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Abstract. Case-Based Reasoning (CBR) systems solve new problems
using others which have been previously resolved. The knowledge is com-
posed of a set of cases stored in a case memory, where each one describes
a situation in terms of a set of features. Therefore, the size and organiza-
tion of the case memory influences in the computational time needed to
solve new situations. We organize the memory using Self-Organization
Maps, which group cases with similar properties into patterns. Thus,
CBR is able to do a selective retrieval using only the cases from the
most suitable pattern. However, the data complexity may hinder the
identification of patterns and it may degrade the accuracy rate. This
work analyses the successful application of this approach by doing a pre-
vious data complexity characterization. Relationships between the per-
formance and some measures of class separability and the discriminative
power of attributes are also found.

Keywords: Statistical and Structural Pattern Recognition, Data
Complexity, Neural Networks, Self-Organization Maps, Case-Based
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1 Motivation

Case-Based Reasoning (CBR) [1] is an approach based on solving new problems
using others which have been previously solved. The knowledge is represented
by a case memory, where each case is defined by a set of features that describe
the problem. The way in which CBR works can be summarized in the following
steps: (1) it retrieves the most similar cases from the case memory, (2) it adapts
them to propose a new solution, (3) it checks if this solution is valid, and finally,
(4) it stores the solution according to a learning policy. The CBR performance,
in terms of computational time, is related to the size of the case memory because
CBR has to explore it in the retrieval phase. Therefore, its organization can help
to improve this issue by avoiding the selection of useless cases. There are mainly
two organization strategies: (1) The identification of patterns for using only the
cases from the best matching patterns [2,3], and; (2) The rejection of cases in
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function of their features’ values [4]. However, the use of fewer cases may imply
a reduction of the solving capabilities.

The SOMCBR (Self-Organization Map in a Case-Based Reasoning) [5] system
is a CBR framework where the case memory has been organized by a Self-
Organization Map (SOM) [6]. SOM is a clustering technique that defines patterns
by highlighting the most important features of the data. These patterns allow
SOMCBR to do a selective retrieval based on using only the cases from the most
suitable pattern instead of all the cases. Thus, the computational time is reduced
obtaining a meaningful property for real time environments [9]. Nevertheless, the
SOMCBR success depends on the existence of reliable data patterns.

The goal of this paper is to show how a previous data complexity [11] analysis
can help us to predict the SOMCBR applicability by evaluating the presence of
useful data patterns.

The paper is organized as follows. Section 2 explains the previous work on
SOMCBR. Section 3 briefly describes the data complexity analysis and proposes
a set of metrics as predictors of the SOMCBR applicability. Section 4 summarizes
the experiments and the results. Finally, we present the conclusions and further
work.

2 Self-organization Map in a Case-Based Reasoning
System

SOM is an unsupervised clustering technique from the neural network approach.
It defines a topology map, where the cases are grouped in patterns. This ability
is used to organize the CBR case memory in the SOMCBR approach [5]. Figure 1
illustrates a case memory organized by a 2-dimensional map of M ×M patterns.
The SOM has two layers: (1) The input layer is composed of N neurons, where
each neuron represents one of the N -dimensional features of the input case,
and; (2) The output layer is composed of M × M neurons, where each neuron
contains a set of similar cases represented by a director vector. Each input neuron
is connected to all the output neurons. When a new input case C is introduced in
the input layer, each neuron from the output layer computes a degree of similarity
between the input case C and its director vector applying a similarity function.
In our approach, we use the complementary of the normalized Euclidean distance
(see Eq. 1). A value closer to 1 means that the input case C should be similar
to the elements from the Xth pattern (MX). Otherwise, it should be different.
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The retrieval consists in: (1) Looking for the most similar pattern, and;
(2) Comparing with the cases from the selected pattern. Consequently, SOM-
CBR reduces the computational time because only a subset of the cases are
used. Nevertheless, the patterns definition can be compromised due to the data
complexity.
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Fig. 1. The case memory is organized by the SOM in order to define M × M groups
of cases with similar properties. This organization allows the CBR system to improve
the computational time in the retrieval phase.

