
G3PARM: A Grammar Guided Genetic Programming Algorithm for
Mining Association Rules

Jośe Maŕıa Luna, Jośe Rául Romero and Sebastián Ventura

Abstract— This paper presents the G3PARM algorithm for
mining representative association rules. G3PARM is an evo-
lutionary algorithm that uses G3P (Grammar Guided Genetic
Programming) and an auxiliary population made up of its best
individuals who will then act as parents for the next generation.
Due to the nature of G3P, the G3PARM algorithm allows us to
obtain valid individuals by defining them through a context-free
grammar and, furthermore, this algorithm is generic with respect
to data type. We compare our algorithm to two multiobjective
algorithms frequently used in literature and known as NSGA2
(Non dominated Sort Genetic Algorithm) and SPEA2 (Strength
Pareto Evolutionary Algorithm) and demonstrate the efficiency of
our algorithm in terms of running-time, coverage and average
support, providing the user with high representative rules.

I. I NTRODUCTION

With the rapid growth in the size and number of available
databases, mining for knowledge, regularities or high level
information from data became essential to support decision
making and predict future behavior. Association rule mining
is an important task involving data mining and knowledge
discovery in databases. Basically it is the process of finding
some relationships among the attributes and attribute values of
a large database. Within the huge collection of data stored in
a database, there could be a lot of relationships between the
many attributes. Discovery of such relationships within a vast
amount of data could greatly help in decision-taking. These
relationships can be represented as a relationA → C where
A and C symbols refer to the antecedent and consequent,
respectively.

Existing algorithms for mining association rules [1], [2]
are mainly based on the approach suggested byAgrawal
et al. [3], [4] called the Apriori algorithm. A limitation of
this algorithm is that it works in two phases and also its
computational cost is very high. The first phase is for frequent
itemset generation, and the second generates the rules from
frequent sets. To reduce its computational cost, this algorithm
establishes that if an itemset is frequent, all its subsets must
also be frequent. However, supersets of an infrequent itemset
are not frequent, so the computational cost is reduced by
removing such results. Another limitation is the encoding
scheme, where separate symbols are used for each possible
value of an attribute. This encoding scheme may be suitable
for encoding the categorically valued attributes, but not for

J.M. Luna (Student Member, IEEE), J.R. Romero (Member, IEEE) and
S. Ventura (Senior Member, IEEE) are with the Dept. of Computer Science
and Numerical Analysis, University of Ćordoba, Rabanales Campus, Albert
Einstein building, 14071 Ćordoba, Spain. Email:{i32luarj, jrromero, sven-
tura}@uco.es.

encoding the numerically valued attributes as they may have
different values in each record. To avoid this situation, some
ranges of values may have to be defined by using discretization
techniques.

Many studies [5], [6] have already proposed Evolutionary
Algorithms (EAs) [7] for rules/knowledge extraction from
databases, as they consider this kind of algorithm, and es-
pecially Genetic Algorithms (GAs) [8], as one of the most
successful search techniques applied in complex problems,and
they have proved to be an important technique for learning
and mining knowledge. GAs are robust and flexible search
methods. In fact, the same GA can be executed using different
representations. In addition, GAs also allow feasible solutions
to be obtained within specified time limits. This is why data
mining experts have shown an increasing interest in both EAs
and GAs. Genetic programming (GP) is a methodology based
on EA to find computer programs by employing operations
inspired by biological evolution. The main disadvantage of
the process of generating individuals by GP is the generation
of invalid individuals. An extension of GP is G3P (Grammar
Guided Genetic Programming) [9], [10], [11] which allows
valid individuals to be obtained by defining them as context-
free grammars so that they formally describe the syntactic
constraints of the problem to be solved.

Many real-world problems involve simultaneous optimiza-
tion of often competing objectives. Often, there is no single
optimal solution, but rather a set of alternative solutions. These
solutions are optimal in the wider sense that no other solutions
in the search space are better than they are at taking all ob-
jectives into consideration. They are known as Pareto-optimal
solutions. Some researchers suggest that multiobjective search
and optimization might be a problem area where EAs do
better than other blind search strategies. Existing studies [12],
[13] treat association rule mining as a multiobjective problem
rather than as a single objective one. The objective functions
like confidence, comprehensibility, interestingness, etc., can be
thought of as different criterion of an association rule mining
problem.

