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Abstract. This paper presents a methodology for knowledge discovery
from inherently distributed data without moving it from its original lo-
cation, completely or partially, to other locations for legal or competition
issues. It is based on a novel technique that performs in two stages: first,
discovering the knowledge locally and second, merging the distributed
knowledge acquired in every location in a common privacy aware maxi-
mizing the global accuracy by using evolutionary models. The knowledge
obtained in this way improves the one achieved in the local stores, thus
it is of interest for the concerned organizations.

1 Introduction

Information technologies peak has produced a huge amount of data, and mining
them is one of the most successful areas of research in computer science.

Every now and then, data may be geographically distributed, and habit-
ual data mining techniques need to centralize it, or to get benefits from the
distributed computing, using distributed algorithms that move knowledge and
training data [13] and [8].

Nevertheless, it is not always possible to move the data in a distributed
system because competition or legal issues. For example, banking entities may
be interested in global knowledge benefits to avoid credit card fraud, but they
have to safeguard their clients data. Another example concerns the medical field,
where global knowledge for diagnosis or research studies is desired considering
that some pathologies may be different depending on geographical information,
but the privacy of patients data must be guaranteed due to legal reasons. Also,
in other cases it is not possible to merge all the data in a single system due to
computational resources limitations.

On the other hand, model combination is the core idea behind classical ma-
chine learning methods such as Bagging [4], Boosting [5] or Stacking [6]. Models
can be seen as experts and classificacion may be better if several experts opinions
are combined. As far as we know, all these methods were designed to work in non
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distributed environments. They have got the whole dataset at the beginning of
the classification process, so they are not directly applicable to solve inherently
distributed data problems.

Therefore, merging distributed knowledge without moving the data is an
interesting research area. This paper proposes a novel method to learn from
inherently distributed data without sending any of them from one place to an-
other. It is based on making the classifiers locally, and then ensembling them in
a single final one using an evolutionary methodology where the population of
candidate classifiers is concurrently evaluated in a distributed way in each local
node.

This document is organized as follows. Section 2 provides the concepts behind
the solution presented. Section 3 focuses the proposed method describing all its
components. Section 4 shows the experimental study developed and finally, we
present some concluding remarks in Section 5.

2 Preliminaries

This section describes the theoretical concepts in which the proposed method is
based on. First, an introduction to metalearning techniques is shown and finally
genetic algorithms (GA) are introduced as a learning tool.

2.1 Metalearning

Metalearning [1] is a strategy that makes easier independent models combination
and supports the data mining applications big scalability, so in some cases we
can avoid the data movement issue by combining models instead of raw data.
Two main policies are related in the literature [3] to perform model combination:

– Multiple Communication Round: Methods of this kind require a significant
synchronization amount. They usually use a voting system, so sending ex-
amples throught the system is often necessary.

– Centralized Ensemble-based: This kind of algorithms can work generating
the local classifiers first and combining them at a central site later. This is
the one we use in our proposal.

2.2 Genetic learning

GAs have achieved reputation of robustness in rule induction in common prob-
lems associated to real world mining (noise, outliers, incomplete data, etc). Ini-
tially, GA were not designed as machine learning algorithms but they can be
easily dedicated to this task [9]. Typically the search space is seen as the entire
possible hypothesis rule base that covers the data. The goodness can be related
to a coverage function over a number of learning examples [8][13].

Regarding the representation of the solutions, the proposals in the specialized
literature usually use two approaches in order to encode rules within a population
of individuals:



– The “Chromosome = Set of rules”, also called the Pittsburgh approach, in
which each individual represents a rule set [10]. In this case, a chromosome
evolves a complete rule set and they compete among them along the evolu-
tionary process.

– The “Chromosome = Rule” approach, in which each individual codifies a
single rule, and the whole rule set is provided by combining several individu-
als in a population (rule cooperation) or via different evolutionary runs (rule
competition). In turn, within the “Chromosome = Rule” approach, there
are three generic proposals:
• The Michigan approach, in which each individual encodes a single rule.

These kinds of systems are usually called learning classifier systems [11].
They are rule-based, message-passing systems that employ reinforcement
learning and a GA to learn rules that guide their performance in a given
environment. The GA is used for detecting new rules that replace the bad
ones via the competition between the chromosomes in the evolutionary
process.

• The IRL (Iterative Rule Learning) approach, in which each chromosome
represents a rule. Chromosomes compete in every GA run, choosing the
best rule per run. The global solution is formed by the best rules obtained
when the algorithm is run multiple times. SIA [12] is a proposal that
follows this approach.

• The GCCL (Genetic Cooperative-Competitive Learning) approach, in
which the complete population or a subset of it encodes the rule base,
In this model the chromosomes compete and cooperate simultaneously,
[14] is an example of this approach.

3 Proposed Method

In this work we present an Evolutionary eNsemble-based method for Rule Ex-
traction with Distributed Data (ENREDD). The ensemble-based process shares
only the local models being a reasonable solution to privacy constraints. Also,
it uses low bandwidth due to the low amount of data transmited (classifiers are
sent instead of raw data).

