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Abstract

The experimental analysis on the performance
of a proposed method is a crucial and nec-
essary task to carry out in a research. This
paper is focused on the statistical analysis of
the results in the community of Genetic Based
Machine Learning.

Specifically, a non-parametric analysis can
be performed by using the average results ob-
tained for each data set as sample, which sup-
poses in a simpler analysis. We use the well-
known non-parametric statistical tests which
can be employed and we propose the use of the
most powerful statistical techniques to per-
form multiple comparisons among more than
two algorithms.

1 Introduction

In general, the classification problem can be
covered by numerous techniques and algo-
rithms, which belong to different paradigms
of Machine Learning (ML). The new develop-
ments of methods for ML must be analyzed
with previous approaches by following a rigor-
ous criterion, given that in any empirical com-
parison, the results depend on the choice of
the cases for studying, the configuration of the
experimentation and the measurements of per-
formance. Nowadays, the statistical validation
of published results is necessary to establish a

certain conclusion on an experimental analy-
sis. Statistics allows us to determine whether
the results obtained are significant with re-
spect to the choices taken and whether the
conclusions remarked are supported by the ex-
perimentation carried out.

The use of statistical analysis is a necessity
and we can find different studies that propose
methods for conducting comparisons among
various approaches [7, 12].

Evolutionary rule-based systems are a type
of ML algorithms that evolve a set of rules
by means of evolutionary algorithms. They
receive the name of Genetic-Based Machine
Learning (GBML) or Learning Classifier Sys-
tems (LCSs). We are interested in the study
of the most appropriate statistical techniques
for analyzing the experimentation of GBML
algorithms [13, 18].

In the specialized literature, GBMLs have
been analyzed by using statistical tests with
the objective of computing the level of sig-
nificance among the comparisons of the pro-
posals with the other methods. The au-
thors are usually familiarized with paramet-
ric and non-parametric tests for pairwise com-
parisons. Both Michigan and Pittsburgh ap-
proaches have been compared through para-
metric tests by means of paired t-tests by us-
ing the results obtained for all runs in each
data set individually [8, 4]. The use of these
type of tests is correct when we are interested



in finding the differences between two meth-
ods, but they must not be used when we are
interested in comparisons that include more
than two methods. In the case of repeating
pairwise comparisons, there is an associated
error that grows agreeing with the number of
comparisons done, called the family-wise er-
ror rate (FWER), defined as the probability of
at least one error in the family of hypotheses.
Some authors use the Bonferroni correction for
applying paired t-test in their works [14] and
multiple comparisons procedures [5] for con-
trolling the FWER in parametrical statistics.

In this paper, we show a way for doing pair-
wise comparisons, showing the error proba-
bility achieved when we repeat pairwise com-
parisons and the control of the FWER. We
describe the multiple comparisons with pow-
erful non-parametric procedures accompanied
with an empirical case study which includes
the comparison of 6 GBML algorithms.

In order to do that, this contribution is orga-
nized as follows. Section 2 presents the GBML
algorithms used, the experimental framework
and the results obtained by each method. Sec-
tion 3 performs an experimental analysis based
on pairwise comparisons. In the case of mul-
tiple comparisons tests, we describe and use
them for analyzing the results in Section 4.
Finally, Section 5 concludes the paper.

2 Genetic Based Machine Learning
Algorithms for Classification

This section is divided in two parts. First we
will introduce the different GBML algorithms
employed in this work, giving an overall de-
scription of their characteristics, structure and
operation. Finally we will present our experi-
mental results done over 14 different data-sets
from UCI repository.

2.1 GBML Methods

In this paper we use GMBL systems in order
to perform classification tasks. Specifically,
we have chosen 6 methods of Genetic Inter-
valar Rule Based Algorithms, such as Pitts-
burgh Genetic Intervalar Rule Learning Al-

gorithm (Pitts-GIRLA), Supervised Inductive
Algorithm (SIA), Genetic Algorithm based
Classifier System (GASSIST) ADI and Inter-
valar, Hierarchical Decision Rules (HIDER)
and XCS.

In the following we will give a brief descrip-
tion of the different approaches that we have
employed in our work.

