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Abstract. Measuring the current in the neutral-grounding resistor is
needed for monitoring resistance-grounded three phase transformers. This
current is limited to hundreds of amperes in case of a fault, and are al-
most negligible otherwise. The current transformer that senses the cur-
rent must be rated for the fault conditions, thus it is difficult to obtain a
precise measurement of the current when there is not a ground-fault in
the system.
In this paper we propose a computer-based method for filtering the out-
put of the current transformer and improving its accuracy for small cur-
rents. This processing is complicated, as the amount of noise is very high,
and this noise is strongly correlated with the useful signal. We propose to
use Kalman filtering, based on a model of the system, and augment the
state of this model with a shaping filter, whose frequency response, when
fed with white Gaussian noise, reproduces our measurements of the am-
bient noise. In particular, since the Power Spectral Density (PSD) of the
noise changes with time, we propose to use a possibilistic description of
the PSD of the noise, and search for a model whose PSD is between the
soft margins defined by the possibilistic model. We will use a state-space
based representation and a genetic algorithm, guided by a fuzzy fitness
function, for evolving the shaping filter that best matches the ambient
noise. The proposed method has been evaluated with field data captured
at a 130KV substation transformer at La Corredoria (Asturias, Spain).

1 Introduction: Ground-neutral monitoring systems

Neutral-grounding resistors (NGR) provide current for ground-fault detection
and selective coordination. Its failure is dangerous, as it converts a resistance-
grounded system into an ungrounded system. While this is not a common prob-
lem in Europe, the probability of the NGR becoming open is higher in those
parts of the world where these elements are subject to higher thermal stresses
and continuous monitoring of the NGR is needed. Else, there is no indication
that the system has become ungrounded, and the risk of transient overvoltages
or the presence of voltages on otherwise safe conductors exists.



In Figure 1 a 130KV tree phase substation transformer and its NGR (yellow
circle in the left part of the figure) are shown. The NGR is connected to the
neutral of the transformer (center part of the same figure) and to earth (right
part). This particular resistor is designed for limiting the current to 500A in case
of a fault. A suitable current transformer (CT) measures the current through
the NGR and its output is constantly monitored.

Fig. 1. La Corredoria substation transformer and its NGR (left part). Detail of the
connection between the NGR and the neutral (center) and ground (right), showing the
current transformer used in this paper.

The absence of current at the CT means that either the transformer is bal-
anced or the NGR is open, thus the monitoring of this current does not prevent
by itself the risks mentioned before. A NGR monitoring system involves more
elements [8, 11], as shown in Figure 2 (this system will be further explained in
Section 2). In this schema, a resistor is used for measuring the voltage at the
neutral of the transformer; this value, divided by the current through the NGR,
is the ohmic value of the NGR, as desired.
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Fig. 2. Schema of a NGR monitoring system.



There is still a caveat with this scheme: in case the system is perfectly bal-
anced, no current flows by the NGR and the voltage at the neutral is also null,
thus we cannot tell whether the NGR is open or not. There are two possibilities
for overcoming this problem:

– We can inject DC or low frequency current into the NGR path and measure
the increase in the voltage of the neutral, or

– We can amplify the output of the current transformer and measure the resid-
ual current. We expect that this residual current has components in the first
odd harmonics, because of the stray capacities of the line, and also at very
high frequencies (> 1KHz) because of the use of Power Line Carrier [3], thus
it is potentially usable for detecting open NGRs.

In this study we will explore the second option. The main difficulty of this
approach is in the level of amplification need, which will be affected by the
important ambient noise near a substation transformer. That is to say, we need
to separate the measurement of the actual current from those stray currents
induced in the transmission line. The problem is, these stray currents are strongly
correlated with the signal, and their Power Spectral Density (PSD) also varies
with time within certain limits.

