
Evolutionary Product-Unit Neural Networks

for Classification 1

F. J. Martínez-Estudillo1, C. Hervás-Martínez2, P. A. Gutiérrez Peña2

 A. C. Martínez-Estudillo1 and S. Ventura-Soto2

1 Department of Management and Quantitative Methods, ETEA,

Escritor Castilla Aguayo 4, 14005, Córdoba, Spain

(corresponding author, phone +34957222120; fax +34957222107;

email:fjmestud@etea.com, acme@etea.com)
2 Department of Computing and Numerical Analysis of the

University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain

(email:{chervas@uco.es, zamarck@yahoo.es, sventura@uco.es})

Abstract. We propose a classification method based on a special class of feed-

forward neural network, namely product-unit neural networks. They are based

on multiplicative nodes instead of additive ones, where the nonlinear basis

functions express the possible strong interactions between variables. We apply

an evolutionary algorithm to determine the basic structure of the product-unit

model and to estimate the coefficients of the model. We use softmax

transformation as the decision rule and the cross-entropy error function because

of its probabilistic interpretation. The empirical results over four benchmark

data sets show that the proposed model is very promising in terms of

classification accuracy and the complexity of the classifier, yielding a state-of-

the-art performance.

Keywords: Classification; Product-Unit; Evolutionary Neural Networks

1 Introduction

The simplest method for classification provides the class level given its observation

via linear functions in the predictor variables. Frequently, in a real-problem of

classification, we cannot make the stringent assumption of additive and purely linear

effects of the variables. A traditional technique to overcome these difficulties is

augmenting/replacing the input vector with new variables, the basis functions, which

are transformations of the input variables, and then to using linear models in this new

space of derived input features. Once the number and the structure of the basis

functions have been determined, the models are linear in these new variables and the

fitting is a well known standard procedure. Methods like sigmoidal feed-forward

neural networks, projection pursuit learning, generalized additive models [1], and

1 This work has been financed in part by TIN 2005-08386-C05-02 projects of the Spanish Inter-

Ministerial Commission of Science and Technology (MICYT) and FEDER funds.

PolyMARS [2], a hybrid of multivariate adaptive splines (MARS) specifically

designed for classification problems, can be seen as different basis function models.

The major drawback of these approaches is to state the optimal number and the

typology of corresponding basis functions. We tackle this problem proposing a

nonlinear model along with an evolutionary algorithm that finds the optimal structure

of the model and estimates the corresponding parameters. Concretely, our approach

tries to overcome the nonlinear effects of variables by means of a model based on

nonlinear basis functions constructed with the product of the inputs raised to arbitrary

powers. These basis functions express the possible strong interactions between the

variables, where the exponents may even take on real values and are suitable for

automatic adjustment. The proposed model corresponds to a special class of feed-

forward neural network, namely product-unit neural networks, PUNN, introduced by

Durbin and Rumelhart [3]. They are an alternative to sigmoidal neural networks and

are based on multiplicative nodes instead of additive ones. Up to now, PUNN have

been used mainly to solve regression problems [4], [5].

Evolutionary artificial neural networks (EANNs) have been a key research area in

the past decade providing a better platform for optimizing both the weights and the

architecture of the network simultaneously. The problem of finding a suitable

architecture and the corresponding weights of the network is a very complex task (for

a very interesting review on this subject the reader can consult [6]). This problem,

together with the complexity of the error surface associated with a product-unit neural

network, justifies the use of an evolutionary algorithm to design the structure and

training of the weights. The evolutionary process determines the number of basis

functions of the model, associated coefficients and corresponding exponents. In our

evolutionary algorithm we encourage parsimony in evolved networks by attempting

different mutations sequentially. Our experimental results show that evolving

parsimonious networks by sequentially applying different mutations is an alternative

to the use of a regularization term in the fitness function to penalize large networks.

We use the softmax activation function and the cross-entropy error function. From a

statistical point of view, the approach can be seen as a nonlinear multinomial logistic

regression, where we optimize the log-likelihood using evolutionary computation.

Really, we attempt to estimate conditional class probabilities using a multilogistic

model, where the nonlinear model is given by a product-unit neural network.

