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Abstract

Acquiring precise data is expensive.
Hence, there is interest in the devel-
opment of computer algorithms that
make full use of imprecise data, even
though these new algorithms may be
more complex and require more re-
sources. In particular, most Genetic
Fuzzy Systems (GFS). accept crisp
inputs, but changes can be effected
to them so that rules are obtained
from vague data. Furthermore, the
rule generation is only one stage in
the design of a model. If a GFS uses
vague data, we also need to prepro-
cess this low quality data before the
learning can take place, but there
are very few algorithms capable of
selecting vague features or detecting
redundant imprecise instances, for
example.

In this work we propose a wrapper-
type evolutionary feature selection
algorithm, able to use incomplete
and imprecise data. In the context
of Genetic Learning of Fuzzy Rule-
based Classifier Systems (FRBCS),
we have applied it to remove unnec-
essary features of fuzzy discretized
data.

Keywords: Genetic Fuzzy Sys-
tems, Vague Data, Feaure Selection.

1 Introduction

The selection of a subset of features for clas-
sification problems can be solved either with
wrapper or filter methods. Wrappers consider
that the classification algorithm is a black
box, used by the search algorithm to evalu-
ate each feature subset. Instead, filter meth-
ods are independent of the classifier and select
features based on properties that good feature
sets are supposed to have. Filter methods can
produce wrong results, because they do not
have into account the learning algorithm. In
contrast, the main problem with wrappers is
the computing time.

If the learning algorithm is fast, binary coded
genetic algorithms can be used to search sub-
sets of features with good results [1]. Other-
wise, the genetic algorithm can be combined
with a different classifier which is faster to
learn, but then some of the advantages of the
wrapper algorithms over filters are lost. Both
approaches have also been combined. For in-
stance, in [3, 16, 2] genetic search and filters
are combined. A comprehensive review of the
use of GAs in feature selection algorithms can
be found in [2].

1.1 Vague data and FRBCS

The preceding approaches are suitable for pre-
cise, numerical data. This is not always the
case. If a high accuracy is needed, then
acquiring precise data is expensive. Hence,
many real-world datasets are coarsely mea-
sured. Also, missing values, or incomplete in-
puts, can corrupt otherwise precise data.



From a theoretical point of view, it is widely
accepted that defuzzifying or removing the
low quality parts of the data is worse than car-
rying these imprecise magnitudes through the
computer algorithm, and taking into account
the dispersion they produce in the output. We
have advocated the use of fuzzy data in GFS
[4], and proposed the use of fuzzy fitness func-
tions for extracting rules from vague data in
classification [9, 10] and regression problems
[11].

We have also studied before how to prepro-
cess imprecise databases. Indeed, there are
many recent works dealing with feature se-
lection procedures that use fuzzy techniques
[12, 13] or are designed to be used in combi-
nation with fuzzy systems [14, 15]. However,
to the best of our knowledge, the only paper
where the feature selection of fuzzified con-
tinuous data has been studied is [6], where
a filter method, based on a similarity func-
tion, was used. In previous works, we have
also proposed a filter-type evolutionary algo-
rithm, that uses a mutual information mea-
sure to perform feature selection from vague
data [7][8]. Alternatively, in this work we will
propose a wrapper-type evolutionary feature
selection algorithm that can also use vague
data. The new proposal is based on our own
extension to the fuzzy case of the k-NN clas-
sification algorithm, thus in this sense our al-
gorithm can be regarded as a fuzzy general-
ization of the SSGA algorithm [16].

This paper is organized as follows: In Section
2 we introduce our extension of the k-NN algo-
rithm for fuzzy data. In Section 3 we describe
the genetic search of the set of features, and in
Section 4 we include some benchmarks. The
paper finishes with the concluding remarks
and the future work.

2 Use of the nearest neighbor
inductor in a wrapper algorithm
with uncertain data

The most frequent use of the term “fuzzy k-
NN” is described in [19]. In this work, a mem-
bership value for each crisp example in the
training dataset is introduced, and the class of
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Figure 1: Interval-valued data: The smallest
ball that contains for sure the nearest object
B has non-null intersection with two other ob-
jects of class A. Therefore, P (CA|x) ∈ [0, 2/3]
and P (CB|x) ∈ [1/3, 1] and we can not label
x (i.e., we assign the set of labels {CA, CB} to
x).

the object is assigned to the class with higher
certainty, in a procedure similar to a statis-
tical kernel classifier. Many publications ex-
tend this definition or apply it to practical
problems [20, 21]. Even though some of these
extensions use a fuzzy set for defining the class
of an object [22], to the best of our knowl-
edge a k-NN algorithm making use of impre-
cise data has not yet been published.

