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Abstract— This paper presents the G3PARM algorithm for encoding the numerically valued attributes as they may have
mining representative association rules. G3PARM is an evo- different values in each record. To avoid this situatiormso

lutionary algorithm that uses G3P (Grammar Guided Genelic 4465 of values may have to be defined by using discretizatio
Programming) and an auxiliary population made up of its best techniques

individuals who will then act as parents for the next generation. . .
Due to the nature of G3P, the G3PARM algorithm allows us to ~ Many studies [5], [6] have already proposed Evolutionary
obtain valid individuals by defining them through a context-free  Algorithms (EAs) [7] for rules/knowledge extraction from
grammar and, furthermore, this algorithm is generic with respect  databases, as they consider this kind of algorithm, and es-
to data type. We compare our algorithm to two multiobjective pecially Genetic Algorithms (GAs) [8], as one of the most

algorithms frequently used in literature and known as NSGA2 . A
(Non dominated Sort Genetic Algorithm) and SPEA2 Gtrength successful search techniques applied in complex problenas,

Pareto Evolutionary Algorithm) and demonstrate the efficiency of they have proved to be an important technique for learning
our algorithm in terms of running-time, coverage and average and mining knowledge. GAs are robust and flexible search

support, providing the user with high representative rules. methods. In fact, the same GA can be executed using different
representations. In addition, GAs also allow feasible timhs
. INTRODUCTION to be obtained within specified time limits. This is why data

With the rapid growth in the size and number of availablglining experts have shown an increasing interest in both EAs
databases, mining for knowledge, regularities or high llevand GAs. Genetic programming (GP) is a methodology based
information from data became essential to support decisieR EA to find computer programs by employing operations
making and predict future behavior. Association rule ngnininspired by biological evolution. The main disadvantage of
is an important task involving data mining and knowledg#€ process of generating individuals by GP is the generatio
discovery in databases. Basically it is the process of fqndi®f invalid individuals. An extension of GP is G3®iammar
some relationships among the attributes and attributeegadfi Guided Genetic Programming) [9], [10], [11] which allows
a large database. Within the huge collection of data staredvidlid individuals to be obtained by defining them as context-
a database, there could be a lot of relationships between t@€ grammars so that they formally describe the syntactic
many attributes. Discovery of such relationships withinaaty constraints of the problem to be solved.
amount of data could greatly help in decision-taking. TheseMany real-world problems involve simultaneous optimiza-
relationships can be represented as a relatior- C' where tion of often competing objectives. Often, there is no sngl
A and C symbols refer to the antecedent and consequefiptimal solution, but rather a set of alternative solutiortsese
respectively. solutions are optimal in the wider sense that no other swisti

Existing algorithms for mining association rules [1], [2]n the search space are better than they are at taking all ob-
are mainly based on the approach suggestedAgsawal Jectives into consideration. They are known as Paretovati
et al. [3], [4] called the Apriori algorithm. A limitation of Solutions. Some researchers suggest that multiobjectiaels
this algorithm is that it works in two phases and also i8nd optimization might be a problem area where EAs do
computational cost is very high. The first phase is for frequebetter than other blind search strategies. Existing stuidig],
itemset generation, and the second generates the rules fid@] treat association rule mining as a multiobjective peatp
frequent sets. To reduce its computational cost, this @hgor rather than as a single objective one. The objective funstio
establishes that if an itemset is frequent, all its subsetstmlike confidence, comprehensibility, interestingness, et be
also be frequent. However, supersets of an infrequent éem#iought of as different criterion of an association rule imgn
are not frequent, so the computational cost is reduced Bfpblem.
removing such results. Another limitation is the encoding This paper presents an evolutionary algorithm using G3P
scheme, where separate symbols are used for each posdffiénining association rules. This algorithm, called G3RAR
value of an attribute. This encoding scheme may be suitatife@ble to generate valid individuals, not larger than a pre-

for encoding the categorically valued attributes, but rmt fdefined size, and to obtain representative rules from datase
in a short time. Furthermore, G3PARM can be used with
J.M. Luna Gudent Member, IEEE), J.R. Romero Nlember, IEEE) and numerical attributes by simply changing the grammar from
S. Ventura Genior Member, IEEE) are with the Dept. of Computer Science\yhjch individuals are obtained, so the algorithm presented
and Numerical Analysis, University of @doba, Rabanales Campus, Albert, .
Einstein building, 14071 @doba, Spain. Email{i32luarj, jrromero, sven- be used for any type of dataset. In this study, we make a com-
tura} @uco.es. parison between G3PARM and two multiobjective algorithms