We have decided to make a Kalman filtering of the signal, taking into account
the spectrum of the noise by mean of a shaping filter [5] that is designed to
produce a signal with the same PSD as the ambient noise. This shaping filter
will be used to augment the state of the system, as we will explain in Section
2. For obtaining the model of such a shaping filter we propose to use Genetic
Algorithms (see Section 3). It is remarked that the novelty of this approach,
apart from the definition of specialized genetic operators and the representation
of the individuals, is in the fact that the desired PSD is not completely known,
thus the GA will be guided by a fuzzy fitness function. In Section 4 we show the
results of the application of this system to real-world data. The paper finishes
with the concluding remarks in Section 5.

2 Description of the measurement system

The measuring system that will be analyzed in this paper is shown in the left
part of Figure 3. The output of the current transformer is connected to a resistive
load RL (the burden resistor of the current transformer has not been shown in
the schema). Alas, if the cable is not perfectly shielded then there will be stray
currents flowing through it; we have represented them as a coupled coil Lmutual
in the figure. When studying the noise, we replace the current transformer by a
resistance of high value, and measure the voltage dropped in RL. The voltage
drop in RL depends on the sum of both currents: the current in the secondary
of the CT and the stray currents we have mentioned.

According to our own experimentation, at low frequencies, the current in the
NGR is comprised of the first odd harmonics (50Hz, 150Hz, 250Hz and 350Hz),
while at high frequencies the contribution of the DLC produces a more complex



profile. In this work we limit ourselves to low frequencies, and propose that the
current yC by the NGR is modeled by the state space discrete system

xC(kh+ h) = ΦCxN (kh) (1)

yC(xk) = CCxC(kh) (2)

where ΦC will have all its poles at the unit circle, at frequencies that match the
mentioned harmonics. Observe that such a system is unstable and the input is
not needed.

Secondly, we want to devise a similar model for the noise, and combine it
with the preceding model as shown in the right part of Figure 3. The noise model
is a shaping filter whose input is white Gaussian noise and whose output mimics
the frequency behavior of the noise, measured as described before. The model
of the shaping filter will be expressed in observable canonical form, because of
reasons that will be made clear in Section 3:

xN (kh+ h) = ΦNxN (kh) + ΓNv(k) (3)

yN (xk) = CNxN (kh) (4)

where v(k) is Gaussian white noise with mean 0 and variance 1, and CN =
(1, . . . , 0).
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Fig. 3. Block diagram of the augmented system

The augmented system (see Figure 3) is

x(kh+ h) = Φx(kh) + e(k) (5)

y(xk) = CNxN (kh) (6)

where x = (xTC |xTN )T , and e(k) is white noise with covariance R1

R1 =

(
0 0
0 ΓNΓ

T
N

)
(7)



and the combination of the two state space matrices we have proposed is

Φ =

(
ΦC 0

0 ΦN

)
=



cos 2πf1h sin 2πf1h
0

0
− sin 2πf1h cos 2πf1h

...

0
cos 2πf4h sin 2πf4h
− sin 2πf4h cos 2πf4h

0

c1 1 0 · · · 0 0
c2 0 1 · · · 0 0

...
c8 0 0 · · · 0 0


(8)

C = (CC | CN ) = (CC | 1 . . . 0) (9)

thus particularizing the Kalman filter [5] to this case, we obtain the equations

x̂(k + 1 | k) = Φx̂(k | k − 1) +K(k)(Y (k)− Cx̂(k | k − 1)) (10)

K(k) = ΦP (k)CT (CP (k)CT )−1 (11)

P (k + 1) = ΦP (k)ΦT +R1 − ΦP (k)CT (CP (k)CT )−1CP (k)ΦT . (12)

3 Genetic optimization of a shaping filter

This section describes the use of Genetic Algorithms for evolving the three ma-
trices ΦN , ΓN and CN described before. Observe that we need to restrict our
search to stable systems, i.e. to those matrices ΦN whose eigenvalues are in
the unit circle. We want that the PSD of this system, when the input v(k) is
Gaussian white noise, is similar to the PSD of the ambient noise.