2.1 An extended definition of the
k-NN criterion for fuzzy data

From an statistical point of view, the k-NN
rule can be derived from the Bayes rule. Let
us restrict ourselves, without loss of general-
ity, to the two-classes problem and let us be
given a sample of size N , where NA elements
are in class A and NB = N − NA in B. We
want to classify the point x. The minimum
error classifier is defined as

P (CA|x) ≷ P (CB|x). (1)

For estimating these probabilities, we rewrite
the expression (1) first,

P (CA|x) =
f(x|CA)p(CA)

f(x)
(2)

then estimate both density functions from the
sample. Let V be the smallest ball that
contains k objects of the sample. Let nA,
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Figure 2: Fuzzy data: The smallest volume
centered in 7 that completely contains the
object of class B is the interval V = [4, 10].
For α-cuts lower than 0.5, the estimations of
P (CA|x) and P (CB|x) intersect. For α > 0.5,
P (CB|x) > P (CA|x). Therefore, the class of
x is the fuzzy set 1/CB + 0.5/CA.

nB = k − nA be the number of objects of
the classes A and B in V . Then, if V is small
enough,

f(x|CA)p(CA)
f(x)

≈
nA

NAV
NA
N

k
NV

=
nA

k
. (3)

Hence, eq. (1) reduces to the k-NN rule: we
label x as the class that appears the most in
the smallest ball, centered in x, that contains
k objects in the sample.

Let us suppose now that we can not pre-
cisely observe x, but an interval that con-
tains it. For example, consider the situation
in Figure 1: the smallest volume V that con-
tains one element of the sample also intersects
two other objects, but it does not completely
contain them. In this example, the appli-
cation of eq. (1) requires deciding whether
[0, 2/3] ≷ [1/3, 1], and we do not have infor-
mation enough to know the response, thus we
will label the example x with the whole set
{CA, CB}.

The fuzzy case is an extension of the interval
case. Let us consider the data displayed in
Figure 2. We have a one-dimensional prob-
lem, where we want to label the point x = 7,
according to the nearest neighbor rule. We
have three imprecisely measured objects sur-
rounding x: two of them, the triangular fuzzy
numbers (1; 3; 5) and (9; 11; 13), belong to

class A. A third one, (4; 6; 8), belong to class
B. The smallest volume, centered in 7, that
contains one element of the sample, is the in-
terval [4, 10]. Now observe that each α-cut of
these three sets forms an interval-valued clas-
sification problem. For α ≤ 0.5, V intersects
with the three objects. For levels greater than
0.5, the only object in V is that of class B.
Therefore, our knowledge about the class of
the point x is given by the fuzzy set

1/CB + 0.5/CA. (4)

Summarizing, in case we are given a sample
(S1, C1), . . . , (SN , CN ) of classified objects,
where the measurements taken over each ob-
ject are crisp sets Si and the class of each ob-
ject is an element of the set {C1, . . . , CM}, we
define first the values P̂∗(C|x) and P̂ ∗(C|x) as
the minimum and maximum of the set

8
<

:

P
Ci=C aiP

ai
: ai ∈

8
<

:

{0} Si ∩ V = ∅
{1} Si ⊆ V
{0, 1} else

9
=

; (5)

where V is the smallest sphere, centered in x,
that completely contains k objects of the sam-
ple. Our extended k-NN rule assigns to each
point x a subset C of {C1, . . . , CM}, defined
as follows:

C(x) = {Cj : P̂∗(Ci|x) ≤ P̂ ∗(Cj |x), i &= j}. (6)

In case the measurements are fuzzy sets Xi,
the extended k-NN rule assigns to the point
x a fuzzy set of classes. Let us define the
level cut α of the sample as the interval-valued
dataset ([X1]α, C1), . . . , ([XN ]α, CN ). If we
applied the preceding rule for classifying x on
the basis of a level cut α of the sample, we
would obtain a (crisp) set of classes Cα(x).
We propose that the class of x is the fuzzy
subset of {C1, . . . , CM} defined by the mem-
bership functions

µCj = sup{α : Cj ∈ Cα(x)}. (7)

It is emphasized that, for classifying either a
crisp or a fuzzy set instead of a point (and we
want to do this, if we are selecting features in
vague datasets), we have to make sure that
the volume V completely contains k elements



of the sample but also that it contains the
whole area being classified. However, we have
a certain freedom in the definition of some of
the properties of V (for instance, that of V
being centered in the point being classified)
as soon as V is small enough for the approxi-
mation in eq. (3) making sense.

2.2 Symbolic data

The expression (2) holds when x is a vector of
real numbers. Instead, when x is an element
in a finite space, we have to assume some de-
gree of smoothness in p(x|CA) in order to es-
timate its value at a point which does not ap-
pear in the sample. Usually, we admit that eq.
(3) still holds when the volume V is defined
wrt a certain distance. The most common
distance is the count of features that match,
although there are more complex approaches
based on distance tables between features [5].