Centralized ensemble-based metalearning processes are usually divided in two
stages:

– Creating local classifiers from the distributed datasets.
– Aggregate local knowledge in a central node.

The algorithm resolves the first stage using a GA based on a GCCL approach.
When local models are generated, they are sent to a central node where the
second stage starts. Subsection 3.1 details the local learning system.

The central or master node uses an evolutionary algorithm to merge the rules
from the local models. Because data stays in each local node, the algorithm must
complete the task without moving the data, so it sends the candidate classifiers
to the distributed nodes to evaluate their quality. Each local node sends the



accuracy obtained with its data. Once the master node has got the results, it
averages the values to get a global measure of classifier quality (Fig. 1).

Fig. 1. Communications for candidate classifiers evaluation

Master node uses a Pittsburgh approach to merge the rules from the local
classifiers. A detailed description of this stage will be shown in Subsection 3.2.

3.1 Local nodes

As was commented before, local nodes must build a classifier from the data they
have got. The idea behind this method is that an acceptable rule in a local set
is a candidate to compose the global classifier [2], so all the rules are at the
central node. This method reduces the amount of communication and lets build
an independent model generation.

ENREDD local learning process generates an initial population with a heuris-
tic function based on local data. The chromosome has a binary representation
and each gene represents a possible value for a given attribute that will be active
if the value contributes to the rule.

In the example chromosome of Figure 2, the binary coding represents the
rule if c1 in (v1,v3) and c3 in (v6) then class is v10.

Fig. 2. Local node chromosome representation

The evaluation function balances simplicity and quality with Equation 1

f(r) =
(

1 +
zeros(r)
length(r)

)−1∗Cases−

(1)

where Cases- is the number of covered examples predicted as false positives,
Zeros(r) is the number of zeroes in the bit string representation of the rule r and



length is the chromosome length expressed in bits. In order to force the winning
rules to be as accurate as possible, the fitness is exponentially measured and just
when Cases- is really low the length is taken into account.

The selection is implemented with the universal suffrage operator[13] select-
ing the individuals that take part in recombination mixing a vote process among
the train examples that takes into account the number of positive covered cases.
After the selection, two crossover operators are randomly applied, two point
crossover and uniform crossover. The offsprings will replace a randomly selected
individual in the original population without keeping any elite population.

3.2 Master node

The master node collects all the local classifiers received, and then, it starts the
genetic optimization process that includes two phases that are described next.

Rule merging It solves the distributed rules aggregation. The GA task is to
sort the rule list to get the best order possible.

The local classifiers rules are inserted together in a table without repetition,
and an integer index is asigned to each rule. Thus an integer representation
has been chosen for the GA chromosome. The order inside the chromosome will
determine the rule application order.

The algorithm chosen is a CHC [7] based model. The initial population is
generated randomly. The Hamming distance has been considered using the num-
ber of differing integer genes in the chromosome, so once it is calculated, the half
differing genes can be swapped. The parents are only crossed when Hamming
distance exceeds a threshold d.

For each chromosome, the evaluation function applies the classifier in each
node to evaluate it with all the available data. Next, each node sends to the
master node the accuracy percent obtained, and it averages the global quality
of each chromosome.

Rule reduction It deletes the rules that never get fired with the distributed
data.

It sends the final classifier to the nodes and all the rules activated with the
examples they have got are marked. Then, the classifier is returned to the master
node and it deletes all the rules that have not been marked.

4 Experimental study

This section describes the experimental study developed to test the proposed
method and analyzes the results obtained.

In order to compare the behaviour of the presented method we propose to
modify the well known Bagging [4]. It works selecting different samples of a single
dataset named bags. A classifier for each bag is created and the final classifier



output is the most voted in the samples classifiers. In order to apply Bagging to
distributed data, we consider bags as distributed nodes, so we use T/N samples
for each node, being T the dataset size and N the number of nodes. We name
this modified version MBAG.

The aim of this preliminary study is to validate the proposal without real
world complexities due to data distribution like unbalanced data, heterogeneous
domain, local discretization, etc. To achieve this target the main dataset has been
discretized using 10 fixed frequency values gaps with a 10 fold cross validation
in a 70/30 training/test proportion.

Simulations with 5, 10 and 20 nodes have been performed. These values have
been selected because higher values result in a few training examples and lower
ones are no representative of a distributed configuration. For local nodes, the GA
uses 250 individuals and 200 generations. The master node uses 50 individuals
and 600 generations.

To compare ENREDD with MBAG we have used the Wilcoxon Signed-Ranks
Test(WSRT) [15]. It is a non-parametric alternative to the paired t-test, which
ranks the differences in performances of two classifiers for each dataset, ignoring
the signs, and compares the ranks for the positive and the negative differences.

WSRT can reject the null hypothesys[16] (equal accuracy for compared al-
gorithms in our study) with α = 0.05 when parameter z is smaller than −1.96.

4.1 Results analysis

Table 1 shows the training and test sets accuracy means for both methods.
The BN columns are the trainining and test accuracy percentages for MBAG
simulations with N nodes and the EN ones are the results for ENREDD.