3 Data Complexity Measures

The study of data complexity addresses the characterization of the intrinsic com-
plexity of the dataset, and to what extent this complexity is related to the clas-
sifier’s performance [10]. Although dataset complexity may be related to three
main causes (class ambiguity, boundary complexity, and training set sparsity)
the previous studies in this matter have been focused on the characterization of
boundary complexity, due to the difficulty to determine class ambiguity and the
real sparsity of a training set. Ho & Basu [11] proposed a measurement space
to identify the different aspects of boundary complexity: the discriminant power
of attributes, the separability of classes, and the topology of classes such as the
degree of overlap and the geometry of classes distributed as hyperspheres. Based
on this previous study, we select those measures that are most relevant to iden-
tify meaningful structures in the dataset that could be correlated with SOMCBR
clusters. We find that measures related to the separability of classes are the most
useful to predict SOMCBR’s success. Also measures detecting the degree of class
overlap with respect to the feature space are useful to explain SOMCBR’s be-
haviour. Other types of measures given in [11] do not reveal any structure as
seen by SOMCBR’s clusterization. In the following, we briefly describe these
relevant metrics.

Feature efficiency (F3): it defines the efficiency of each feature individually
and describes to what extent the feature takes part in the class separability. For
each feature, the measure uses a local continuity heuristic which supposes that
all the points belonging to the same class are included in the interval between
the minimum and maximum value of that feature. Thus, if two instances of
opposite classes have the same value for an attribute, there is an overlap and
the instances are considered ambiguous for this dimension. The ambiguity is
solved removing these instances. The efficiency is then assessed as the ratio of
the remaining (non-overlapping) points to all the training points. The measure
of feature efficiency is the maximum feature efficiency of all dimensions.

Length of class boundary (N1): it measures the number of training points
located near the class boundary. It is based on building a minimum spanning tree
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(MST) connecting all training points, using Euclidean distances between each
pair of points. Then, the measure computes the number of points of opposite
classes that are connected in the MST with respect to the total number of points.
N1 is an indicator of class separability and cluster tendency; the higher the
measure, the greater the presence of points of different classes on the boundary.

Intra/inter class nearest neighbour distances (N2): it describes the dis-
persion within classes with respect to the separability of classes. It is based
on computing the Euclidean distance of each point with the nearest neighbour
within the same class and the nearest neighbour of the opposite class. N2 is the
ratio between the average within-class nearest neighbour distances and the av-
erage opposite-class nearest neighbour distances. A low value indicates a major
degree of clustering and higher separability among different classes.

4 Results and Discussion

4.1 Testbed and Results

Several datasets of different domains and characteristics from the UCI Reposi-
tory [13] are considered for studying the relation between the data complexity
and the SOMCBR applicability. Due to the way in which the complexity mea-
sures are implemented [11], the datasets of N -class are split in N datasets of two
classes: each class versus all other classes. The name and the number of features
and instances are described in table 1.

The experimentation is performed in two parts. First, we compute the data
complexity of each normalized dataset for several measures. Next, CBR and
SOMCBR are executed applying a 10-fold stratified cross-validation with the
following configuration: (1) The retrieve phase uses the Euclidean distance as
similarity function; (2) The reuse phase proposes a solution using the most sim-
ilar case, and; (3) The retain phase does not learn. Additionally, the SOMCBR
is tested with 10 random seeds. All these results are also summarized in table 1:
N1, N2 and N3 are the complexity measures; %AR and σ are the accuracy rate
and its standard deviation for CBR, and for the best configuration of SOMCBR;
%R is the reduction in the number of operations between CBR and SOMCBR;
p-value is the probability to reject the null hypothesis assuming equal values for
%AR of both approaches [14]. Small values of p-value imply a high probability
of significant difference between both %AR.