G = (XN, 27, Rule, P) with:
¥ n = {Rule, Antecedent, Consequent, Comparison, Categorical Comparator,
Categorical Attribute Comparison }

Yr ={AND, “l =", “=", “name”, “value”}
P ={Rule = Antecedent, Consequent;
Antecedent = Comparison | AND, Comparison, Antecedent ;
Consequent = Comparison ;
Comparison = Categorical Comparator, Categorical Attribute Comparison ;
Categorical Comparator = *“l="|"=";
Categorical Attribute Comparison = “name”, “value” ;}

Fig. 1. Context-free grammar expressed in Extended BNF.

frequently used in literature: NSGANOn dominated Sort with a syntax-tree structure using G3P with limited depth
Genetic Algorithm) [14], [15] and SPEAZ2 @rength Pareto to avoid infinite derivations, and a phenotype (Figure 2(b))
Evolutionary Algorithm) [16], [17] to demostrate the efficiencythat represents the complete rule consisting of an antatede
of our proposal in terms of running-time, coverage and ay@raand a consequent. The phenotype is obtained by eliminating
support. For multiobjective algorithms, support and caerfite genotype nonterminal symbols. The antecedent of each rule
measures will be used as different objectives of the ruléngin is formed by a series of conditions that contain the values of
problem. certain attributes that must all be satisfied. By contrds, t
This paper is structured as follows: Section Il describes tlkonsequent is composed of a single condition. This is becaus
algorithm conceived and its main characteristics; Sectibon G3PARM looks for rules with high support and confidence
describes the datasets used in the experiments and theaaH, the lower the number of conditions of the consequent,
gorithms used for comparing; Section IV describes both tliikee higher the confidence of the rule.
execution and results; finally, some concluding remarks areTo carry out the derivation of the symbols that appear in
underscored and future research lines that we expect teetadke grammar, we use the cardinality concept. The number
are discussed. of derivation chains that can be generated from a context-
free grammar is infinite. However, we can group them into
Il. G3PARM ALGORITHM sets generated by derivations. The cardinality concept is
This section presents our model along with its major charagefined as the number of elements generated in a set. The
teristics: how individuals are represented, its geneteraiprs, cardinality of each nonterminal symbol will be based on the
the evaluation process and the algorithm used. set generated il derivations. If a nonterminal symbol can
be derived in several ways, the cardinality of the nonteahin
symbols will be determined by the sum of the cardinalities of
A context-free grammaf is defined as a 4-tupl@ = (X, each of the possible derivations of that symbol. If a deidvat
Y7, Rule, P) whereXy N Xy = @, X is the alphabet of has more than one nonterminal symbol, the cardinality of the
nonterminal symbolsyr is the alphabet of terminal symbols,set formed by the symbols will be determined by the product
Rule represents the start symbol, afdis the set of produc- of the cardinalities of each nonterminal symbol presenhan t
tion rules, written in Extended BNF. Individuals are definederivation.
as the derivation syntax-tree where the root is the starbsym Each individual is generated from the initial grammar
Rule, the internal nodes contain only nonterminal symbols asymbol Rule through the random application of production
the leaves nodes contain only terminal symbols. The serieges P until a valid derivation chain is reached. The number
of derivation steps that generate a sentence that is a posé$iderivations is determined by the maximum derivation size
ble solution to the problem is represented by the derivatigmovided in algorithm configuration parameters. To gemerat
syntax-tree. Therefore, an individual codifies a sentefi¢heo an individual, the algorithm starts with the initial gramma
language generated by the grammar as a derivation syntaymbol and maximum derivation size. From this symbol, the
tree. Figure 1 shows the context-free grammar that reptesgroductions sought are obtained based on derivation side an
the rules codified by population individuals. The chromosornone is chosen at random taking into account that, the langer t
encodes its expression using a preorder route. It should dsdinality of a symbol, the greater the probability thisnbpl
noted that the terminal grammar symbol “name” is determinédds of deriving. The algorithm continues recursively foclkea
by the dataset attributes used each time. Moreover, for eamnterminal symbol, reducing the maximum derivation size a
grammar attribute, the value that is assigned is deterntiyedeach iteration.
the range of that attribute‘s values in the dataset. .
Each individual is represented by a syntax-tree structufe GEnetic operators
(Figure 2(a)) according to the defined grammar. Individaadés  We use two genetic operators to generate new individuals in
composed of two distinct components: a genotype, encodedjiven generation of the algorithm: crossover and mutation