However, our particular problem is simpler
than that. We are mostly interested in a
rather common situation in FRBCS, that
of numerical variables that are transformed
into fuzzy subsets of the set of linguistic la-
bels by means of a Ruspini’s fuzzy parti-
tion. For example, the fuzzification stage
can convert a numerical value of 45 de-
grees into a fuzzy subset like {0.0/COLD +
0.2/WARM+0.8/HOT}. Rule based-systems
could also manage subsets like {0.1/COLD +
0.3/WARM + 0.9/HOT} or {0.5/COLD +
0.5/WARM + 0.5/HOT}, that do not match
any numerical value.

2.2.1 Fuzzified crisp data

Each component of a crisp piece of data that
passes through the mentioned fuzzification
stage is converted into a probability distribu-
tion over the set of linguistic labels, i.e. a
fuzzy random variable (frv). Let X and Y be
two fuzzified measurements of crisp vectors,
X = (x1, . . . , xn) and Y = (y1, . . . , yn). We
propose that the distance between X and Y
is the euclidean distance

d(X,Y ) =

(
n∑

i=1

d(xi, yi)

)0.5

. (8)

The distance between each component de-
pends, in turn, of the probabilities that each
label has been assigned. Let (p1, . . . , pl) and
(q1, . . . , ql) the probabilities assigned to these
labels (L̃1, . . . , L̃l) in xi and yi. We propose
that the distance between them is a fuzzy set:
the distance between the expectations of both
frv,

d̃(xi, yi) = ||
l⊕

i=1

(pi − qi) L̃i||. (9)

For reducing the computational time, we have
replaced eq. (9), by the approximate crisp
distance

d(xi, yi) = |
l∑

i=1

(pi − qi) cog(L̃i)|, (10)

where cog(L̃i) is the center of gravity of L̃i.

2.2.2 Missing values and vague data

The memberships of either a missing value or
an imprecisely measured data can be under-
stood as a family of probability distributions.
We can determine a lower and an upper bound
of the distances between these pieces of infor-
mation as the interval

d(xi, yi) =
{|

∑l
i=1(pi − qi) cog(Li)| :

pi ∈ [pi∗, p∗i ], qj ∈ [qj∗, q∗j ]}
(11)

Note that, in this case, the situation is equiv-
alent to the case studied in the preceding sec-
tion, when the data was imprecisely measured
and the imprecision was defined by means of
crisp sets. Let us call r to the radius of the
volume V in the preceding section. We can
define P̂∗(C|x) and P̂ ∗(C|x) as the minimum
and maximum of the set

8
<

:

P
C aiP
ai

: ai ∈

8
<

:

{0} min{d(Si, x)} > r
{1} max{d(Si, x)} < r
{0, 1} else

9
=

;

(12)

and use the rule in eq. (6) to obtain the set
of classes that the object is assigned.

2.3 Measurement of the error rate of
a classifier with imprecise data

For computing the error rate of the classifier
over a dataset we want to count the number of



misclassifications. However, since the output
of the classifier is a set of classes, it is not
always possible to decide whether the point is
being correctly classified. Generally speaking,
the error rate will also be a fuzzy set.

Let us assume that the output of the fuzzy
classifier for the j-th element of the dataset
is the vector (µC1 , . . . , µCM ). Let q be the in-
dex of the modal point of this set, and let b
the index of the second highest membership.
According to our proposal in [4], this classifi-
cation contributes to the total error as much
as

Ej =
{

1/0 + µCb/1 if Cj = Cq

µCj/0 + 1/1 else (13)

i.e., the number of errors is the sum, with
fuzzy arithmetic, of the values Ej .

3 Genetic Search of the best
subset of features

In case the data is crisp, the approximate crisp
distance in eq. (10) reduces to an standard k-
NN, thus conventional GAs can still be used.
Nonetheless, there is a difference: the k-NN in
our approach depends on the fuzzy member-
ship functions, thus two different input values
with the same membership will have null dis-
tance in the new method. As a matter of fact,
in [7][8], we had already shown that there ex-
ist datasets where the ranking of the input
variables was dependent on the fuzzy defini-
tion of the antecedents of the rules. If we
use the feature selection algorithm over the
(fuzzy) discretized data, we could detect those
cases where the partition of the inputs has re-
moved relevant information, and decide not
to use these variables. As a consecuence of
this, the algorithm proposed here can be used
for selecting the most informative subset of
inputs, and it is valid either for vague or fuzzi-
fied continuous data.