This paper presents an evolutionary algorithm using G3P
for mining association rules. This algorithm, called G3PARM,
is able to generate valid individuals, not larger than a pre-
defined size, and to obtain representative rules from datasets
in a short time. Furthermore, G3PARM can be used with
numerical attributes by simply changing the grammar from
which individuals are obtained, so the algorithm presentedcan
be used for any type of dataset. In this study, we make a com-
parison between G3PARM and two multiobjective algorithms

G = (ΣN , ΣT , Rule, P) with:
ΣN = {Rule, Antecedent, Consequent, Comparison, Categorical Comparator,

Categorical Attribute Comparison }
ΣT = {AND, “! =”, “=”, “name”, “value”}
P = {Rule = Antecedent, Consequent ;

Antecedent = Comparison | AND, Comparison, Antecedent ;
Consequent = Comparison ;
Comparison = Categorical Comparator, Categorical Attribute Comparison ;
Categorical Comparator = “! =” | “=” ;
Categorical Attribute Comparison = “name”, “value” ;}

Fig. 1. Context-free grammar expressed in Extended BNF.

frequently used in literature: NSGA2 (Non dominated Sort
Genetic Algorithm) [14], [15] and SPEA2 (Strength Pareto
Evolutionary Algorithm) [16], [17] to demostrate the efficiency
of our proposal in terms of running-time, coverage and average
support. For multiobjective algorithms, support and confidence
measures will be used as different objectives of the rule mining
problem.

This paper is structured as follows: Section II describes the
algorithm conceived and its main characteristics; SectionIII
describes the datasets used in the experiments and the al-
gorithms used for comparing; Section IV describes both the
execution and results; finally, some concluding remarks are
underscored and future research lines that we expect to tackle
are discussed.

II. G3PARM ALGORITHM

This section presents our model along with its major charac-
teristics: how individuals are represented, its genetic operators,
the evaluation process and the algorithm used.

A. Individual representation

A context-free grammarG is defined as a 4-tupleG = (ΣN ,
ΣT , Rule, P) whereΣN ∩ ΣT = ∅, ΣN is the alphabet of
nonterminal symbols,ΣT is the alphabet of terminal symbols,
Rule represents the start symbol, andP is the set of produc-
tion rules, written in Extended BNF. Individuals are defined
as the derivation syntax-tree where the root is the start symbol
Rule, the internal nodes contain only nonterminal symbols and
the leaves nodes contain only terminal symbols. The series
of derivation steps that generate a sentence that is a possi-
ble solution to the problem is represented by the derivation
syntax-tree. Therefore, an individual codifies a sentence of the
language generated by the grammar as a derivation syntax-
tree. Figure 1 shows the context-free grammar that represents
the rules codified by population individuals. The chromosome
encodes its expression using a preorder route. It should be
noted that the terminal grammar symbol “name” is determined
by the dataset attributes used each time. Moreover, for each
grammar attribute, the value that is assigned is determinedby
the range of that attribute‘s values in the dataset.

Each individual is represented by a syntax-tree structure
(Figure 2(a)) according to the defined grammar. Individualsare
composed of two distinct components: a genotype, encoded

with a syntax-tree structure using G3P with limited depth
to avoid infinite derivations, and a phenotype (Figure 2(b)),
that represents the complete rule consisting of an antecedent
and a consequent. The phenotype is obtained by eliminating
genotype nonterminal symbols. The antecedent of each rule
is formed by a series of conditions that contain the values of
certain attributes that must all be satisfied. By contrast, the
consequent is composed of a single condition. This is because
G3PARM looks for rules with high support and confidence
and, the lower the number of conditions of the consequent,
the higher the confidence of the rule.