We evaluate the performance of our methodology on four data sets taken from the

UCI repository [7]. Empirical results show that the proposed method performs well

compared to several learning classification techniques. This paper is organized as

follows: Section 2 is dedicated to a description of product-unit based neural networks;

Section 3 describes the evolution of product-unit neural networks; Section 4 explains

the experiments carried out; and finally, Section 5 shows the conclusions of our work.

2 Product-Unit Neural Networks

In this section we present the family of product-unit basis functions used in the

classification process and its representation by means of a neural network structure.

This class of multiplicative neural networks comprises such types as sigma-pi

networks and product unit networks. A multiplicative node is given by
1

ji

k
w

j i

i

y x
=

= ∏ ,

where k is the number of the inputs. If the exponents are {0,1} we obtain a higher-

order unit, also known by the name of sigma-pi unit. In contrast to the sigma-pi unit,

in the product-unit the exponents are not fixed and may even take real values.

Some advantages of product-unit based neural networks are increased information

capacity and the ability to form higher-order combinations of the inputs. Besides that,

it is possible to obtain upper bounds of the VC dimension of product-unit neural

networks similar to those obtained for sigmoidal neural networks [8]. Moreover, it is a

straightforward consequence of the Stone-Weierstrass Theorem to prove that product-

unit neural networks are universal approximators, (observe that polynomial functions

in several variables are a subset of product-unit models).

Despite these advantages, product-unit based networks have a major drawback:

they have more local minima and more probability of becoming trapped in them [9].

The main reason for this difficulty is that small changes in the exponents can cause

large changes in the total error surface and therefore their training is more difficult

than the training of standard sigmoidal based networks. Several efforts have been

made to carry out learning methods for product units [9],[10]. Studies carried out on

PUNNs have not tackled the problem of the simultaneously design of the structure

and weights in this kind of neural network, either using classic or evolutionary based

methods. Moreover, so far, product units have been applied mainly to solve regression

problems. We consider a product-unit neural network with the following structure

(Fig. 1): an input layer with k nodes, a node for every input variable, a hidden layer

with m nodes and an output layer with J nodes, one for each class level. There are

no connections between the nodes of a layer and none between the input and output

layers either. The activation function of the j -th node in the hidden layer is given

by
1

(,) ji

k
w

j j i

i

B x
=

= ∏x w , where jiw is the weight of the connection between input node

i and hidden node j and 1(,...,)j j jkw w=w the weights vector. The activation

function of each output node is given by
0

1

(,) (,), 1,2,...,
m

l l

l j j j

j

f B l Jβ β
=

= + =∑x θ x w ,

where l

jβ is the weight of the connection between the hidden node j and the output

node l . The transfer function of all hidden and output nodes is the identity function.

We consider the softmax activation function given by:

() ()
()

1

exp ,
, , 1, 2,...,

exp ,

l l

l l J

l l

l

f
g l J

f
=

= =
∑

x θ
x θ

x θ

.
(1)

where 1(, ,...,)l

l m
=θ β w w , 1(,...,)J=θ θ θ and 0 1(, ,...,)l l l l

m
β β β=β . It interesting to

note that the model can be regarded as the feed-forward computation of a three-layer

neural network where the activation function of each hidden node is exp() tt e= and

where we have to do a logarithmic transformation of the input variables ix , [11].

Fig. 1. Model of a product-unit based neural network.

3 Classification problem

In a classification problem, measurements ix , 1,2,...,i k= , are taken on a single

individual (or object), and the individuals have to be classified into one of the J

classes based on these measurements. A training sample { }(,); 1, 2,...,n nD n N= =x y is

available, where 1(,...,)n n knx x=x is the random vector of measurements taking

values in kΩ ⊂ � , and ny is the class level of the n -th individual. We adopt the

common technique of representing the class levels using a “1-of-J” encoding vector

()(1) (2) (), ..., Jy y y=y , such as () 1ly = if x corresponds to an example belonging to

class l ; otherwise, () 0ly = . Based on the training sample we try to find a decision

function { }: 1, 2,...,C JΩ → for classifying the individuals. A misclassification

occurs when the decision rule C assigns an individual to a class j , when it actually

comes from a class l j≠ . We define the corrected classified rate by

1

1
(())