A. Individual representation



Antecedent, Consequent

Cat. Comp., Cat. Att. Comp.} Cat. Comp., Cat. Att. Comp.]
L/ Y Y

!:} [Att_A_name, Att_A_vaIue} [ = } [Att_B_name, Att_B_vaIueJ

(a) Example of genotype of an individual represented in aasytree structure.

Phenotype:

(= Att_A_name Att_A_value) — (= Att_B_name Att_B_value)

(b) Example of phenotype of an individual.

Fig. 2. How to representate the individuals.

Both operators work according to defined grammar. C. Evaluation

Crossover this operator creates new individuals by ex- Before evaluating an individual, we must carry out its
changing two parent derivation subtrees from two randomfifcoding, namely, by finding the association rule that eorre
selected compatible nodes in each of them. Two nodes &RPNUs to the genotype syntax-tree. The decoding process is
compatible if they belong to the same nonterminal symbB? build an in-depth expression of the syntax-tree and remov

under the condition that this node not be the initial gramm&Pnterminal symbols that appear in the genotype. It is also
symbol. necessary to verify that individuals do not have the same

attribute in rule antecedent and consequent. The evatuatio

If two compatible nodes are found, the crossover is corfrocess of individuals is performed by obtaining the fitness
pleted by swapping the two subtrees underneath these fiygction value. It will be the support, which is defined as the
nodes. In addition, an overhead checking is carried out fatio (in percentage) of records that contaiisand C' to the
ensure that the individuals produced by crossover satiggy stotal number of records in the database. Hefejs called
constraints, since the size of the individuals producedtmu@ntecedent, and’ consequent. The support of a rule is
remain within a predefined range between the minimum agéfined as:
maximum size. sup(R) = Sup(&l)% C)

If one parent, or both, exceed the maximum size, this parent
is kept intact and, therefore, the parent and the offspriieg avhere sup(A(JC) is the support of the itemsetd and C,
equal. and theD symbol refers to the dataset. The support of a rule

(sup(R)) always takes continuous values between 0 and 1,

Mutation : this operator randomly selects a syntax-tree nodehile the support of any item will be any positive integer.
and will act based on the symbol type. If the selected nodeanother heuristic that we will use is the confidence rule
is a nonterminal symbol, a new production of the grammar dfenerated by the decoding process. This is defined as toe rati
used to derive a new subtree. We must take into account th@{, percentage) of the number of records that contdiand
if the selected item is a nonterminal symbol, and because itd' to records that contaigl. The confidence of a rul® is
possible to make a derivation different from that undemaike defined as:
the first instance, the number of derivations needed to reach sup(A|JC)

a terminal symbol may vary in order to prevent exceeding conf(R) = “sup(A)

the maximum derivation size imposed by the algorithm. If,

however, the selected node is a terminal symbol, it changa®d, as with the support, confidence always takes continuous
the value of the terminal symbol at random. values between 0 and 1.



D. Algorithm Algorithm 2 Update auxiliary population

The G3PARM algorithm uses an auxiliary population wit Requwe.: A
nsure: A

the best individuals, who will act as parents for the nex A ep+aA
generation. Thus the best individuals obtained are not IOStOrder @) t
with the passing of generations. Furthermore, because th%liminate duplicate 4')
individuals in the auxiliary population may act as paremts i 1 Thresholdd’
subsequent generations, the algorithm tends to converge tg* < Threshold{’)
the best individuals. In the initial generation, the awxii rewrn A
population will be empty.