To carry out the derivation of the symbols that appear in
the grammar, we use the cardinality concept. The number
of derivation chains that can be generated from a context-
free grammar is infinite. However, we can group them into
sets generated byd derivations. The cardinality concept is
defined as the number of elements generated in a set. The
cardinality of each nonterminal symbol will be based on the
set generated ind derivations. If a nonterminal symbol can
be derived in several ways, the cardinality of the nonterminal
symbols will be determined by the sum of the cardinalities of
each of the possible derivations of that symbol. If a derivation
has more than one nonterminal symbol, the cardinality of the
set formed by the symbols will be determined by the product
of the cardinalities of each nonterminal symbol present in the
derivation.

Each individual is generated from the initial grammar
symbol Rule through the random application of production
rulesP until a valid derivation chain is reached. The number
of derivations is determined by the maximum derivation size
provided in algorithm configuration parameters. To generate
an individual, the algorithm starts with the initial grammar
symbol and maximum derivation size. From this symbol, the
productions sought are obtained based on derivation size and
one is chosen at random taking into account that, the larger the
cardinality of a symbol, the greater the probability this symbol
has of deriving. The algorithm continues recursively for each
nonterminal symbol, reducing the maximum derivation size at
each iteration.

B. Genetic operators

We use two genetic operators to generate new individuals in
a given generation of the algorithm: crossover and mutation.

(a) Example of genotype of an individual represented in a syntax-tree structure.

(b) Example of phenotype of an individual.

Fig. 2. How to representate the individuals.

Both operators work according to defined grammar.

Crossover: this operator creates new individuals by ex-
changing two parent derivation subtrees from two randomly
selected compatible nodes in each of them. Two nodes are
compatible if they belong to the same nonterminal symbol
under the condition that this node not be the initial grammar
symbol.

If two compatible nodes are found, the crossover is com-
pleted by swapping the two subtrees underneath these two
nodes. In addition, an overhead checking is carried out to
ensure that the individuals produced by crossover satisfy size
constraints, since the size of the individuals produced must
remain within a predefined range between the minimum and
maximum size.

If one parent, or both, exceed the maximum size, this parent
is kept intact and, therefore, the parent and the offspring are
equal.

Mutation : this operator randomly selects a syntax-tree node
and will act based on the symbol type. If the selected node
is a nonterminal symbol, a new production of the grammar is
used to derive a new subtree. We must take into account that,
if the selected item is a nonterminal symbol, and because it is
possible to make a derivation different from that undertaken in
the first instance, the number of derivations needed to reach
a terminal symbol may vary in order to prevent exceeding
the maximum derivation size imposed by the algorithm. If,
however, the selected node is a terminal symbol, it changes
the value of the terminal symbol at random.

C. Evaluation

Before evaluating an individual, we must carry out its
decoding, namely, by finding the association rule that corre-
sponds to the genotype syntax-tree. The decoding process is
to build an in-depth expression of the syntax-tree and remove
nonterminal symbols that appear in the genotype. It is also
necessary to verify that individuals do not have the same
attribute in rule antecedent and consequent. The evaluation
process of individuals is performed by obtaining the fitness
function value. It will be the support, which is defined as the
ratio (in percentage) of records that containsA andC to the
total number of records in the database. Here,A is called
antecedent, andC consequent. The support of a ruleR is
defined as:

sup(R) =
sup(A

⋃
C)

|D|

where sup(A
⋃

C) is the support of the itemsetsA and C,
and theD symbol refers to the dataset. The support of a rule
(sup(R)) always takes continuous values between 0 and 1,
while the support of any item will be any positive integer.

Another heuristic that we will use is the confidence rule
generated by the decoding process. This is defined as the ratio
(in percentage) of the number of records that containA and
C to records that containA. The confidence of a ruleR is
defined as:

conf(R) =
sup(A

⋃
C)

sup(A)

and, as with the support, confidence always takes continuous
values between 0 and 1.

D. Algorithm

The G3PARM algorithm uses an auxiliary population with
the best individuals, who will act as parents for the next
generation. Thus the best individuals obtained are not lost
with the passing of generations. Furthermore, because the
individuals in the auxiliary population may act as parents in
subsequent generations, the algorithm tends to converge to
the best individuals. In the initial generation, the auxiliary
population will be empty.