N

n n

n

CCR I C
N =

= =∑ x y , where ()I i is the zero-one loss function. A good

classifier tries to achieve the highest possible CCR in a given problem. We define the

cross-entropy error function for the training observations as:

()() ()

1 1 1 1 1

1 1
() log , () log exp ()

N J N J J
l l

n l n l n l n l l n l

n l n l l

l y g y f f
N N= = = = =

 = − = − +

∑∑ ∑ ∑ ∑θ x θ x ,θ x ,θ (2)

21w

12w

1
x 2

x
k
x

∏ ∏

1kw

2kw

2mw
mkw

1mw

11w

∑

bias

∑ ∑

1
0β

∏

2
0β

0
Jβ

1
1β

2
1β

1
Jβ 2

Jβ

2
2β1

2β

J

mβ

2
mβ

1
mβ

Softmax Softmax Softmax

22w

1,2,...,J

1,2,...,m

1,2,...,k

1()g x 2()g x ()Jg x

The Hessian matrix of the error function ()l θ is, in general, indefinite and the error

surface associated with the model is very convoluted with numerous local optimums.

Moreover, the optimal number of basis functions of the model (i.e. the number of

hidden nodes in the neural network) is unknown. Thus, the estimation of the vector

parameters θ̂ is carried out by means an evolutionary algorithm (see Section 4). The

optimum rule ()C x is the following: ˆ()C l=x , where ˆ ˆargmax (,)l ll g= x θ , for

1,...,l J= . Observe that softmax transformation produces positive estimates that sum

to one and therefore the outputs can be interpreted as the conditional probability of

class membership and the classification rule coincides with the optimal Bayes rule.

On the other hand, the probability for one of the classes does not need to be estimated,

because of the normalization condition. Usually, one activation function is set to zero

and we reduce the number of parameters to estimate. Therefore, we set () 0J Jf =x,θ .

4 Evolutionary Product-Unit Neural Networks

In this paragraph we carry out the evolutionary product-unit neural networks

algorithm (EPUNN) to estimate the parameter that minimizes the cross-entropy error

function. We build an evolutionary algorithm to design the structure and learn the

weights of the networks. The search begins with an initial population of product-unit

neural networks, and, in each iteration, the population is updated using a population-

update algorithm. The population is subjected to the operations of replication and

mutation. Crossover is not used due to its potential disadvantages in evolving artificial

networks. With these features the algorithm falls into the class of evolutionary

programming .The general structure of the EA is the following:

(1) Generate a random population of size pN .

(2) Repeat until the stopping criterion is fulfilled

(a) Calculate the fitness of every individual in the population.

(b) Rank the individuals with respect to their fitness.

(c) The best individual is copied into the new population.

(d) The best 10% of population individuals are replicated and substitute the

worst 10% of individuals.

Over that intermediate population we:

(e) Apply parametric mutation to the best 10% of individuals.

(f) Apply structural mutation to the remaining 90% of individuals.

We consider ()l θ being the error function of an individual g of the population.

Observe that g can be seen as the multivaluated function

() () ()1 1, (, ,..., ,)l lg g g=x θ x θ x θ . The fitness measure is a strictly decreasing

transformation of the error function ()l θ given by () 1
() 1 ()A g l

−= + θ . Parametric

mutation is accomplished for each coefficient jiw , l

jβ of the model with Gaussian

noise: 1 2(1) () (), (1) () ()l l

ji ji j jw t w t t t t tξ β β ξ+ = + + = + , where () (0, ())k kt N tξ α∈ ,

1,2k = , represents a one-dimensional normally-distributed random variable with

mean 0 and variance ()k tα , where 1 2() ()t tα α< , and t is the t -th generation. Once

the mutation is performed, the fitness of the individual is recalculated and the usual

simulated annealing is applied. Thus, if A∆ is the difference in the fitness function

after and preceding the random step, the criterion is: if 0A∆ ≥ the step is accepted, if

0A∆ < , the step is accepted with a probability exp(/ ())A T g∆ , where the

temperature ()T g of an individual g is given by () 1 (), 0 () 1T g A g T g= − ≤ < .