1. Pittsburgh Genetic Intervalar Rule Learn-
ing Algorithm.
The Pitts-GIRLA Algorithm [6] is a
GBML method which makes use of the
Pittsburgh approach in order to perform
a classification task. The main structure
of this algorithm is a generational GA, in
which for each generation the steps of se-
lection, crossover, mutation and replace-
ment are applied.
We initialize all the chromosomes at ran-
dom, with values between the range of
each variable. The selection mechanism is
to choose two individuals at random be-
tween all the chromosomes of the popula-
tion.
The fitness of a particular chromosome
is simply the percentage of instances cor-
rectly classified by the chromosome’s rule
set (accuracy).
The best chromosome of the population is
always maintained as in the elitist scheme.

2. Supervised Inductive Algorithm.
SIA [15] is a GBML used for obtaining of
rules in classification problems.
The conditions of the different attributes
of a rule may have a “don’t care” value
a pair attribute-value if the attribute is
symbolic or an intervalar value if the at-
tribute is numeric.
The main procedure of SIA begins with
an empty set of rules, then it selects an
example and builds the most specific rule
that matches that example. By means of
a GA it generalizes the condition part of
the rule and deletes all the examples cov-
ered by the new rule. This procedure con-
tinues until there are no more examples to
cover.
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To classify a new pattern, we compute
the distance of each rule to the example.
Then it belongs to the class of the rule
with the minimum distance measured.

3. XCS Algorithm.

XCS [16] is a LCS that evolves online a
set of rules that describe the feature space
accurately.

The set of rules has a fixed maximum
size and it is initially built by generalizing
some of the input examples, and further,
they are evolved online. The result is that
the knowledge is represented by a set of
rules or classifiers with a certain fitness.

When classifying unseen examples, each
rule that matches the input votes accord-
ing its prediction and fitness. The most
voted class is chosen to be the output.

4. GASSIST Algorithm

GASSIST (Genetic Algorithms based
claSSIfier sySTem) [3] is a Pittsburgh-
style Learning Classifier System originally
inspired in GABIL from where it has
taken the semantically correct crossover
operator.

The core of the system consists of a Ge-
netic Algorithm which evolve individuals
formed by a set of production rules. The
individuals are evaluated according to the
proportion of correct classified training
examples.

The representation for real-valued at-
tributes is different in each approach:
GASSIST-Intervalar uses intervalar rules
while Adaptive Discretization Intervals
Rule Representation [2] is used for
GASSIST-ADI.

5. HIDER Algorithm.

HIerarchical DEcision Rules (HIDER) [1],
produces a hierarchical set of rules, that
is, the rules are sequentially obtained and
must be, therefore, tried in order un-
til one, whose conditions are satisfied, is
found.

In order to extract the rule-list a real-
coded GA is employed in the search pro-
cess. Two genes will define the lower and
upper bounds of the rule attribute. One
rule is extracted in each iteration of the
GA and all the examples covered by that
rule are deleted. A parameter called Ex-
amples Pruning Factor (EPF) defines a
percentage of examples that can remain
uncovered. Thus, the termination crite-
rion is reached when there are no more
examples to cover, depending on EPF.

The GA main operators are defined in the
following:

(a) Crossover : Where the offspring
takes values between the upper and
lower bounds of the parents.

(b) Mutation: Where a small value is
subtracted or added in the case of
lower and upper bound respectively.

(c) Fitness Function: The fitness func-
tion considers a two-objective op-
timization, trying to maximize the
number of correctly classified exam-
ples and to minimize the number of
errors.

2.2 Experimental Results

We have selected 14 data sets from UCI repos-
itory. Table 1 summarizes the properties of
these data sets. It shows, for each data set,
the number of examples (#Ex.), number of
attributes (#Atts.) and the number of classes
(#Cl.). In the case of presenting missing
values (cleveland and wisconsin) we have re-
moved the instances with any missing value
before partitioning. We also add in the last
columns some of the Pitts-GIRLA parameters
which we have made problem-dependent in or-
der to increase the performance of the algo-
rithm. The rest of the parameters are the rec-
ommended by the respective authors.

The validation used is 10-fold cross valida-
tion (10fcv). We have repeated the experi-
ments with different random seeds 5 times.

