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Abstract. In this paper we propose a classification method based on a special 
class of feed-forward neural network, namely product-unit neural networks, and 
on a dynamic version of a hybrid evolutionary neural network algorithm. The 
method combines an evolutionary algorithm, a clustering process, and a local 
search procedure, where the clustering process and the local search are only 
applied at specific stages of the evolutionary process. Our results with the 
product-unit models and the evolutionary approach show a very interesting 
performance in terms of classification accuracy, yielding a state-of-the-art 
performance.  
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1   Introduction 

We propose a classification method that combines a nonlinear model and a hybrid 
evolutionary neural network algorithm that finds the optimal structure of the model 
and estimates the corresponding parameters. The hybrid algorithm combines a 
clustering process and a local search procedure, where the clustering process and the 
local search are only applied at specific stages of the evolutionary process. The 
underlying idea is that we can achieve a very good performance if, instead of 
optimizing many very similar individuals in the final generation, we explore different 
regions of the search space visited by the algorithm throughout its evolution. The 
proposed non-linear model corresponds to a special class of feed-forward neural 
network, namely product-unit neural networks, PUNN, introduced by Durbin and 
Rumelhart [1]. They are an alternative to sigmoidal neural networks and are based on 
multiplicative nodes instead of additive ones.  

The algorithm proposed evolves both the weights and the structure of the network 
using evolutionary programming. It is usually very difficult to know beforehand the 
most suitable structure of the network for a given problem; however, the evolution of 
the structure partially alleviates this problem. It is well known that evolutionary 
algorithms (EA) are efficient at exploring an entire search space; however, they are 
relatively poor at finding the precise optimum solution in the region in which the 
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algorithm converges. The hybrid algorithm combines the EA (global explorer) and the 
local optimization procedure (local exploiter). The cluster process creates a group of 
mutually close points that could correspond to relevant regions of attractions, and 
finally, the local search procedure enables us to improve the performance of the 
selected individuals in the cluster process. The purpose of the dynamic version is to 
gather into one set the best solutions the evolutionary algorithm finds in the 
exploration of the search space at different stages. Another feature of our approach is 
that the optimized individuals are not included in the new population. Once the 
optimization algorithm is applied, we think that any further modification of the 
individual would be counter-productive. So, these individuals are stored in a separate 
population till the end of the evolutionary algorithm. Moreover, we do not use the 
crossover operator because this operation is usually regarded as being less effective 
for network evolution. We evaluate the performance of our methodology in four data 
sets taken from the UCI repository. This paper is organized as follows: Section 2 is 
dedicated to a description of the product-unit model: Section 3 describes the hybrid 
evolutionary algorithm; Section 4 includes the experimental results and, finally, 
Section 5 summarizes the conclusions of our work. 

2   Product-Unit Neural Networks Classifiers  

In this section we present the family of product-unit basis functions used in the 
classification process and its representation by means of a neural network structure. 
PUNN are built with basis functions (1) that express the possible strong interactions 
between the variables, where the exponents may even take on real values and are 
suitable for automatic adjustment: 
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k  being the number of inputs. Some advantages of product-unit based neural 
networks are its increased information capacity and the ability to form higher-order 
input combinations. Besides that, it is possible to obtain the upper bounds of the VC 
dimension in product-unit neural networks similar to those obtained in sigmoidal 
neural networks [2]. Finally, it is a straightforward consequence of the Stone-
Weierstrass Theorem to prove that product-unit neural networks are universal 
approximators [3]. Despite these advantages, product-unit based networks have a 
major drawback. Networks based on product units have more local minima and more 
probability of getting trapped in them [4]. The main reason for this difficulty is that 
small changes in the exponents can cause large changes in the total error surface. 
Because of this, their training is more difficult than the training of standard sigmoidal 
based networks  For example, it is well known [5] that back-propagation is not 
efficient in training product units. So far, the studies carried out on PUNNs have not 
tackled the problem of the simultaneous design of the structure and weights in this 
kind of neural network, using either classic or evolutionary based methods. Moreover, 
product units have been applied mainly to solve regression problems [3],[6],[7]. 

We consider a product-unit neural network with the following structure: an input 
layer with k  nodes, a node for every input variable, a hidden layer with m  nodes, 
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and an output layer with J  nodes, one for each class level. There are no connections 
between the nodes of a layer, and none between the input and output layers either. 
The activation function of the j-th node in the hidden layer is given by 
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and hidden node j  and 1( ,..., )j j jkw w=w  the weights vector. The activation function 
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connection between hidden node j  and output node l  and 0
lβ  the corresponding 

bias. The transfer function of all hidden and output nodes is the identity function. In 
this way, the estimated function ( ; )l lf x θ  from each output is given by: 
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We consider the softmax activation function given by: 
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Fig. 1. HEPCD algorithm framework 
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Let { }( , ) : 1,2,...,n n TD n n= =x y  be the training data set, where 0inx > , ,i n∀  and 

ny  is the class level of the n-th individual. We adopt the common technique of 

representing class levels using a “1-of-J” encoding vector ( )(1) (2) ( ), ..., Jy y y=y , such 

as ( ) 1ly =  if x   corresponds to an example belonging to class l  and, otherwise 
( ) 0ly = . The cross-entropy error function for those observations is: 
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where 1( ,..., )J=θ θ θ . The optimum rule ( )C x   is the following: 
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Finally, we define the corrected classified rate by 
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where ( )I i  is the zero-one loss function. 