The algorithm starts producing the population by randomly
generating individuals from the context-free grammar defined
in Figure 1 and by fulfilling the maximum number of deriva-
tions. Based on the population, individuals are selected via
a binary tournament. This selector works by selecting two
individuals randomly from the current population and after
comparing them, it keeps the best of them. Individuals are
selected to act as parents for the crossover based on their
probability, being more probable the higher the probability.
The next step is to perform the mutation of the individuals
selected. Like crossover, mutation will depend on its prob-
ability. Once we have the new population by crossover and
mutation, we update the auxiliary population. To update the
auxiliary population, the previous auxiliary population and
the current population are combined. Then, the individuals
are ranked according to the support and individuals with
the same genotype are eliminated. The G3PARM algorithm
takes two individuals as equals if, having different genotypes,
they contain the same attributes. For example, the algorithm
considers that the case of the rulesA AND B → C and B

AND A → C are equal. From the resulting set, we select
the individuals that exceed a certain threshold of support and
confidence.

The G3PARM algorithm is represented by the pseudocode
in Algorithm 1. Algorithm 2 shows how the auxiliary popula-
tion is updated.

Algorithm 1 G3PARM algorithm
Require: max generations,N

Ensure: A

P0 ← random(N)
A0 ← ∅
while num generations < max generations do

Select parents (Pt ∪At)
Crossover (P ′)
Mutation (P ′)
P ← P ′

Update auxiliary population (At)
num generations + +

end while
return A

As indicated in Section II-C, the support is the fitness,
so individuals attempt to maximize support over generations,
while the confidence measure is maximized in the auxiliary
population. Thus, the algorithm tries to maximize both mea-

Algorithm 2 Update auxiliary population
Require: A

Ensure: A

A′ ← P ′ + At

Order (A′)
Eliminate duplicate (A′)
At ← Threshold(A′)
return A

sures over generations.
The algorithm terminates when it covers all the instances

from the dataset or when it reaches a certain number of gener-
ations. When this occurs, the auxiliary population individuals
are returned.

III. E XPERIMENTATION

To evaluate the performance of our proposal for mining
association rules, several experiments have been carried out
on different datasets using different algorithms. First, the two
algorithms that are compared are explained in detail and
subsequently we show the different datasets used.

A. Multiobjective algorithms

This section presents two multiobjective algorithms fre-
quently used in the literature, SPEA2 and NSGA2, which use
the support and confidence measures of rules as objectives to
optimize. When the algorithms finish, the rules located in the
Pareto front are returned.

1) SPEA2: This algorithm allows us to find or approxi-
mate the Pareto-optimal set for multiobjective optimization
problems. The fitness of each individual takes into account
the number of individuals which it dominates and also the
number of individuals which are dominated by it. The first step
is to calculate the number of individuals it dominates. Thisis
the strength value of each individual. Next, we calculate the
raw fitness which is the sum of the strength values of the
individuals that dominate it.

Another fitness component that we need is the density of
information. This is a nearest neighbor density estimation.
If individuals in the population establish a few dominance
relationships among themselves (for example, all lie on the
Pareto front), large groups of individuals with the same fitness
will be formed, so the algorithm chooses individuals with
a high degree of randomness. Because of this, a density
estimator called theK-th nearest neighbor is added to the raw
fitness.

First, for each individuali we must compute the Cartesian
distance between it and every other individual. This gives us
a vector of distances which must be ranked from smallest to
largest. Then we take theK-th element of the vector and use
the equation:

D(i) =
1

distance(k) + 2

This value is adding to the raw fitness to obtain the final
fitness of this individual.

2) NSGA2: This algorithm organizes the population in
fronts of nondominated individuals, assigning to each individ-
ual the value of the front to which it belongs. The next step
is to get an estimate of the solution density that surrounds a
particular solution in the population (we calculate the average
distance of points on both sides of this point along each of
the objectives).

Next, we update the new population, assigning individuals
from the first front towards the last front, until the population
reaches its complete size. Assume that every individual in
the population has two attributes: nondomination front and
crowding distance. Hence, between two solutions with dif-
fering nondomination fronts, we prefer the solution with the
better front. Otherwise, if both solutions belong to the same
front, then we prefer the solution that is located in a less
crowded region.

Finally, we assign the new population of sizeN to the next
generation.