Table 1 is divided (by an horizontal line) in two categories ordered by p-value.
Type 1 represents situations where the computational time is improved and the
accuracy rate is at least maintained. On the other hand, type 2 is produced
when the accuracy rate is proportional to the number of cases retrieved and,
consequently, the accuracy rate depends on the number of cases used. Therefore,
the difference between both types indicates if the SOM is capable or not to
splitting the domain in well defined patterns.
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Table 1. Summary of the dataset description (number of instances and attributes), the
results from CBR and SOMCBR (accuracy rates (%AR) with their standard deviation
(σ)) and, the results from the comparison between CBR and SOMCBR (percentage of
reduction (%R) and the probability of CBR and SOMCBR being equal (p-value)). The
horizontal line divides datasets into type 1 and 2, which are ordered by the p-value.

Dataset Measures CBR SOMCBR Statistics
Name Inst. Attr. N1 N2 F3 %AR(σ) %AR(σ) %R p-value
Waveform c1 5000 41 0.24 0.86 0.23 83.2 (1.2) 81.1 (1.2) 89.2 0.00
Vehicle c1 846 19 0.12 0.42 0.46 93.4 (2.4) 87.5 (4.7) 86.9 0.00
Vehicle c4 846 19 0.09 0.54 0.22 96.0 (4.2) 89.2 (3.6) 87.7 0.00
Balance c2 625 5 0.20 0.62 0.00 87.0 (3.1) 81.8 (4.1) 89.7 0.00
Waveform c2 5000 41 0.27 0.90 0.15 80.2 (1.4) 78.8 (1.6) 89.7 0.01
Pim 768 9 0.44 0.84 0.01 71.3 (3.4) 69.9 (3.4) 87.9 0.03
Wpbc 198 34 0.42 0.91 0.18 73.7 (7.1) 73.2 (9.2) 82.5 0.03
Waveform c3 5000 41 0.23 0.85 0.24 83.6 (1.8) 82.7 (1.6) 89.3 0.03
Balance c3 625 5 0.20 0.62 0.00 86.9 (3.7) 82.3 (6.5) 89.5 0.04
Tao 1888 3 0.07 0.16 0.36 95.4 (1.3) 94.9 (1.6) 81.8 0.06
Wdbc 569 31 0.07 0.56 0.52 95.1 (3.2) 95.3 (2.7) 80.2 0.09
Wbcd 699 10 0.06 0.34 0.12 95.3 (2.2) 94.6 (2.6) 86.9 0.09
Vehicle c3 846 19 0.37 0.74 0.06 73.9 (4.1) 73.4 (4.5) 82.5 0.11
Vehicle c2 846 19 0.37 0.71 0.04 75.3 (3.4) 75.4 (2.9) 81.9 0.11
Bpa 345 7 0.58 0.91 0.03 62.9 (6.0) 63.2 (5.1) 52.6 0.17
Heart-Statlog 270 14 0.37 0.67 0.01 74.1 (6.4) 76.3 (8.3) 87.1 0.19
Balance c1 625 5 0.21 0.65 0.00 83.7 (2.2) 86.1 (4.9) 89.0 0.21
Wisconsin 699 10 0.06 0.33 0.12 96.1 (2.0) 96.9 (2.4) 84.5 0.33
Ionosphere 351 35 0.23 0.63 0.19 86.9 (4.1) 88.1 (3.6) 64.0 0.41
Iris c2 150 5 0.01 0.10 1.00 100.0 (0.0) 100.0 (0.0) 56.3 0.00
Thyroids c2 215 6 0.06 0.23 0.81 98.1 (3.3) 97.2 (4.0) 52.8 0.01
Thyroids c1 215 6 0.05 0.23 0.85 98.1 (3.3) 96.3 (4.3) 51.4 0.02
Iris c1 150 5 0.09 0.17 0.75 95.3 (4.3) 93.3 (5.9) 60.7 0.04
Wine c1 178 14 0.05 0.43 0.72 98.3 (3.7) 97.2 (5.1) 68.6 0.05
Wine c2 178 14 0.07 0.49 0.76 97.2 (4.3) 97.2 (4.3) 67.9 0.05
Thyroids c3 215 6 0.10 0.31 0.67 97.2 (4.0) 95.8 (4.4) 54.2 0.08
Iris c3 150 5 0.10 0.21 0.56 94.7 (5.8) 93.3 (6.6) 60.9 0.08
Wine c3 178 14 0.12 0.57 0.58 94.9 (5.2) 95.5 (4.9) 65.3 0.09