The algorithm starts producing the population by randomglures over generations.
generating individuals from the context-free grammar @&fin 1o 5 50rithm terminates when it covers all the instances

in Figure 1 and by fulfilling the maximum number of derivas,om the dataset or when it reaches a certain number of gener-

tions. Based on the population, individuals are selected diiqns \when this occurs, the auxiliary population indivittu
a binary tournament. This selector works by selecting tWa . raturmed.

individuals randomly from the current population and after

comparing them, it keeps the best of them. Individuals are lll. EXPERIMENTATION

selected to act as parents for the crossover based on theifo evaluate the performance of our proposal for mining

probability, being more probable the higher the probapbilitassociation rules, several experiments have been carded o

The next step is to perform the mutation of the individualsn different datasets using different algorithms. Firsg two

selected. Like crossover, mutation will depend on its proldgorithms that are compared are explained in detail and

ability. Once we have the new population by crossover asdbsequently we show the different datasets used.

mut_a_t|0n, we upc_iate the auxn_lary popL_ll_atlon. To update ti}s Multiobjective algorithms

auxiliary population, the previous auxiliary populationda _ ) o )

the current population are combined. Then, the individuals ThiS section presents two multiobjective algorithms fre-

are ranked according to the support and individuals wiftHently used in the literature, SPEA2 and NSGA2, which use

the same genotype are eliminated. The G3PARM algorithih€ support and confidence measures of rules as objectives to

takes two individuals as equals if, having different gepet; optimize. When the algorithms finish, the rules located in the

they contain the same attributes. For example, the algorit®areto front are returned. . .

considers that the case of the ruldsAND B — C and B 1) SPEA2: This algorithm allows us to find or approxi-

AND A — C are equal. From the resulting set, we selefpate the Pareto-optimal set for multiobjective optimiaati

the individuals that exceed a certain threshold of suppauit gProblems. The fitness of each individual takes into account

confidence. the number of individuals which it dominates and also the
The G3PARM algorithm is represented by the pseudocoBHmber of individuals which are dominated by it. The firspste

in Algorithm 1. Algorithm 2 shows how the auxiliary popula—'s to calculate the number of individuals it dominates. Tikis
tion is updated. the strength value of each individual. Next, we calculat th

raw fitness which is the sum of the strength values of the
individuals that dominate it.

Another fitness component that we need is the density of
information. This is a nearest neighbor density estimation

Algorithm 1 G3PARM algorithm
Require: max_generations, N

En;ure: A dom(N If individuals in the population establish a few dominance
AO - E)Cm om(N) relationships among themselves (for example, all lie on the
0 «—

Pareto front), large groups of individuals with the samecfis
will be formed, so the algorithm chooses individuals with
a high degree of randomness. Because of this, a density

while num_generations < mazx_generations do
Select parentsH; U A;)

/
Cross.overfl’ ) estimator called th&-th nearest neighbor is added to the raw
Mutation (P’) fi
itness.
P~ P

First, for each individuai we must compute the Cartesian
distance between it and every other individual. This gives u
a vector of distances which must be ranked from smallest to

Update auxiliary populationA;)

num_generations + +

entd Wh'f largest. Then we take the-th element of the vector and use
return the equation:
As indicated in Section II-C, the support is the fitness, D(i) = ;

so individuals attempt to maximize support over generation distance(k) + 2

while the confidence measure is maximized in the auxiliary This value is adding to the raw fitness to obtain the final
population. Thus, the algorithm tries to maximize both meéitness of this individual.



2) NSGA2: This algorithm organizes the population in
fronts of nondominated individuals, assigning to eachviidi