Table 2 shows the results obtained for the
algorithms studied in this section over all data
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Table 1: Data Sets summary descriptions and Pitts-GIRLA problem-dependent parameters

Data Set Description Pitts-GIRLA
Data set #Ex. #Atts. #Cl. #R #Gen
bupa (bup) 345 6 2 30 5000
cleveland (cle) 297 13 5 40 5000
ecoli (eco) 336 7 8 40 5000
glass (gla) 214 9 7 20 10000
haberman (hab) 306 3 2 10 5000
iris (iri) 150 4 3 20 5000
monk-2 (mon) 432 6 2 20 5000
new-Thyroid (new) 215 5 3 20 10000
pima (pim) 768 8 2 10 5000
vehicle (veh) 846 18 4 20 10000
vowel (vow) 988 13 11 20 10000
wine (win) 178 13 3 20 10000
wisconsin (wis) 683 9 2 50 5000
yeast (yea) 1484 8 10 20 10000

sets, considering the accuracy measure in test
data. The column named Mean shows the
average accuracy achieved and the column
named SD shows the associated standard devi-
ation. We stress the best result for each data-
set and the average one in boldface.

3 Performing Pairwise Compar-
isons

Our interest lies in presenting a way for an-
alyzing the results offered by the algorithms
in a certain study of GBML, by using non-
parametric tests. This section is devoted to de-
scribe a non-parametric statistical procedure
for performing pairwise comparisons between
two algorithms, which is Wilcoxon’s signed-
rank test, Section 3.1; and to show the oper-
ation of this test in the case study presented,
Section 3.2.

3.1 Wilcoxon signed-ranks test

This is the analogous of the paired t-test in
non-parametric statistical procedures [13, 18];
therefore, it is a pairwise test that aims to de-
tect significant differences between two sample
means, that is, the behavior of two algorithms.
It computes two sums of ranks, R+ and R−

depending on the difference between two algo-
rithms. If the results of the minimal of both
rankings is below a certain critical value for a
level of significance α, then the algorithms are
significantly different. The critical value can
be checked at Table B.12 in [18].

When the assumptions of the paired t-test
are met, Wilcoxon’s signed-ranks test is less
powerful than the paired t-test. On the
other hand, when the assumptions are vio-
lated, Wilcoxon’s test can be even more pow-
erful than the t-test. This allows us to apply it
over the means obtained by the algorithms in
each data set, without any assumptions about
the sample of results obtained.

3.2 Wilcoxon’s Test: A case study in
GBML

In this section, we will perform the statistical
analysis by means of pairwise comparisons by
using the results of accuracy obtained by the
algorithms described in Section 2.

In order to compare the results between two
algorithms and get a determination of which
one is the best, we can perform Wilcoxon
signed-rank test for detecting differences in
both means. This statement must be enclosed
by a probability of error, that is the comple-
ment of the probability of reporting that two
systems are the same, called the p-value [18].
The computation of the p-value in Wilcoxon’s
distribution could be carried out by a normal
approximation. This test is well known and it
is usually included in standard statistics pack-
ages (such as SPSS, R, etc.).

Table 3 shows the results obtained in all
possible comparisons among the 6 algorithms
considered in the study. We stress in bold the
winner algorithm in each row when the p-value
associated is below 0.05.
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Table 2: Average of accuracy in test data for 10-fcv
Pitts-GIRLA SIA GASSIST ADI GASSIST Int. HIDER XCS

Dat Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

bup 59.22 6.41 57.94 9.32 61.96 8.91 65.82 8.01 61.86 9.86 58.28 6.09
cle 55.83 3.76 51.94 6.84 55.18 6.38 55.42 6.00 55.45 7.23 30.18 7.24
eco 73.67 8.50 79.20 5.94 79.67 5.35 75.79 7.59 84.22 5.97 78.80 7.15
gla 62.47 11.04 73.71 10.92 63.24 10.72 62.24 10.59 69.62 13.31 57.45 10.17
hab 69.97 12.45 66.33 5.92 73.48 5.67 73.79 6.45 74.85 4.49 73.13 2.79
iri 94.93 5.14 95.20 4.27 96.13 3.83 94.80 3.88 96.40 4.09 95.07 4.22
mon 62.36 11.65 67.01 2.35 66.65 4.43 66.22 3.62 67.19 2.06 67.15 3.10
new 91.40 4.99 94.51 4.63 92.67 4.62 90.21 6.64 93.82 6.60 92.52 6.04
pim 64.85 11.61 70.13 5.82 74.60 5.39 74.44 4.48 74.73 4.97 74.27 5.44
veh 45.93 10.95 69.44 5.58 66.03 4.83 64.04 5.13 65.93 5.02 63.69 4.42
vow 24.67 5.48 99.21 0.74 42.48 4.70 42.44 4.90 72.48 4.82 34.04 5.43
win 70.39 21.99 95.19 6.05 93.02 6.06 90.90 6.88 94.76 7.92 93.94 5.82
wis 76.55 22.69 96.69 2.36 95.61 2.80 95.88 2.51 96.53 2.36 95.52 2.07
yea 37.23 8.77 52.24 3.67 52.93 4.15 50.19 6.27 57.81 3.76 36.39 5.81
Avg 63.53 10.39 76.34 5.31 72.40 5.56 71.58 5.92 76.12 5.89 67.89 5.41