B. Datasets used for the experimentation

Table I shows the different datasets used indicating name,
number of instances and number of attributes. Numerical data
has been preprocessed using theequal-frequency binning1 [18]
discretization technique in five and ten intervals.

WDBC, WPBC and WDatabaseBC datasets correspond re-
spectively to the sets of data:Wisconsin Diagnostic Breast
Cancer, Wisconsin Prognostic Breast Cancer andBreast Can-
cer Database. HH concerns a study to predict the median
price of houses in a region by considering both demographic
composition and the state of the housing market. This data was
collected as part of the 1990 US census. Finally,Soybean and
Mushroom datasets were obtained from the UCI2 repository.

TABLE I

DATASETS PROPERTIES.

Name Records Attributes
HH 22784 17
Mushroom 8124 22
Soybean 683 36
WDatabaseBC 683 11
WDBC 569 31
WPBC 194 34

The G3PARM algorithm and the two multiobjective algo-
rithms presented have been developed using JCLEC software
(Java Class Library for Evolutionary Computation) [19], that
serves as a framework for the development of evolutionary
computation applications. To obtain the configuration parame-
ters, a series of tests has been carried out to check the behavior
of the algorithms. The configuration parameters obtained from
these tests are shown in Table II.

The algorithms wind up their execution when the set of rules
obtained (from the auxiliary population or from the Pareto

1This method involves dividing the values range in constant frequency
intervals

2The UCI Machine Learning repository can be reached at:
http://archive.ics.uci.edu./ml/datasets.html

TABLE II

CONFIGURATION PARAMETERS FOR THE ALGORITHMS.

G3PARM
Individuals 75
Crossover Probability 70%
Mutation Probability 10%
Maximum Derivation Size 24
External Population Size 20
External Confidence Threshold 90%
External Support Threshold 70%

SPEA2
Individuals 150
Crossover Probability 85%
Mutation Probability 20%
Maximum Derivation Size 24
Neighbours Proximity 2

NSGA2
Individuals 50
Crossover Probability 60%
Mutation Probability 15%
Maximum Derivation Size 24

front, as appropriate) covers 100% of the dataset instances.
Because some performances fail to finish within a reasonable
time, if the execution reaches 1000 generations without being
able to cover 100% of the dataset instances, the algorithm
execution will end in that generation.

All the experiments were performed using an Intel Core i7
with 12GB of memory and running CentOS 5.4.

IV. RESULTS

This section compares the results obtained with G3PARM,
SPEA2 and NSGA2 algorithms for each dataset. The results
are shown in Table III, whereaverage sup is the average
support of the rule set;average conf is the average confidence
of the rule set;global sup represents the support of the rule
set obtained (the percentage of records covered by these rules
over the total records in the dataset).

It should be noticed that the results obtained by the pro-
posed algorithms are the average results obtained running
our algorithms with ten different seeds. These seeds are
used for the generation of random individuals by creating
different individuals based on the seed used, and therefore
it is necessary to use several seeds and not rely on only one.

Analyzing the results presented in Table III, we can note
that the G3PARM algorithm obtains rules that cover 100%
of dataset instances. Only in the WDBC5 dataset does the
algorithm not cover all instances, although it comes close
(99.19%), but it does manage to obtain better coverage than
the other algorithms. Furthermore, G3PARM optimizes the
support better than multiobjective algorithms, achievinga
much greater average support for different datasets. Because
maximizing the support involves a maximization of confi-
dence, G3PARM manages to optimize average confidence by
maximizing the support (fitness function) and is helped by
auxiliary population thresholds. G3PARM reaches an average
confidence of over 92% in most cases. By contrast, multiobjec-

TABLE III

RESULTS OBTAINED BY THE ALGORITHMS.