There are two challenges in this search: (1) the PSD is time-varying, and (2)
it is not trivial to determine the complex eigenvalues of a general matrix [9]. We
have solved them as follows:

1. We have divided the spectrum of frequencies between 50 and 500Hz in 10
bands, and computed five confidence intervals at levels 0.50, 0.25, 0.10, 0.05,
0.01 for the energy of the noise for each band. These five intervals are re-
garded as α-cuts of fuzzy values describing our knowledge about the PSD of
the noise.

2. We do not generate random matrices and discard those corresponding to
unstable processes. We represent instead ΦN by means of the roots of its
characteristic polynomial, and use the observable canonical form of the sys-
tem.

In the following paragraphs we discuss both subjects: the computation of the
PSD and the representation of the matrices that comprise the model of the
noise.



3.1 Fuzzy PSD

Let yN (kh) the output of the noise model, when the input is v(kh), white Gaus-
sian noise. Let us assume a zero-th order hold (yN (t) constant in t ∈ [kh, kh+h))
and let the autocorrelation of this time series be

E(yN (t) · yN (t+ τ)) = ψyN (τ). (13)

Then, the PSD of the noise is the Fourier transform of the autocorrelation,

Ψx(ω) =

∫ ∞
−∞

ψyN (τ)e−jωτdτ (14)

and the energy of the band [ωk −∆/2, ωk +∆/2] is

energy(ωk) =

∫ ωk+∆/2

ωk−∆/2
Ψx(ω)dω. (15)

We have defined 10 bands of width 50Hz each, at frequencies ωk = 100kπ,
k = 1, . . . , 10. We want to obtain 10 fuzzy sets describing the expected energy at
each band, and its dispersion. First, the energy at each band ω is measured N
independent times, and the values energyi(ω), i = 1 . . . N are obtained. Second,
following the interpretation in [1, 10, 2], we compute the intervals

Iα(ω) = [I−α (ω), I+α (ω)] (16)

where Iα(ω) is the smallest interval for which

#{i | I−α (ω) ≤ energyi(ω) ≤ I+α (ω)} ≥ N(1− α). (17)

Lastly, we define the fuzzy PSD of the noise as the fuzzy set with membership
function

P̃SDω(x) = sup{α | x ∈ Iα(ω)}. (18)

3.2 Representation of the state, input and output matrices

We have mentioned that the state matrix will be codified by mean of its poles,
or roots of the characteristic polynomial of ΦN , which is

8∑
i=0

ciλ
i =

8∏
i=1

(λ− pi) (19)

where pi are the complex poles of the system. It is remarked that the poles must
be conjugated in pairs or be real numbers for the ci to be real numbers.

The matrix ΓN is codified as a vector of 8 real numbers. C has only one
term different than zero, and this value is not represented in the genetic chain
but solved so that the average energy of the individual is the same as the modal
point of the average energy of the noise.



3.3 Generation of the initial population

The individuals are generated at random, but taking into account that the com-
plex poles are paired with their conjugates, so the state matrix of the noise
is real. The probability of appearance of each pole is not uniform, but biased
towards unstable poles of the form cos 100kπ ± j sin 100kπ.

3.4 Genetic Operators

The genetic operators are, for the most part, standard two-point crossover and
arithmetic mutation [7]. The particularities of both are:

Crossover Since complex poles must be accompanied by their conjugates, we
represent both together and prevent the point between them from being an split
in the crossover. We also do an arithmetic combination of the cut points, in order
to introduce genetic diversity.

Mutation If a pole is mutated, then its conjugate must be modified in accor-
dance. The mutation is defined as the convex combination between the value
and a randomly generated parameter.