The comparisons performed in this study
are independent, so they never have to be
considered in a whole. If we try to extract
from Table 3 a conclusion which involves more
than one comparison, we are losing control
on the FWER. For instance, the statement:
“The HIDER algorithm outperforms the Pitts-
GIRLA, GASSIST-ADI, GASSIST-Intervalar
and XCS algorithms with a p-value lower than
0.05” is incorrect whereas we can not prove the
control of the FWER. The HIDER algorithm
really outperforms these four algorithms con-
sidering independent comparisons.

The true statistical signification for combin-
ing pairwise comparisons is given by:

p = P (Reject H0|H0 true) =
= 1 − P (Accept H0|H0 true) =

= 1 − P (Accept Ak = Ai, i = 1, . . . , k − 1|H0 true) =

= 1 −
∏k−1

i=1
P (Accept_Ak = Ai|H0 true) =

= 1 −
∏k−1

i=1
[1 − P (Reject Ak = Ai|H0 true)] =

= 1 −
∏k−1

i=1
(1 − pHi

)

(1)

From expression 1, and Table 3, we can
deduce that HIDER is better than Pitts-
GIRLA, GASSIST-ADI, GASSIST-Intervalar
and XCS algorithms with a p-value of

p = 1 − ((1 − 0.001) · (1 − 0.002) · (1 − 0.008)·
·(1 − 0.001)) = 0.012

(2)
Hence, the previous statement has been con-

firmed.

On the other hand, note that the algo-
rithm SIA was not included. If we include
SIA within the multiple comparison, the er-
ror probability obtained is

p = 1 − ((1 − 0.001) · (1 − 0.002) · (1 − 0.008)·
·(1 − 0.001) · (1 − 0.331)) = 0.339

(3)
In this case, it is not possible to declare

that “HIDER algorithm obtains a significantly
better performance than the remaining algo-
rithms”, due to the error probability achieved,
p = 0.339, is too high.

4 Performing Multiple Compar-
isons

When a new proposal of GBML algorithm is
developed, it could be interesting to compare
it with previous proposals. Making pairwise
comparisons allows us to conduct this analy-
sis, but the experiment wise error can not be
previously fixed. Moreover, a pairwise com-
parison is not influenced by any external fac-
tor, whereas in a multiple comparison, the set
of algorithms chosen can determine the results
of the analysis.

Multiple Comparisons procedures are de-
signed for allowing us to fix the FWER before
performing the analysis and for taking into ac-
count all the influences that can exist within
the set of results for each algorithm. In the
same way as in the previous section, the basic
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Table 3: Wilcoxon’s test applied over the all possible comparisons between the 6 algorithms
Comparison R+ R− p-value

Pitts-GIRLA - GASSIST-ADI 1 104 0.001
Pitts-GIRLA - GASSIST-Intervalar 10 95 0.008
Pitts-GIRLA - HIDER 1 104 0.001
Pitts-GIRLA - SIA 11 94 0.009
Pitts-GIRLA - XCS 26 79 0.096
GASSIST-ADI - GASSIST-Intervalar 80 25 0.084
GASSIST-ADI - HIDER 10 95 0.002
GASSIST-ADI - SIA 55 50 0.875
GASSIST-ADI - XCS 93 12 0.011
GASSIST-Intervalar - HIDER 10 95 0.008
GASSIST-Intervalar - SIA 38 67 0.363
GASSIST-Intervalar - XCS 73 32 0.198
HIDER - SIA 68 37 0.331
HIDER - XCS 105 0 0.001
SIA - XCS 82 23 0.064

and advanced non-parametrical tests for mul-
tiple comparisons are described in Section 4.1
and their application on the case study is con-
ducted in Section 4.2.