G3PARM
Name averagesup averageconf global sup
HH5 0.7481 0.9120 100.00%
HH10 0.8010 0.9141 100.00%
Mushroom 0.7998 0.9283 100.00%
Soybean 0.8110 0.9476 100.00%
WDatabaseBC5 0.8025 0.9212 100.00%
WDatabaseBC10 0.8604 0.9516 100.00%
WDBC5 0.7550 0.9448 99.19%
WDBC10 0.7956 0.9085 100.00%
WPBC5 0.7687 0.9614 100.00%
WPBC10 0.8046 0.9144 100.00%

SPEA2
Name averagesup averageconf global sup
HH5 0.5563 0.9723 94.92%
HH10 0.6543 0.9868 98.81%
Mushroom 0.9371 0.9945 100.00%
Soybean 0.8622 0.9859 99.59%
WDatabaseBC5 0.6430 0.9825 99.21%
WDatabaseBC10 0.6738 0.8835 89.25%
WDBC5 0.6772 0.9942 81.86%
WDBC10 0.6158 0.9793 97.54%
WPBC5 0.7379 0.9755 98.04%
WPBC10 0.5778 0.9854 99.54%

NSGA2
Name averagesup averageconf global sup
HH5 0.4662 0.9545 96.33%
HH10 0.5783 0.9704 99.75%
Mushroom 0.8521 0.9891 100.00%
Soybean 0.6723 0.9763 100.00%
WDatabaseBC5 0.6685 0.9637 100.00%
WDatabaseBC10 0.8010 0.9904 100.00%
WDBC5 0.5854 0.9567 96.17%
WDBC10 0.5013 0.9521 100.00%
WPBC5 0.6582 0.9510 98.61%
WPBC10 0.6865 0.9648 99.69%

tive algorithms have both confidence and support as objectives
to maximize. Multiobjective algorithms move by fronts and
attempt to maximize the two objectives. Bearing in mind the
concept of dominance in the multiobjective algorithms, and
because maximizing confidence is easier than maximizing
support, we deduce that multiobjective algorithms offer an
average confidence that is quite high compared to average
obtained support.

If we focus on Table IV and the number of rules (n rules)
obtained, we can see that the G3PARM algorithm manages
to cover all instances of the datasets with between 5 and 14
rules. However, multiobjective algorithms require a rangeof
rules of [2, 40] for SPEA2 and[2, 13] for NSGA2 and fail to
cover all instances in the datasets.

If we look at the NSGA2 algorithm, we can observe how
the number of rules obtained is similar to the G3PARM
algorithm and, moreover, manages to cover almost 100% of the
instances. If we focus only on global support and the number
of rules, we could say that their behavior is similar to that of
the G3PARM algorithm. However, this statement is not correct
because the average support obtained with NSGA2 is much
lower than that obtained with the generational algorithm.

TABLE IV

RUNTIME AND NUMBER OF RULES OBTAINED BY THE ALGORITHMS.

G3PARM
Name n generations nrules runtime
HH5 169.5 10.9 171079.7
HH10 50.7 9.3 54413.4
Mushroom 129.3 8.6 133273.5
Soybean 34.3 7.5 1976.1
WDatabaseBC5 28.8 9.4 5726.7
WDatabaseBC10 7.7 7.0 922.4
WDBC5 528.0 13.6 19655.6
WDBC10 7.9 6.4 693.1
WPBC5 434.6 11.9 8409.3
WPBC10 3.8 5.5 344.2

SPEA2
Name n generations nrules runtime
HH5 908.7 39.4 5894740.9
HH10 762.4 21.7 4263430.2
Mushroom 3.6 2.2 6166.6
Soybean 220.8 3.8 25892.6
WDatabaseBC5 563.5 15.1 2219500.7
WDatabaseBC10 405.3 5.9 38863.9
WDBC5 913.3 12.7 133064.9
WDBC10 335.1 9.4 46556.5
WPBC5 800.0 5.5 31489.6
WPBC10 408.0 10.0 15581.5

NSGA2
Name n generations nrules runtime
HH5 1000 9.9 2376091.9
HH10 482.7 12.7 1068132
Mushroom 27.4 2.9 14512.9
Soybean 94.1 4.5 4434.3
WDatabaseBC5 169.2 8.0 8766.1
WDatabaseBC10 84.3 5.2 4226.0
WDBC5 741.2 5.5 39235.4
WDBC10 114.1 7.7 5506.1
WPBC5 408.9 5.2 6235.5
WPBC10 331.6 5.8 5340.7

This is where we question how, with approximately the
same number of rules, NSGA2 covers almost 100% of the
instances although it has lower average support. The answer
is that: NSGA2 gets very good rules but also very bad rules,
so the average falls and yet, at the same time these bad rules
help to cover the dataset instances.

