32] that 

consists in estimating the maintenance costs of 
medium voltage lines in a town (1059 cases; 4 
input continuous variables; one output variable). 

• The Ankara Weather (AW) dataset [33] that 
concerns the task of trying to predict the mean 
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temperature in Ankara, Turkey (1609 cases; 9 input 
continuous variables; one output variable). 

We considered a 5-fold cross-validation model, i.e., 5 
random partitions of the data, each with 20% (4 with 
211 examples, and one with 212 examples, for the EL 
problem, and 4 with 322 examples, and one with 321 
examples for the AW problem) and the combination of 
4 of them (80%) as training, with the remaining one as 
test. We achieved a total of 30 trials for each model, by 
running the learning methods for each one of the data 
partitions 6 times with different seeds for the random 
number generator. We show the average values of the 
mean square error (MSE), as a standard performance 
measure (with expression (1)), 

P) ) - S (x ( y    = MSE  (S)
P

k=
kkB /)

2
1(

1

2∑ , (1) 

where S denotes the FM selected, computed 
considering the most accurate solution from each 
Pareto obtained with the multi-objective algorithm. 
This measure uses a set of system evaluation data 
formed by P pairs of numerical data Zk = (xk,yk), 
k=1,..,P, with xk being the values of the input variables, 
and with yk being the corresponding values of the 
associated output variables. 
 
3.2. Genetic Algorithms Setup 
 

The MOEA in the high level node used different 
configurations depending on the maximum number of 
linguistic terms set up. When a maximum value of 5 
labels was selected in the EL problem, the population 
was fixed to 25 chromosomes and the number of 
evaluations was 750. On the other hand, when the 
maximum value of 7 labels for each variable was 
selected in the EL problem - just as when the 
maximum value of 5 labels for each variable was 
selected in the AW problem - the population was fixed 
at 25 chromosomes and the number of evaluations was 
1250. The crossover operator used was HUX-α with α 
= 0.5. The mutation operator used was the classic 
mutation operator with a probability of 0.2. The initial 
population was randomly initialized within the 
minimum to maximum range of values for the 
partitions. 

The models based on CHC algorithm used in the 
low level nodes (both for sequential and distributed 
models) were set up with a population of 30 
chromosomes in all cases. The number of evaluations 
was fixed to 3000 in the case of the EL problem when 
the maximum value of 5 labels for each variable was 
selected, and to 5000 evaluations in both the EL 
problem when a maximum of 7 labels was selected and 
in the AW problem. The crossover operator used was 
BLX-α with α = 0.5. The threshold to restart the 

population was fixed to L/4, L being the length of the 
chromosome multiplied by the number of bits which 
codified each gene. 

The migration rate and the migration frequency 
were fixed to 0.1, and the threshold of the binary 
tournament was set to 0.75 in all cases. 

 To compare the results obtained we also used non-
parametric tests, according to the recommendations 
made in Demšar [34] which suggests a set of simple, 
safe and robust non-parametric tests for statistical 
comparisons of algorithms, one of which is the 
Wilcoxon signed-ranks test [35] we use in this work. It 
is analogous to the paired t-test in non-parametrical 
statistical procedures. 

The RB is generated using the well known Wang & 
Mendel [18] algorithm. 
 
3.3. Results and Analysis 
 

The results obtained are shown in Table 2 and 3 for 
the EL problem and in Table 4 for the AW problem, 
where MSE are the average MSE, for training and test, 
and Wil-test are the results of applying the Wilcoxon 
signed-ranks test [35] (with 95% confidence), with the 
following interpretation: * represents the best average 
result (control algorithm); + means that the best result 
has better (the same for =) performance than that of the 
corresponding row; and finally #R is the average 
number of rules.  

It is important to note that Tables 2, 3 and 4 only 
show the FRBS with the best accuracy of the Pareto 
front for each multi-objective model. Viewing these 
Tables we can point out that the distributed models (D) 
show the best accuracy in all cases with a similar or 
lower number of rules. They improve the sequential 
ones (S), which use the same evaluations, so this 
mechanism improves the convergence of the 
evolutionary models. Table 7 shows the mean speed-up 
ratio obtained computed as the time spent by the 
sequential divided by the execution time of the 
distributed approach. The higher the value of this ratio, 
the better. The distributed approach takes advantage of 
its architecture that uses 25 low level nodes. 

Table 5 and 6 show an example of the Pareto front 
obtained by the models S7 and D7 respectively for the 
EL problem. Their columns show the MSE for training 
and test, the number of rules, and the chromosomes 
achieved, that is, the number of linguistic terms found. 
The first 4 genes on the left of the chromosome belong 
to the antecedents and the last one on the right belongs 
to the consequent. Some solutions with different trade-
offs have been found among the most and the least 
accurate. Figure 4 compares the Pareto fronts for S7 
and D7. 
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Table 2. Results obtained for the EL 
application with a maximum of 5 labels 

Method Training Test #R MSE Wil-test MSE Wil-test 
LA-t5 20950,70 + 24851,75 + 65 

S5 13151,07 + 16017,05 + 32,2 
D5 11289,87 * 13354,10 * 29,2 

Table 3. Results obtained for the EL 
application with a maximum of 7 labels 

Method Training Test #R MSE Wil-test MSE Wil-test 
LA-t7 15537,62 + 18461,97 + 103 

S7 9306,01 + 11271,95 + 42,8 
D7 8594,57 * 10234,54 * 42,8 

Table 4. Results obtained for the AW 
application with a maximum of 5 labels 

Method Training Test #R MSE Wil-test MSE Wil-test 
LA-t5 1,40 + 4,50 + 851,2 

S5 1,15 + 1,51 = 151,4 
D5 1,12 * 1,42 * 146,1 

Table 5. A Pareto front example obtained by 
the model S7 for the EL problem 

S7 
MSETRA MSETST #R Chromosome 
9553.92 12159.94 45 2-2-6-7-7 
9606.33 12442.81 37 3-2-5-4-7 

10102.26 13573.44 31 2-3-5-4-7 
12604.47 13681.52 26 2-3-4-4-6 
12908.61 18126.73 25 2-2-4-4-7 
14490.37 15342.72 17 2-2-6-2-7 
19378.72 21058.12 11 2-2-3-2-6 
30418.25 44803.99 9 2-2-2-2-6 

Table 6. A Pareto front example obtained by 
the model D7 for the EL problem 

D7 
MSETRA MSETST #R Chromosome 
7711.17 8833.75 45 2-2-6-7-7 
9443.36 12332.92 31 2-3-5-4-7 

10729.20 14029.50 25 2-2-4-4-7 
13678.55 14107.97 17 2-2-6-2-7 
17268.90 22846.77 14 2-2-4-2-6 
19398.57 21578.84 11 2-2-3-2-6 
23510.23 33407.38 9 2-2-2-2-6 

Table 7. Speed-up values using 25 nodes 
Dataset Speed-up

EL with a maximum of 5 labels 12.52 
EL with a maximun of 7 labels 12.75 
AWwith a maximum of 5 labels 13.79 

 
4. Conclusions 
 

The use of multi-objective algorithms in the design 
of FRBSs gives a set of solutions with different levels 
of conciliation between accuracy and complexity. In 
this work we have proposed an evolutionary two-level 
parallel distributed multi-objective learning 
methodology where the number of membership 

functions is learnt, as well as their tuning. The 
distributed methodology proposed deals with more 
complex models with larger data sets, taking advantage 
of the available computing resources, and improving 
their convergence at the same time as was showed in 
the experimental study developed. 
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