4.1 Friedman test and post-hoc tests

In order to perform a multiple comparison, it
is necessary to check whether all the results
obtained by the algorithms present any in-
equality. In the case of finding it, then we
can know, by using a post-hoc test, which al-
gorithms partners average results are dissim-
ilar. In the following, we describe the non-
parametric tests used.

• The first one is Friedman’s test [13],
which is a non-parametric test equivalent
to the repeated-measures ANOVA. Un-
der the null-hypothesis, it states that all
the algorithms are equivalent, so a re-
jection of this hypothesis implies the ex-
istence of differences among the perfor-
mance of all the algorithms studied. Af-
ter this, a post-hoc test could be used in
order to find whether the control or pro-
posed algorithm presents statistical dif-
ferences with regards to the remaining
methods in the comparison. The simplest
of them is Bonferroni-Dunn’s test, but it
is a very conservative procedure and we
can use more powerful tests that control
the FWER and reject more hypothesis
than Bonferroni-Dunn’s test; for example,
Holm’s method [10].

Friedman’s test way of working is de-
scribed as follows: It ranks the algorithms
for each data set separately, the best per-
forming algorithm getting the rank of 1,
the second best rank 2, and so on. In case
of ties average ranks are assigned.
Let rj

i be the rank of the j-th of k algo-
rithms on the i-th of Nds data sets. The
Friedman test compares the average ranks
of algorithms, Rj = 1

Nds

∑
i
rj

i . Under
the null-hypothesis, which states that all
the algorithms are equivalent and so their
ranks Rj should be equal, the Friedman
statistic:

χ2
F =

12Nds

k(k + 1)

[∑
jR2

j − k(k + 1)2

4

]
(4)

is distributed according to χ2
F with k − 1

degrees of freedom, when Nds and k are
big enough (as a rule of a thumb, Nds >
10 and k > 5).

• The second one of them is Iman and
Davenport’s test [11], which is a non-
parametric test, derived from Friedman’s
test, less conservative than Friedman’s
statistic:

FF =
(Nds − 1)χ2

F

Nds(K − 1) − χ2
F

(5)

which is distributed according to the F-
distribution with k−1 and (k−1)(Nds−1)
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degrees of freedom. Statistical tables for
critical values can be found at [13, 18].

• Bonferroni-Dunn’s test: if the null hy-
pothesis is rejected in any of the previous
tests, we can continue with Bonferroni-
Dunn’s procedure. It is similar to Dun-
net’s test for ANOVA and it is used when
we want to compare a control algorithm
opposite to the remainder. The quality of
two algorithms is significantly different if
the corresponding average of rankings is
at least as great as its critical difference
(CD).

CD = qα

√
k(k + 1)

6Nds
. (6)

The value of qα is the critical value of Q′

for a multiple non-parametric comparison
with a control (Table B.16 in [18]).

• Holm’s test [10]: it is a multiple compar-
ison procedure that can work with a con-
trol algorithm (normally, the best of them
is chosen) and compares it with the re-
maining methods. The test statistics for
comparing the i-th and j-th method using
this procedure is:

z = (Ri − Rj)/

√
k(k + 1)

6Nds
(7)

The z value is used to find the corre-
sponding probability from the table of
normal distribution, which is then com-
pared with an appropriate level of confi-
dence α. In Bonferroni-Dunn comparison,
this α value is always α(k−1), but Holm’s
test adjusts the value for α in order to
compensate for multiple comparison and
control the FWER.

Holm’s test is a step-up procedure that
sequentially tests the hypotheses ordered
by their significance. We will denote the
ordered p-values by p1, p2, ..., so that p1 ≤
p2 ≤ ... ≤ pk−1. Holm’s test compares
each pi with α(k − i), starting from the
most significant p value. If p1 is below

α(k − 1), the corresponding hypothesis is
rejected and we allow to compare p2 with
α(k − 2). If the second hypothesis is re-
jected, the test proceeds with the third,
and so on. As soon as a certain null hy-
pothesis cannot be rejected, all the re-
main hypotheses are retained as well.

• Hochberg’s procedure [9]: It is a step-up
procedure that works in the opposite di-
rection to Holm’s method, comparing the
largest p-value with α, the next largest
with α/2 and so forth until it encounters
a hypothesis that it can reject. All hy-
potheses with smaller p values are then
rejected as well. Hochberg’s method is
more powerful than Holm’s when the hy-
potheses to test are independent (in this
case they are independent given that we
compare a control algorithm with the re-
maining algorithms).