3.5 Fitness function

The fitness is the degree of compatibility between the fuzzy PSD of the individual
(obtained by simulation of the candidate model in 10 random sequences, as
explained in Section 3.1) and the fuzzy PSD of the ambient noise,

∑
k

log
˜PSDmodel(100kπ)˜PSDnoise(100kπ)

(20)

where the “log” and “quotient” operators are the extensions of the conventional
operators to fuzzy aritmetic [4].

3.6 Generational scheme

The generational scheme is steady state, with a tournament of size 5, where the
offspring of the two winners replaces the last two individuals in the tournament.
The probabilities of mutation and crossover are 0.05 and 1. In the tournament
we have used the uniform dominance defined in [6].

4 Numerical results

In this section we will compare first the use of crisp and fuzzy fitness functions
for finding the model of the ambient noise, then we will apply it to estimate the
current in the NGR of a 130KV transformer, as mentioned.



4.1 Crisp and fuzzy fitness functions

In the left part of Figure 4 we have superimposed some experimental measure-
ments of the PSD of the ambient noise, taken at the same point but at different
times. Observe that there is a significant dispersion of the energy of each har-
monic, mainly at high frequencies. In this paper we claim that it is preferable to
fit a model to a fuzzy description of this data than fitting a model to the average
values of the same data.

To illustrate this result, we have learned 30 crisp models and 30 fuzzy models,
following the methodology explained in the preceding section. The fitness of a
crisp model was computed with the same equation (20) than the fuzzy model,
but replacing the fuzzy PSD by the average of the PSDs. The 60 models were
tested against an independent set of 10 PSDs of the actual noise, measured at a
later time. The results are shown in the right part of Figure 4 and in Table 1.

Train Test
Best Average Worst Best Average Worst

Crisp-GA 5.073 3.430 5.135 9.230
Fuzzy-GA 2.538 4.248 8.133 2.510 4.312 8.477

Table 1. Train and test error (30 repetitions) of crisp and fuzzy approaches
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Fig. 4. Left: Dispersion of the ambient PSD. Right: Boxplots of the average error model
with crisp and fuzzy fitness functions.

The boxplots show the dispersion of the average error of the model, and
the table shows the mean values of the best, average and worst models. The



p-value of a Wilcoxon test between the two samples of test errors (“Average”
column) is 0.0399, thus there is a significant difference between crisp and fuzzy
methodologies, at a confidence level of 95%.

4.2 Real-world data

We have sampled the output of the current transformer (CT) in the NGR, and
the results are displayed in the red curve in the left part of Figure 5. Observe that
there is a high amount of high-frequency noise, that makes hard to perceive the
actual shape of the current; we have filtered out these components with a low-
pass filter before applying the Kalman filtering. We have superimposed (black
trace) a capture of the ambient noise taken elsewhere, that is not synchronized
with this current. In the right part of the same figure we have displayed again
the preprocessed output of the CT, along with the Kalman filtering of this signal
(red curve with dots); observe that this filtered signal is a nearly periodical curve
comprising the first four odd harmonics, as expected.
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Fig. 5. Left: signal (red) and noise (black) in the CT. Right: Kalman filtering of the
CT output (red line with circles)

.

5 Concluding remarks and future work

In this paper we have proposed a method for obtaining the state-space equations
describing a shaping filter that mimics the ambient noise at a substation trans-
former. This model is intended to augment the state of a model of the current
flowing through the NGR of the transformer, in order to obtain a model whose



input is white noise and therefore suitable for Kalman filtering. We have shown
that the use of a possibilistic representation of the dispersion of the PSD of
the noise with time can be exploited by a fuzzy fitness function-driven Genetic
Algorithm, producing models with improved generalization capabilities.

In future works we intend to extend this study to high frequencies, that have
been filtered out in this paper. Frequencies above 1KHz are seldom considered
in the determination of the NGR continuity, however we think that the use of
the power line for digital transmission causes a measurable effect that could
be captured with different sensors (i.e. Rogowski coils) and compared to the
measurement in the neutral of the transformer, allowing a finer monitoring of
the health of the NGR.
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