Finally, the running-time is much less in the G3PARM
algorithm than in multiobjective algorithms. 8 out of 10
experiments have better times for the G3PARM algorithm than
for multiobjective algorithms. This is because the G3PARM
algorithm covers all the instances without going to the maxi-
mum number of iterations. Figure 3 shows the running-times
(in milliseconds) for each dataset on a logarithmic scale.

To compare the results obtained and to analyze if there
are any significant differences between the three algorithms,
we use theFriedman test. This test first ranks thejth of k

algorithms on theith of N datasets, and then calculates the
average rank according to theF-distribution (FF) throughout
all the datasets, and calculatesFriedman statistics. If the
Friedman test rejects the null-hypotehsis, we go on to carry
out a Bonferroni-Dunn test to reveal the differences between
algorithms. Using theFriedman test, we evaluate the perfor-

Fig. 3. Runtime for each dataset.

mance of G3PARM by comparing it to the other algorithms
using average support, global support and the running-timeof
each algorithm in all the datasets. Average rankings of all the
algorithms considered are summarized in Table V, where we
can see that the computed control algorithm (the algorithm
with the lowest ranking) is our proposal.

TheFriedman average ranking statistic for support measure
distributed according toFF with k − 1 and (k − 1)(N − 1)
degrees of freedom is 6.7894, which does not belong to the
critical interval[0, (FF)0.05,2,18 = 3.5545]. On the other hand,
if we focus on measuring global support, theFriedman average
rankings statistic is 18.2727, which does not belong to the
critical interval [0, (FF)0.05,2,18 = 3.5545]. Thus, we reject
the null-hynothesis that all algorithms perform equally well
for support and global support measures.

TABLE V

AVERAGE RANKING OF THE ALGORITHMS.

Support
Algorithm Ranking
G3PARM 1.3
SPEA2 2.1
NSGA2 2.6

Global support
Algorithm Ranking
G3PARM 1.3
SPEA2 2.9
NSGA2 1.8

Due to the significant differences between the three al-
gorithms, we use theBonferroni-Dunn test to reveal the
difference in performance and the Critical Difference (CD)
value is1.2553 consideringp = 0.01.

The results obtained indicate that, for the support measure

at a significance level ofp = 0.01 (i.e., with a probability of
99%), there are significant differences between the G3PARM
and NSGA2 algorithms, the performance of G3PARM being
statistically better than that of NSGA2. G3PARM is also
competitive with SPEA2 in terms of support measure. If we
focus on global support measure, the results indicate that,
at a significance level ofp = 0.01 (i.e., with a probability
of 99%) there are significant differences between G3PARM
and SPEA2, the performance of G3PARM being statistically
better than that of SPEA2. G3PARM is also competitive with
NSGA2 in terms of global support measure.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a comparison between the
G3PARM algorithm to discover association rules based on an
auxiliary population, and two multiobjective algorithms fre-
quently used in literature and known as NSGA2 and SPEA2.
By evaluating the results obtained in Section IV, the following
conclusions can be drawn with respect to the effectiveness of
our proposal:

• The association rules obtained by our proposal maintain
a high support and a high confidence level, providing the
user with high representative rules.

• Our proposal lets us obtain a reduced set of association
rules, since the number of rules is restricted by the size of
the auxiliary population. Also, with this small association
rule set, we managed to cover all the instances in the
dataset.

• The running-time of our proposal is much shorter than
that needed by multiobjective algorithms.

• The algorithm proposed can be used with both numerical
and categorical attributes by simply changing the gram-
mar that obtains the individuals, so the algorithm that we
present can be used for any type of dataset.

Future work includes new approaches that can be used
in association with multiobjectives; we have not taken into
account in this study as can be interestingness measure. In the
future, we will explore the use of rare itemsets [20], [21] by
modifying our algorithm to work with this type of patterns.
In this field, we will verify the performance of multiobjective
algorithms as we have done in the present study.