TABLE I

CONFIGURATION PARAMETERS FOR THE ALGORITHMS

S G3PARM
ual the value of the front to which it belongs. The next step TR =
is to get an estimate of the solution density that surrounds a Crossover Probability 70%
particular solution in the population (we calculate therage Mutation Probability 10%
distance of points on both sides of this point along each of Maximum Derivation Size 24
L External Population Size 20
the objectives). _ S External Confidence Threshold  90%
Next, we update the new population, assigning individuals External Support Threshold 70%
from the first front towards the last front, until the popidat SPEA2
reaches its complete size. Assume that every individual in e 55
the population has two attributes: nondomination front and Crossover Probability 85%
crowding distance. Hence, between two solutions with dif- Mutation Probability 20%
fering nondomination fronts, we prefer the solution witte th Maximum Derivation Size 24
. . . Neighbours Proximity 2
better front. Otherwise, if both solutions belong to the sam
front, then we prefer the solution that is located in a less NSGA2
crowded region. Individuals 50
; ; ; ; Crossover Probability 60%
Fmally, we assign the new population of sizeto the next Mutation Probability 15%
generation. Maximum Derivation Size 24

B. Datasets used for the experimentation

Table | shows the different datasets used indicating name,
number of instances and number of attributes. Numerical d&font. as appropriate) covers 100% of the dataset instances
has been preprocessed usingeheal-frequency binningt [18] Because some performances fail to finish within a reasonable
discretization technique in five and ten intervals. time, if the execution reaches 1000 generations withouigei
WDBC, WPBC and WDatabaseBC datasets correspond re-able to cover 100% of the dataset instances, the algorithm
spectively to the sets of datdMsconsin Diagnostic Breast €xecution will end in that generation.
Cancer, Wisconsin Prognostic Breast Cancer andBreast Can- All the experiments were performed using an Intel Core i7
cer Database. HH concerns a study to predict the mediaiith 12GB of memory and running CentOS 5.4.
price of houses in a region by considering both demographic
composition and the state of the housing market. This dasa wa
collected as part of the 1990 US census. Fin&bybean and This section compares the results obtained with G3PARM,
Mushroom datasets were obtained from the Y@épository. SPEA2 and NSGA?2 algorithms for each dataset. The results
are shown in Table Ill, wheraverage_sup is the average
support of the rule segverage_conf is the average confidence
of the rule set;global _sup represents the support of the rule

IV. RESULTS

TABLE |
DATASETS PROPERTIES

Name Records _ Attributes set obtained (the percentage of records covered by these rul

HH 22784 17 ;

Mushroom 8124 2 over the total recor_ds in the dataset). _

Soybean 683 36 It should be noticed that the results obtained by the pro-
W Database BC 683 11 posed algorithms are the average results obtained running
%ggg igg gj our algorithms with ten different seeds. These seeds are

used for the generation of random individuals by creating
different individuals based on the seed used, and therefore
The G3PARM algorithm and the two multiobjective algoit is necessary to use several seeds and not rely on only one.
rithms presented have been developed using JCLEC softwar@nalyzing the results presented in Table Ill, we can note
(Java Class Library for Evolutionary Computation) [19], that that the G3PARM algorithm obtains rules that cover 100%
serves as a framework for the development of evolutionany dataset instances. Only in the WDBC5 dataset does the
computation applications. To obtain the configuration paa algorithm not cover all instances, although it comes close
ters, a series of tests has been carried out to check theibeha{®9.19%), but it does manage to obtain better coverage than
of the algorithms. The configuration parameters obtaineahfr the other algorithms. Furthermore, G3PARM optimizes the
these tests are shown in Table II. support better than multiobjective algorithms, achieviag
The algorithms wind up their execution when the set of ruleauch greater average support for different datasets. Becau
obtained (from the auxiliary population or from the Paretmaximizing the support involves a maximization of confi-
dence, G3PARM manages to optimize average confidence by
‘ 1ThiT method involves dividing the values range in constaetjdency maximizing the support (fitness function) and is helped by
nigrvals auxiliary population thresholds. G3PARM reaches an awerag

2The UCI Machine Learning repository can be reached at: ) A et
http://archive.ics.uci.edu./m/datasets.htmn confidence of over 92% in most cases. By contrast, multiebjec