On the other hand, when the data is interval-
valued, fuzzy or crisp with missing values, the
fitness function will be a fuzzy number, and
we will need a specially crafted multicriteria
genetic algorithm [9, 10] in order to solve the
problem. We give a brief explanation of this
algorithm in the remainder of this section.

3.1 Representation and Genetic
Operators

We have used the same representation and op-
erators proposed in [16]. The subsets have
fixed cardinality, thus we use integer coding.
The length of a chromosome is the number of
features, and each allele represents one vari-
able.

Two different crossover operators are used:
partially complementary crossover operator
[18] and two point crossover with repair oper-
ation (i.e., repeated features are replaced by
a non-selected variable).

3.2 Fitness function

The quality of a given subset is given by the
average error rate in the test set of the k-
NN classifier. Five training-test partitions are
used in this evaluation. In case the input data
is crisp and there are not missing values, the
fitness function is a crisp number. In other
case, it is a fuzzy number. That value is the
sum (by means of fuzzy arithmetic operators)
of the costs Ej of each test data, as defined in
eq. (13).

3.3 Generational scheme

As described in [9, 10], we have used a gen-
erational approach with the multiobjective
NSGA-II replacement strategy, binary tour-
nament selection based on rank and crowding
distance, and a precedence operator that as-
sumes a uniform prior. The nondominated
sorting depends on the product of the so-
obtained probabilities of precedence. Lastly,
the crowding is based on the Hausdorff dis-
tance.

4 Numerical analysis

The algorithm described in previous section is
evaluated and the results are discussed in this
section. Thirteen different fuzzy rule learn-
ing algorithms have been considered, both
heuristic and genetic algorithms-based. The
heuristic classifiers are described in [23]: no
weights (HEU1), same weight as the confi-



dence (HEU2), differences between the confi-
dences (HEU3, HEU4, HEU5), weights tuned
by reward-punishment (REWP) and analyti-
cal learning (ANAL). The genetic classifiers
are: Selection of rules (GENS), Michigan
learning (MICH) –with population size 25
and 1000 generations–, Pittsburgh learning
(PITT) –with population size 50, 25 rules
each individual and 50 generations–, and Hy-
brid learning (HYBR) –same parameters than
PITT, macromutation with probability 0.8–
[23]. Lastly, two iterative rule learning algo-
rithms are studied: Fuzzy Ababoost (ADAB)
–25 rules of type I, fuzzy inference by sum
of votes– and Fuzzy Logitboost (LOGI) –10
rules of type III, fuzzy inference by sum of
votes– [7]. All the experiments have been re-
peated ten times for different permutations of
the datasets (10cv experimental setup).

Because of space reasons, we limit ourselves
to crisp data and study the effect of includ-
ing information about the fuzzy partition in
the feature selection algorithm. In Table 1 we
have compared the results of the new algo-
rithm FMIFS for five crisp datasets to those of
the original MIFS algorithm, the RELIEF [24]
and the evolutionary algorithm SSGA [16]. In
all cases, a uniform partition of size 3 was
used for all the variables, and 5 input variables
were selected. The algorithm FSSGA was not
different from the best one in XX cases, while
FMIFS was the best choice in XX, SSGA in X,
RELIEF in X and the crisp version of MIFS
was the best in X. Observe that there are two
problems were both FMIFS and FSSGA im-
prove the results of the crisp feature selec-
tion. In the remaining problems, the use of
a fuzzy method did not degrade the results,
and FSSGA is not different than its crisp ver-
sion. Therefore, we think that this algorithm
is a good compromise. In future works we will
include compared results of the performance
of FSSGA and FMIFS over coarsely measured
data and data with missing values.

It is worth pointing that that we do not claim
that the use of fuzzified data always improves
the performance of fuzzy classifiers. It de-
pends on the linguistic partition. We claim
that there exist cases where the linguistic par-

tition has to be taken into account, and that
those cases are not pathological: we have used
uniform partitions, which are the most com-
mon in practical situations. In case the fuzzy
partition is optimal, the gain is no longer rel-
evant.

5 Concluding remarks

The preprocessing of databases with impre-
cise data is hardly found in the literature. In
this paper we have proposed a wrapper-type
evolutionary feature selection algorithm, with
promising results. This algorithm can be ap-
plied to crisp and fuzzy problems, and we have
shown that, even in the case that the data is
crisp, there exist problems where we obtain a
consistent improvement for the whole catalog
of fuzzy systems that were tested. Intuitively,
the method proposed here should be applied
when the input partition has few elements
and/or it has not been optimized, but further
work is needed to characterize this family of
problems.

The results in vague datasets have not been
included because of space reasons (however,
in vague datasets the benchmarks compare
two algorithms of our own, thus the conclu-
sions are less reproductible than the selection
shown). Some works remains to be done (for
example, determining the best number of fea-
tures).
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