ACKNOWLEDGMENT

This research is subsidized by the Regional Andalusian
Government and Ministry of Science and Technology projects
P08-TIC-3720, TIN2008-06681-C06-03, and FEDER founds.

REFERENCES

[1] F. Bodon, “A tire-based apriori implementation for mining frequent item
sequences,” in1st International Workshop on Open Source Data Mining:
Frequent Pattern Mining Implementation, 2005, pp. 56–65.

[2] C. Borgelt, “Efficient implementations of Apriori and Eclat,” in FIMI’03,
1st Workshop on Frequent Itemset Mining Implementations, Melbourne,
Florida, USA, December 2003.

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” inVLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, Santiago de Chile, Chile,
September 1994, pp. 487–499.

[4] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules
between sets of items in large databases,” inSIGMOD Conference,
Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 1993, pp. 207–216.

[5] J. Mata, J. L. Alvarez, and J. C. Riquelme,Discovering Numeric
Association Rules via Evolutionary Algorithm, ser. Lecture Notes in
Computer Science, 2002, vol. 2336/2002, pp. 40–51.

[6] X. Yan, D. Zhang, and S. Zhang, “Genetic algorithm-based strategy
for identifying association rules without specifying actual minimum
support,”Expert Systems with Applications.

[7] A. E. Eiben and J. E. Smith,Introduction to Evolutionary Computing.
Springer-Verlag New York, LLC, 2003.

[8] X. Zhu, Y. Yu, and X. Guo, “Genetic algorithm based on evolution
strategy and the application in data mining,” inETCS’09, International
Workshop on Education Technology and Computer Science, Wuhan Shi,
China, March 2009, pp. 848–852.

[9] P. A. Whigham, “Grammatically-based genetic programming,” inPro-
ceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications, Tahoe City, California, USA, J. P. Rosca, Ed.,
July 1995, pp. 33–41.

[10] M. L. Wong and K. S. Leung,Data Mining Using Grammar-Based
Genetic Programming and Applications. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

[11] J. Couchet, D. Manrique, J. Rı́os, and A. Rodŕıguez-Pat́on, “Crossover
and mutation operators for grammar-guided genetic programming,” Soft
Comput., vol. 11, no. 10, pp. 943–955, 2007.

[12] A. Ghosh and B. Nath, “Multi-objective rule mining usinggenetic
algorithms,”Inf. Sci., vol. 163, no. 1-3, pp. 123–133, 2004.

[13] S. Dehuri, A. Jagadev, A. Ghosh, and R. Mall, “Multi-objective genetic
algorithm for association rule mining using a homogeneous dedicated
cluster of workstations,”American Journal of Applied Sciences, vol. 11,
no. 3, pp. 2086–2095, 2006.

[14] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast elitist
multi-objective genetic algorithm: NSGA-II,”IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, 2000.

[15] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in PPSN VI: Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature, Paris, France. Springer-
Verlag, September 2000, pp. 849–858.

[16] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,”IEEE Trans.
Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[17] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improvingthe strength
pareto evolutionary algorithm for multiobjective optimization,” in Evolu-
tionary Methods for Design, Optimisation and Control with Application
to Industrial Problems (EUROGEN 2001), K. Giannakoglouet al., Eds.
International Center for Numerical Methods in Engineering (CIMNE),
2002, pp. 95–100.

[18] J. Han and M. Kamber,Data Mining. Concepts and Techniques, 2nd ed.,
ser. The Morgan Kaufmann Series in Data Management Systems.
Morgan Kaufmann, 2006.

[19] S. Ventura, C. Romero, A. Zafra, J. Delgado, and C. Hervás,JCLEC: a
framework for evolutionary computation, ser. Soft Computing. Springer
Berlin / Heidelberg, 2007, vol. 12, pp. 381–392.

[20] Y. Koh and N. Rountree,Rare Association Rule Mining and Knowledge
Discovery: Technologies for Infrequent and Critical Event Detection.
Information Science Reference, Hershey, New York, 2010.

[21] M. Adda, L. Wu, and Y. Feng, “Rare itemset mining,” inICMLA’07,
Sixth International Conference on Machine Learning and Applications,
Cincinnati, Ohio, December 2007, pp. 73–80.