TABLE Il TABLE IV

RESULTS OBTAINED BY THE ALGORITHMS RUNTIME AND NUMBER OF RULES OBTAINED BY THE ALGORITHMS
G3PARM G3PARM
Name averagesup averageconf  globalsup Name ngenerations nrules runtime
HH5 0.7481 0.9120 100.00% HH5 169.5 10.9 171079.7
HH10 0.8010 0.9141 100.00% HH10 50.7 9.3 54413.4
Mushroom 0.7998 0.9283 100.00% Mushroom 129.3 8.6 133273.5
Soybean 0.8110 0.9476 100.00% Soybean 34.3 7.5 1976.1
W Database BC'5 0.8025 0.9212 100.00% W Database BC'5 28.8 9.4 5726.7
W DatabaseBC'10 0.8604 0.9516 100.00% W Database BC10 7.7 7.0 922.4
WDBC5 0.7550 0.9448 99.19% WDBC5 528.0 13.6 19655.6
WDBC10 0.7956 0.9085 100.00% WDBC10 7.9 6.4 693.1
WPBC5 0.7687 0.9614 100.00% WPBC5 434.6 11.9 8409.3
WPBC10 0.8046 0.9144 100.00% WPBC10 3.8 5.5 344.2
SPEA2 SPEA2
Name averagesup  averageconf  globalsup Name ngenerations nrules runtime
HH5 0.5563 0.9723 94.92% HH5 908.7 39.4 5894740.9
HH10 0.6543 0.9868 98.81% HH10 762.4 21.7  4263430.2
Mushroom 0.9371 0.9945 100.00% Mushroom 3.6 2.2 6166.6
Soybean 0.8622 0.9859 99.59% Soybean 220.8 3.8 25892.6
W Database BC5 0.6430 0.9825 99.21% W Database BC5 563.5 15.1  2219500.7
W Database BC'10 0.6738 0.8835 89.25% W Database BC'10 405.3 5.9 38863.9
WDBC5 0.6772 0.9942 81.86% WDBC5 913.3 12.7 133064.9
WDBC10 0.6158 0.9793 97.54% WDBC10 335.1 9.4 46556.5
WPBCS5 0.7379 0.9755 98.04% WPBC5 800.0 55 31489.6
WPBC10 0.5778 0.9854 99.54% WPBC10 408.0 10.0 15581.5
NSGA2 NSGA2
Name averagesup  averageconf  globalsup Name ngenerations nrules runtime
HH5 0.4662 0.9545 96.33% HHb5 1000 9.9 2376091.9
HH10 0.5783 0.9704 99.75% HH10 482.7 12.7 1068132
Mushroom 0.8521 0.9891 100.00% Mushroom 27.4 2.9 14512.9
Soybean 0.6723 0.9763 100.00% Soybean 94.1 4.5 4434.3
W Database BC5 0.6685 0.9637 100.00% W Database BC5 169.2 8.0 8766.1
W Database BC'10 0.8010 0.9904 100.00% W Database BC'10 84.3 5.2 4226.0
WDBCS5 0.5854 0.9567 96.17% WDBC5 741.2 55 39235.4
WDBC10 0.5013 0.9521 100.00% WDBC10 114.1 7.7 5506.1
WPBC5 0.6582 0.9510 98.61% WPBC5 408.9 5.2 6235.5
W PBC10 0.6865 0.9648 99.69% WPBC10 331.6 5.8 5340.7

tive algorithms have both confidence and support as obgsctiv This is where we question how, with approximately the
to maximize. Multiobjective algorithms move by fronts ancdame number of rules, NSGA2 covers almost 100% of the
attempt to maximize the two objectives. Bearing in mind thiastances although it has lower average support. The answer
concept of dominance in the multiobjective algorithms, arnid that: NSGA2 gets very good rules but also very bad rules,
because maximizing confidence is easier than maximizisg the average falls and yet, at the same time these bad rules
support, we deduce that multiobjective algorithms offer amelp to cover the dataset instances.
average confidence that is quite high compared to averagéinally, the running-time is much less in the G3PARM
obtained support. algorithm than in multiobjective algorithms. 8 out of 10
If we focus on Table IV and the number of rulasrules) experiments have better times for the G3PARM algorithm than
obtained, we can see that the G3PARM algorithm manades multiobjective algorithms. This is because the G3PARM
to cover all instances of the datasets with between 5 and dlgorithm covers all the instances without going to the maxi
rules. However, multiobjective algorithms require a ramfe mum number of iterations. Figure 3 shows the running-times
rules of [2,40] for SPEA2 and2, 13] for NSGA2 and fail to (in milliseconds) for each dataset on a logarithmic scale.
cover all instances in the datasets. To compare the results obtained and to analyze if there
If we look at the NSGA2 algorithm, we can observe howre any significant differences between the three algosthm
the number of rules obtained is similar to the G3PARMve use theFriedman test. This test first ranks thgh of &
algorithm and, moreover, manages to cover almost 100% of thlgorithms on theth of N datasets, and then calculates the
instances. If we focus only on global support and the numbaverage rank according to thedistribution (F) throughout
of rules, we could say that their behavior is similar to thiat @ll the datasets, and calculat€siedman statistics. If the
the G3PARM algorithm. However, this statement is not cdrreEriedman test rejects the null-hypotehsis, we go on to carry
because the average support obtained with NSGA2 is mumiit a Bonferroni-Dunn test to reveal the differences between
lower than that obtained with the generational algorithm. algorithms. Using thd-riedman test, we evaluate the perfor-
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Fig. 3. Runtime for each dataset.