3   The Hybrid Evolutionary Neural Network Algorithm 

The algorithm called dynamic hybrid evolutionary programming with clustering 
HEPCD carries out a clustering process and a local search procedure throughout the 
evolutionary process. Concretely, we apply the clustering process and the local search 
to the best individual of each cluster in different stages of the evolution and in the 
final population. The clustering process is applied only to a percentage of the best 
individuals of the current population. The local search is applied to the best individual 
of each cluster and the fitted individuals are stored in a separate population B. The 
final solution is the best individual among the local optima found during the 
evolutionary process. The local optimization algorithm used in our work is the 
Levenberg-Marquardt (L-M) optimization method. In any case, any other local 
optimization algorithm can be used in a particular problem.  

The general framework of the Dynamic Hybrid Evolutionary Programming with 
Clustering (HEPCD) is the following (see Figure 1): 

1. Generate a random population of size PN . 

2. Repeat until the stopping criterion is fulfilled 
2.a) Apply parametric mutation to the best 10% of individuals. Apply 

structural mutation to the remaining 90% of individuals. 
2.b) Calculate the fitness of every individual in the population.  
2.c) Add best fitness individual of the last generation (elitist algorithm). 
2.d) Rank the individuals with respect to their fitness. 
2.e) Best 10% of population individuals are replicated and substitute the 

worst 10% of individuals.  
Apply the following process every G0 generations: 

2.f) Apply k-means process to best %s  individuals of the population in 
the current generation, assigning a cluster to each individual. 
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2.g) Select the best CCR solution in each cluster and apply the L-M 
algorithm to each selected individual. 

2.h) Select the best CCR individual among optimized ones and add it to 
the B set. 

3. Select the best CCR individual in set B and return it as the final solution, using 
CCR as the selection criterion. 
Next, we describe parametric and structural mutations and the clustering process in 

detail. 

3.1   Structural and Parametric Mutations 

The fitness measure is a strictly decreasing transformation of the entropy error ( )l θ  

given by 
1

( )
1 ( )

A g
l
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, where g  is a product-unit neural network given by the the 

multivaluated function ( ) ( ) ( )1 1, ( , ,..., , )l lg g g=x θ x θ x θ . Parametric mutation is 

accomplished for each coefficient jiw , l
jβ  of the model with Gaussian noise:  

1 2( 1) ( ) ( ), ( 1) ( ) ( )l l
ji ji j jw t w t t t t tξ β β ξ+ = + + = +         (6)  

where ( ) (0, ( ))k kt N tξ α∈ , for each 1,2k = , represents a one-dimensional normally-

distributed random variable with mean 0 and variance ( )k tα . Once the mutation is 

performed, the fitness of the individual is recalculated and the usual simulated 
annealing process is applied. Thus, if AΔ  is the difference in the fitness function after 
and preceding the random step, the criterion is: if 0AΔ ≥ , the step is accepted, and if 

0AΔ < , the step is accepted with a probability exp( / ( ))A T gΔ , where the 

temperature ( )T g  of an individual g  is given by ( ) 1 ( ), 0 ( ) 1T g A g T g= − ≤ < . The 

variances ( )k tα  are updated throughout the evolution of the algorithm. There are 

different methods to update the variance. We use the 1/5 success rule of Rechenberg 
[8], one of the simplest methods.  

Structural mutation implies a modification in the neural network structure and 
allows explorations of different regions in the search space while helping to keep up 
the diversity of the population. There are five different structural mutations: node 
deletion, connection deletion, node addition, connection addition and node fusion. 
The first four are similar to the mutation in the GNRL model [9]. In the node fusion, 
two randomly selected hidden nodes, a  and b , are replaced by a new node c , which 
is a combination of the two. The connections that are common to both nodes are kept, 
with a weight given by: 

                   ( ), (1/ 2)l l l
c a b jc ja jbw w wβ β β= + = +       (7) 

The connections that are not shared by the nodes are inherited by c  with a probability 
of 0.5 and their weight is unchanged. The stop criterion is reached if one of the 
following conditions is fulfilled: a number of generations is reached or the variance of 
the fitness of the best ten percent of the population is less than 410− . 
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3.2   Clustering Partitioning Technique 

Let { }( , )n nD = x y   be the training data set. We assign to each classifier g  the binary 

vector ˆ gy  of Tn  dimension, where the i  coordinate is 1 if the ix  pattern is correctly 

classified and otherwise 0. Thus we can define the distance between two neural 
networks classifiers g  and h  as the Euclidean distance between the associated 

vectors ˆ ˆ( , ) g hd g h y y= − . With this distance measurement, the proximity between 

two classifiers is related to their performance and the diversity of the classification 
task. So, similar functions using this distance will have a similar performance for the 
same classification problem. We use K-means clustering. The centroid of each is 
defined as the mean data vector averaged over all items in the cluster and does not 
correspond to any concrete model of the population. We use the centroid only as a 
tool of the algorithm. The choice of the K-means has been made mainly because it is 
simple, fast and easy to implement. The number of clusters must be pre-assigned. 