4.2 Friedman’s Test: A case study in
GBML

This section presents the study of applying
multiple comparisons procedures to the results
of the use case described above. We will use
the results obtained in 10fcv and we will define
the control algorithm as the best performing
algorithm (which obtains the lowest value of
ranking, computed through Friedman’s test),
HIDER in our case. We set the experiment
wise error (level of significance) in α = 0.05
and α = 0.10.

First of all, we have to test whether there ex-
ist significant differences among all the means
of accuracy. Table 4 shows the result of apply-
ing Friedman’s and Iman-Davenport’s tests.
Given that the statistics of Friedman and
Iman-Davenport are greater than their associ-
ated critical values, there are significant differ-
ences among the observed results with a prob-
ability error p ≤ 0.05. Attending to these re-
sults, a post-hoc statistical analysis is needed
in all cases.

Then, we will employ Bonferroni-Dunn’s
test to detect significant differences for the
control algorithm HIDER. Figure 1 summa-
rizes the ranking obtained by the Friedman
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Algorithm Ranking
Pitts-GIRLA 5.071

SIA 2.857
GASSIST-ADI 2.857

GASSIST-Intervalar 4.000
HIDER 1.714
XCS 4.500

Crit. Diff. α = 0.05 1.822
Crit. Diff. α = 0.10 1.645

Figure 1: Rankings obtained through Friedman’s test and graphical representation of Bonferroni-Dunn’s
procedure considering HIDER as control

Table 4: Results of the Friedman and Iman-
Davenport Tests (α = 0.05)

Friedman Value I-D Value

Value in χ2 Value in FF

10fcv 30.939 11.071 10.297 2.356

test and the critical difference of Bonferroni-
Dunn’s procedure, with the two levels of signif-
icance defined above. It also displays a graph-
ical representation composed by bars whose
height is proportional to the average ranking
obtained for each algorithm. If we choose the
smallest of them (which corresponds to the
best algorithm), and we sum its height with
the critical difference obtained by Bonferroni-
Dunn (CD value), representing its result by
using a cut line that goes through all the
graphic, those bars above the line belong to
algorithms whose behaviour are significantly
worse than the contributed by the control al-
gorithm.

We will apply more powerful procedures,
such as Holm’s and Hochbergs’s, for compar-
ing the control algorithm with the rest of al-
gorithms. Table 5 shows all the possible hy-
potheses of comparison between the control al-
gorithm and the remaining, ordered by their
p-value and associated with their level of sig-
nificance α. Both Holm’s and Hochberg’s pro-
cedures can be easily visualized by using the
Table 5, and they coincide in the set of hy-
potheses rejected. Holm’s method accepts the
hypothesis number 2, and therefore it also ac-

cepts the number 1. Hochberg’s procedure
finds that the hypothesis number 3 is the first
which must be rejected, so the number 4 and
5 are also rejected and the two first are main-
tained as accepted.

For a level of significance of α = 0.05 and
α = 0.10, the three post-hoc tests used ob-
tain the same result. They state that the
HIDER algorithm outperforms Pitts-GIRLA,
XCS and GASSIST-Intervalar. However, the
power of Hochberg’s or Holm’s method has
been pointed out as better than Bonferroni-
Dunn’s one. On the other hand, it is very
interesting to know the exact p-value associ-
ated with each hypothesis for which it can be
rejected. In the following, we will describe the
method for computing these exact p-values for
each test procedure, which are called “adjusted
p-values” [17].

• The adjusted p-value for Bonferroni-
Dunn’s test (also known as the Bonfer-
roni correction) is calculated by pBonf =
(k − 1)pi.

• The adjusted p-value for Holm’s proce-
dure is computed by pHolm = (k − i)pi.
Once computed all of them for all hy-
potheses, it is not possible to find an ad-
justed p-value for the hypothesis i lower
than for the hypothesis j, j < i. In this
case, the adjusted p-value for hypothesis
i is set equal to the associated to the hy-
pothesis j.

• The adjusted p-value for Hochberg’s
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Table 5: Holm/Hochberg Table (HIDER is the control algorithm)
i algorithm z p α/i, α = 0.05 α/i, α = 0.10

5 Pitts-GIRLA 4.748 2.057 · 10−6 0.01000 0.02000
4 XCS 3.940 8.162 · 10−5 0.01250 0.02500
3 GASSIST-Intervalar 3.232 0.00123 0.01667 0.03333
2 SIA 1.616 0.10604 0.02500 0.05000
1 GASSIST-ADI 1.616 0.10604 0.05000 0.10000

method is computed with the same for-
mula as Holm’s, and the same restriction
is applied in the process, but in the op-
posite sense, that is, it is not possible to
find an adjusted p-value for the hypothe-
sis i lower than for the hypothesis j, j > i.