The accuracy of both methods is lower than using standard classifing methods
due to the impact of splitting datasets. Sometimes the distributed behaviour
may be affected by the number of local datasets due to the fact that there is
not enough representation of each class in a local node. Maybe some datasets
show poor accuracy with both methods due to this fact. In the other datasets
the distribution does not show any tendency regarding accuracy in ENREDD
and shows a better accuracy than MBAG.

Table 2 shows the WSRT statistical test results obtained from the Table 1
data. It is shown that z is lower than −1.96 for all the cases, so we can reject
the null hypothesis with α = 0.05. For example, for a E5 > B5 accuracy, null
hypothesis is rejected with a 99.4% confidence, because p-value is 0.006.

5 Conclusions and Future Work

A methodology for knowledge discovery from distributed data without moving
it from its original location for legal or competition issues have been proposed.
It generates local distributed classifiers using an evolutionary model, and after,
it merges them using an additional evolutionary algorithm evaluating the can-
didate solutions with the distributed data sets in a distributed parallelized way.



Table 1. Average test accuracy

TRAINING TEST

B5 E5 B10 E10 B20 E20 B5 E5 B10 E10 B20 E20

Car 80.57 97.22 76.19 94.49 71.45 92.78 78.29 93.97 74.59 90.91 70.83 89.89
Cleveland 58.60 82.83 56.09 79.35 53.77 77.92 52.78 52.61 54.00 53.37 54.44 53.43
Credit 86.19 91.72 85.42 94.67 85.90 89.94 85.60 83.91 85.65 86.38 86.28 86.09
Ecoli 70.55 89.72 58.51 85.25 45.11 79.66 64.36 66.84 54.36 63.05 43.27 60.36
Glass 59.26 85.43 49.53 79.85 38.39 87.70 47.69 50.54 39.85 44.51 31.23 38.23
Haberman 74.58 85.84 73.93 83.56 73.64 82.87 71.85 68.52 72.93 70.35 73.26 69.22

House-votes 64.53 99.19 63.40 98.92 62.04 98.30 62.68 96.80 62.72 97.12 62.30 96.00
Iris 68.46 96.11 39.62 98.06 0 0 63.91 76.09 36.96 68.09 0 0
Krvskp 97.02 98.74 96.00 98.50 94.74 98.29 96.94 97.76 95.95 97.72 94.93 97.57
Monk 54.93 84.72 52.55 82.07 51.82 75.92 46.92 65.50 47.62 63.98 45.23 64.27
Mushroom 99.90 100.0 99.82 99.99 99.54 100.0 99.90 100.0 99.82 99.95 99.47 99.99
New-thyroid 88.60 98.59 77.13 97.89 70.20 97.97 85.69 90.68 74.92 88.54 68.77 79.58

Nursery 94.20 97.99 92.19 98.08 90.80 96.96 93.47 96.12 92.09 96.53 90.72 96.40
Pima 74.99 86.59 74.56 83.39 70.32 81.28 72.42 79.87 72.03 70.53 68.83 71.41
Segment 90.36 96.23 88.43 93.13 85.67 85.31 88.02 92.19 86.72 89.04 83.8 79.92
Soybean 91.66 96.91 88.25 92.01 77.31 85.77 91.15 92.83 87.15 87.10 75.05 80.12
Splice 94.22 99.24 93.84 98.24 92.75 96.77 93.32 96.25 93.25 94.54 91.79 95.16
Tic-tac-toe 88.88 97.69 74.13 92.61 70.42 89.61 85.35 94.46 70.94 87.37 69.03 84.76

Vehicle 66.44 78.16 63.61 72.24 60.57 67.13 55.28 57.21 54.53 53.61 54.57 50.25
Vote 95.59 98.34 95.63 97.93 95.39 97.65 95.73 95.16 95.50 94.93 95.50 94.00
Waveform 79.08 78.74 80.65 78.63 80.76 76.68 75.88 66.45 78.18 72.04 78.93 72.37
Wine 72.66 96.56 64.68 96.35 45.56 100.0 61.85 61.35 57.59 52.97 39.63 34.62
Wisconsin 93.26 99.01 89.41 98.46 84.96 98.22 91.02 95.12 88.39 95.54 84.83 94.67
Zoo 93.26 99.85 89.41 99.68 84.96 99.08 91.02 81.40 88.39 74.78 84.83 72.15

Table 2. Wilcoxon Signed Ranks Test

E5 > B5 E10 > B10 E20 > B20

Negative Ranks 7 9 7
Positive Ranks 17 15 16
Ties 0 0 1

z -2.743 -2.371 -2.403
p-value 0.006 0.018 0.016



The knowledge discovered with this method may be of significance for some or-
ganizations interested in to collaborate to get common knowledge for some areas
like security, frauds and so on.

As future work, we plan to get better the rule reduction mechanism in or-
der to improve the interpretability of the models obtained and also, we will
create synthesized data sets specifically created to simulate the geographically
distributed data without the drawbacks of the generic datasets used in this work.
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