4.2 Relationship Between Data Complexity and SOMCBR

We establish a classification where the datasets are divided into the two types
previously explained. Regarding type 2 datasets, the computational time does
not improve in a great percentage (%R < 70%) and the probability defined by
the p-value is small (p-value < 10%). Figure 2(a) shows the relationship between
the p-value and the percentage of reduction of the computational time, %R, for
all datasets tested. The perpendicular lines delimit the region of type 2 datasets.

Even so, the goal is to find a representation on the complexity space to distin-
guish between types 1 and 2. Thus, this should indicate a priori the applicability
of SOMCBR according to the defined threshold values of p-value and %R. The
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Fig. 2. The charts show how the combination of p-value, %R, and complexity measures
are useful tools for distinguishing the behaviour of type 1 and 2. The chart (f) allow
us to predict the SOMCBR applicability.

F3, N1, and N2 complexity measures present interesting properties to distin-
guish between both types. Because the N1 and N2 separability measures have a
similar behaviour, we can work with their product in order to promote extreme
behaviours, especially in the case of datasets with low values.

Figures 2(b, c, d, e) depict the complexity measures (F3 and N1·N2) with the
previously defined p-values and %R. In Figure 2(b), we observe that all datasets
of type 2 are near to the origin, with low values of N1·N2 and p-value, but there are
some overlaps with the location of type 1 datasets. On the other hand, Figure 2(c)
shows that type 2 problems are separated from type 1 with respect to F3. More-
over, type 2 problems are mainly related to high values of F3. Figures 2(d)
and 2(e) show similar results, where we also plot the complexity measures and the
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percentage of reduction %R. On both figures, the values of F3 and N1·N2 define
separated regions in two types.

These figures suggest some tendencies: (1) Datasets with high values of %R
appear in regions with low values of F3. (2) Datasets with high values of F3 have
very low values of p-value. (3) Low values of %R are slightly correlated with low
values of N1 and N2 product.

Furthermore, Figure 2(f) represents a complexity space on N1·N2 and F3,
where there are four possible situations. We can see how these measures settle
ranges for all datasets belonging to type 2: high values (> 0.55) of F3 measure
and very low values (< 0.1) of the mentioned N1·N2. A high value of F3 means a
high separability of classes because the attributes are not overlapped. A low value
of N1·N2 implies high linear separability. The arrow indicates the sense of data
complexity. Thus, SOMCBR is recommendable for the rest of the complexity
space represented in figure 2(f), that is, for complex domains.

Therefore, the a priori discrimination between type 1 and 2 with complexity
measures allows us to obtain patterns of good performance of the SOMCBR
without having to apply it.

5 Conclusions and Further Research

SOMCBR is a CBR characterized by the organization of the case memory by
means of a SOM, which is responsible for grouping the cases into patterns. These
patterns allow the retrieval phase to reduce its computational time because it
only uses the cases associated with the most similar pattern instead of using the
whole case memory. However, the solving capabilities can be compromised if the
patterns are not well defined. This can happen in complex and noisy domains.

This paper is a first step in trying to relate the data topology and the SOM-
CBR application using complexity measures. These measures are based on es-
timating the problem hardness through the geometrical data structure. By the
study of some graphical representations of the complexity space, we can con-
clude that the F3 measure and the product of N1 and N2 measures are useful
to determine when the SOMCBR should be used, namely, for complex domains.
Therefore, these complexity measures help us to predict a priori the performance
of the SOMCBR without applying it.

Further work involves two issues. First, extending the analysis of the effects
of other complexity measures and more datasets. Second, studying others ways
of retrieving cases from SOMCBR in order to avoid losing useful cases if clusters
are not well defined.
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