Table 6 shows all the adjusted p-values for
each comparison that involves the control al-
gorithm. Obviously, the procedure that needs
the lowest level of confidence α for stating that
HIDER algorithm is significantly better than
the rest of methods is Hochberg’s procedure,
with a minimal α = 0.10604.

In Section 3.2 we computed the p-value con-
trolling the FWER with Wilcoxon’s test, by
using HIDER as control algorithm and under
the consideration of comparing it with the re-
maining methods. The result obtained was
p = 0.339.

In this case, Holm’s and Hochberg’s proce-
dures are able to distinguish the HIDER al-
gorithm as the best performing with a lower
p-value, indicating that they are powerful
tests in a multiple comparisons environment.
Hochberg’s method behaves the best.

5 Conclusions

In this contribution we have studied the use
of statistical techniques in the analysis of the
behaviour of Genetic Based Machine Learning
algorithms in classification problems, analyz-
ing the use of non-parametric statistical tests.

We have shown how to use Friedman,
Iman-Davenport, Bonferroni-Dunn, Holm,
Hochberg, and Wilcoxon’s tests; which on the
whole, are a good tool for the analysis of algo-
rithms’ performance. We have employed these
procedures to carry out a comparison in a case
study composed by an experimentation that

involves several data sets and 6 well-known
GBML algorithms.

As main conclusion on the use of non-
parametric statistical methods for analyzing
results, we emphasize the use of the most
appropriate test depending on the circum-
stances and type of comparison and we recom-
mend using two of the most powerful statisti-
cal techniques for multiple comparisons, such
as Holm’s and Hochberg’s.
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Abstract

When mining complex data, choosing the right
representation for the underlying data is key
for the practical application of data mining
techniques. In the case of software systems,
many program representations have already
been proposed in the literature to be used
by compilers and other software development
tools. In this paper, we propose the use of
dependence higraphs, a novel representation
technique that, unlike the graph-based repre-
sentation techniques commonly used by soft-
ware tools, provides a hierarchical model that
makes software systems suitable for the ap-
plication of efficient tree mining algorithms.
Moreover, our representation model is ex-
plicitly designed for making program element
matching easier under a wide variety of cir-
cumstances, a task at the heart of many soft-
ware mining problems.

1 Introduction

Software mining can be defined as the appli-
cation of data mining tools and techniques in
software engineering problems. It tries to re-
spond to the pressing need for analyzing com-
plex software systems. But in order to be ef-
fective, the proper underlying program repre-
sentation must be used.

Many intermediate program representations
are common, for instance, in compilers. In the
case of compiler back ends, different intermedi-
ate representations might be used, even within
the same compiler, since each representation
might be better suited to perform particular

kinds of transformations. Usually intended
to optimize the compiled code in some sense,
those transformations must preserve the se-
mantics of the underlying program and, there-
fore, they must be conservative to ensure that
a correct program is properly compiled.

This conservatism is due to the fact that de-
termining the exact semantic differences be-
tween two programs is an undecidable prob-
lem. However, in software mining, the priori-
ties are not exactly the same. Even though no
automatic tool can be perfectly accurate in de-
termining the semantic equivalence of two pro-
grams (because of the inherent undecidability
of the semantic program equivalence problem),
more aggressive code transformations might
be useful, and even desirable, under some cir-
cumstances.

Program element matching, for example, is
a common problem that must be addressed in
many software mining applications. It is re-
quired for maintaining several versions of the
same program (a.k.a. multi-version program
analysis [17]), merging, regression testing au-
tomation, understanding the evolution of soft-
ware code and the nature of software changes
[24], detecting duplicated code (or near dupli-
cates) for refactoring (or even bug fixing), and
also for concept analysis [28], reverse engineer-
ing, and re-engineering.

Quite often, semantic matching is approxi-
mated by comparing the textual similarity of
program elements, at their source code level.
This approach resorts to string matching algo-
rithms in order to detect the verbatim copying
of arbitrary fragments of text (e.g. diff [13] or
bdiff [27]) and it has been used by many ‘clone