mance of G3PARM by comparing it to the other algorithmat a significance level gf = 0.01 (i.e., with a probability of
using average support, global support and the running-time99%), there are significant differences between the G3PARM
each algorithm in all the datasets. Average rankings ofhall tand NSGA2 algorithms, the performance of G3PARM being
algorithms considered are summarized in Table V, where wtatistically better than that of NSGA2. G3PARM is also
can see that the computed control algorithm (the algorithoompetitive with SPEA2 in terms of support measure. If we
with the lowest ranking) is our proposal. focus on global support measure, the results indicate that,
The Friedman average ranking statistic for support measur@t a significance level op = 0.01 (i.e., with a probability
distributed according td» with £ — 1 and (k — 1)(N — 1) of 99%) there are significant differences between G3PARM
degrees of freedom is 6.7894, which does not belong to thed SPEA2, the performance of G3PARM being statistically
critical interval [0, (Fr)0.05,2,18 = 3.5545]. On the other hand, better than that of SPEA2. G3PARM is also competitive with
if we focus on measuring global support, fréedman average NSGAZ2 in terms of global support measure.
rankings statistic is 18.2727, which does not belong to the
critical interval [0, (Fr)o.05,2,18 = 3.5545]. Thus, we reject _ )
the null-hynothesis that all algorithms perform equallyllve ThiS paper has presented a comparison between the

V. CONCLUSIONS AND FUTURE WORK

for support and global support measures. G3I?_ARM algorithm to discover ass_ocigtio_n rules pased on an
auxiliary population, and two multiobjective algorithmsef
TABLE V quently used in literature and known as NSGA2 and SPEA2.
AVERAGE RANKING OF THE ALGORITHMS By evaluating the results obtained in Section IV, the foilogv
Support conclusions can be drawn with respect to the effectivenéss o
Algorithm  Ranking our proposal:
G3PARM 13 « The association rules obtained by our proposal maintain
%ggﬁé %;é a high support and a high confidence level, providing the
user with high representative rules.
Global support « Our proposal lets us obtain a reduced set of association
Algorithm  Ranking rules, since the number of rules is restricted by the size of
G3PARM 13 the auxiliary population. Also, with this small associatio
SPEA2 2.9 : .
NSCGA2 18 rule set, we managed to cover all the instances in the

dataset.
« The running-time of our proposal is much shorter than
Due to the significant differences between the three al- that needed by multiobjective algorithms.
gorithms, we use theBonferroni-Dunn test to reveal the « The algorithm proposed can be used with both numerical
difference in performance and the Critical Difference (CD) and categorical attributes by simply changing the gram-
value is1.2553 consideringp = 0.01. mar that obtains the individuals, so the algorithm that we
The results obtained indicate that, for the support measure present can be used for any type of dataset.



Future work includes new approaches that can be uged E. zitzler, M. Laumanns, and L. Thiele, “Spea2: Improvihg strength
in association with multiobjectives; we have not taken into
account in this study as can be interestingness measuttee In t
future, we will explore the use of rare itemsets [20], [21] by
modifying our algorithm to work with this type of patterns.

In this field, we will verify the performance of multiobjeeé
algorithms as we have done in the present study.
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