4   Experimental Results 

We evaluate the performance of our methodology on four data sets with different 
features taken from the UCI repository [10]: Breast-w, Breast-Cancer (Cancer), 
Balance-scale and Australian card. The experimental design was conducted using a 
10-fold stratified cross-validation procedure and 10 runs per each fold. The 
parameters used in all experiments were: the exponents jiw  were initialized in the 

interval [ 5,5]− , the coefficients jβ  were initialized in [ 10,10]− , the size of the 

population was 1000pN =  and 1 2(0) 0.01, (0) 0.1α α= = . The maximum number of 

generations was 200. The only parameter of the L-M algorithm is the tolerance of the 
error to stop the algorithm, in our experiment this parameter had the value 0.01. The 
K-means algorithm was applied to 25%s =  of the best individuals of the population. 
The number of K  clusters was 4 and the maximum number of hidden nodes was 6. 
The clustering process and the local search were carried out in the 100, 150 and 200th 
generation ( 0 50G = ). Table 1 shows the statistical results of the HEPCD algorithm. 

Moreover, we compare our approach to recent results [11] obtained using eleven 
classification techniques: Logistic model tree algorithm, LMT, two logistic regression 
(with attribute selection, SLogistic, and for a full logistic model, MLogistic); 
induction trees (C4.5 and CART [12]); a naïve Bayes tree learning algorithm NBTree 
[13]; two functional tree learning algorithms LTreeLin and LTreeLog [14] and  
finally, multiple-tree models M5´ for classification [15], and boosted C4.5 trees using 
AdaBoost.M1 with 10 and 100 boosting interactions. Under the hypothesis of the 
normality of the results, we carried out a t-student test (5% level significance) 
comparing our HEPCD approach to the best algorithm (in bold face) for each dataset. 
The asterisk in Table 2 shows that there are significant differences, in the mean of the 
CCRG, between HEPCD and LTreeLin for the Balance dataset. There are not 
significant differences between HEPCD and the best algorithm for the rest of the 
datasets.  
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Table 1. Statistical results of training and testing for 100 executions of the HEPCD algorithm 

CCR Training CCR Generalization # conn 

Datasets Mean SD Best Worst Mean SD Best Worst Mean SD 

Breast-w 76.44 1.16 79.07 74.03 73.50 6.83 85.71 57.14 10.81 2.14 

Cancer 97.67 0.26 98.25 0.26 96.71 1.94 100.00 1.94 10.67 1.41 

Balance 97.39 0.95 100.00 96.09 96.10 2.69 100.00 88.70 19.21 5.45 

Australian 87.77 0.81 90.50 85.99 85.46 3.99 95.65 72.46 33.96 12.9  

Table 2.  Mean classification accuracy and standard deviation of CCRG for LMT, SLogistic, 
MLogistic, C4.5, CART, NBTree, two tree functional learning algorithms (LTReeLin and 
LTreeLog), M5’ for classification and ABoost(10) and ABoost(100). The results were taken 
from [11]. 

Datasets LMT SLogistic MLogistic C4.5 CART NBTree 

Breast-w 96.18±2.20 96.21±2.19 96.50±2.18 95.01±2.73 94.42±2.70 96.60±2.04 

Cancer 74.91±6.29 74.94±6.25 67.77±6.92 74.28±6.05 69.40±5.25 70.99±7.94 

Balance 89.71±2.68 88.74±2.91 89.44±3.29 77.82±3.42 78.09±3.97 75.83±5.32 

Australian 85.04±3.84 85.04±3.97 85.33±3.85 85.57±3.96 84.55±4.20 85.07±4.03 

Datasets LTreeLin LTreeLog M5' ABoost(10) ABoost(100) HEPCD 

Breast-w 96.68±1.99 96.75±2.04 95.85±2.15 96.08±2.16 96.70±2.18 96.71±1.94 
Cancer 70.58±6.90 70.45±6.78 70.40±6.84 66.75±7.61 66.36±8.18 73.50±6.83 
Balance 92.86±3.22 92.78±3.49 87.76±2.23 78.35±3.78 76.11±4.09 96.10±2.69* 

Australian 84.99±3.91 84.64±4.09 85.39±3.87 84.01±4.36 86.43±3.98 85.46±3.99  

5   Conclusions 

We have proposed a new approach to solve classification problems based on the 
combination of an evolutionary neural network algorithm; a clustering process and a 
local-search procedure, where the clustering partitioning and the local searches are 
carried out in different stages of the evolutionary process. The algorithm evolves the 
non-linear model given by product-unit neural networks. The experiments carried out 
suggest that a product-unit neural network is an efficient nonlinear model to solve 
classification problems. Finally, the reader can observe that the basic framework of 
the algorithm can be applied to different neural network models and could be tuned 
by using other clustering and local search methods. 
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