The variance ()k tα is updated throughout the evolution of the algorithm. There are

different methods to update the variance. We use the 1/5 success rule of Rechenberg,

one of the simplest methods. This rule states that the ratio of successful mutations

should be 1/5. Therefore, if the ratio of successful mutations is larger than 1/5, the

mutation deviation should increase; otherwise, the deviation should decrease. Thus:

(1) () 1/ 5

() (1) (), 1/ 5

() 1/ 5

k g

k k g

k g

t if s

t s t if s

t if s

λ α
α λ α

α

 + >
+ = − <
 =

(3)

where 1,2k = , gs is the frequency of successful mutations over s generations and

0.1λ = . The adaptation tries to avoid being trapped in local minima and also to speed

up the evolutionary process when searching conditions are suitable.

Structural mutation implies a modification in the neural network structure and

allows explorations of different regions in the search space while helping to keep up

the diversity of the population. There are five different structural mutations: node

deletion, connection deletion, node addition, connection addition and node fusion.

These five mutations are applied sequentially to each network. In the node fusion, two

randomly selected hidden nodes, a and b , are replaced by a new node, c , which is a

combination of both. The connections that are common to both nodes are kept, with

weights given by: l l l

c a bβ β β= + ,
1
()

2
jc ja jb
w w w= + . The connections that are not

shared by the nodes are inherited by c with a probability of 0.5 and its weight is

unchanged. In our algorithm, node or connection deletion and node fusion is always

attempted before addition. If a deletion or fusion mutation is successful, no other

mutation will be made. If the probability does not select any mutation, one of the

mutations is chosen at random and applied to the network.

5 Experiments

The parameters used in the evolutionary algorithm are common for the four problems.

We have considered 1(0) 0.5α = , 2 (0) 1α = , 0.1λ = and 5s = . The exponents jiw

are initialized in the []5,5− interval, the coefficients l

jβ are initialized in []5,5− . The

maximum number of hidden nodes is 6m = . The size of the population is

1000PN = . The number of nodes that can be added or removed in a structural

mutation is within the []1,2 interval. The number of connections that can be added or

removed in a structural mutation is within the []1,6 interval. The stop criterion is

reached if the following condition is fulfilled: for 20 generations there is no

improvement either in the average performance of the best 20% of the population or

in the fitness of the best individual. We have done a simple linear rescaling of the

input variables in the interval []1,2 , being *

iX the transformed variables.

We evaluate the performance of our method on four data sets taken from the UCI

repository [7]. For every dataset we performed ten runs of ten-fold stratified cross-

validation. This gives a hundred data points for each dataset, from which the average

classification accuracy and standard deviation is calculated. Table 1 shows the statistical

results over 10 runs for each fold of the evolutionary algorithm for the four data sets.

With the objective of presenting an empirical evaluation of the performance of the

EPUNN method, we compare our approach to the most recent results [12] obtained

using different methodologies (see Table 2). Logistic model tree, LMT, to logistic

regression (with attribute selection, SLogistic, and for a full logistic model,

MLogistic); induction trees (C4.5 and CART); two logistic tree algorithms: LTreeLog

and finally, multiple-tree models M5´ for classification, and boosted C4.5 trees using

AdaBoost.M1 with 10 and 100 boosting interactions. We can see that the results

obtained by EPUNN, with architectures (13:2:2), (34:3:2), (4:5:3) and (51:3:2) for

each data set, are competitive with the learning schemes mentioned previously.

Table 1. Statistical results of training and testing for 30 executions of EPUNN model.

TCCR GCCR #connect
Data set

Mean SD Best Worst Mean SD Best Worst Mean SD
#node

Heart-stat 84.65 1.63 88.48 80.25 81.89 6.90 96.30 62.96 14.78 3.83 2

Ionosphere 93.79 1.46 97.15 90.19 89.63 5.52 100 74.29 43.97 13.87 3

Balance 97.26 0.98 99.47 94.32 95.69 2.36 100 90.32 25.62 2.18 5

Australian 87.01 0.82 88.57 85.02 85.74 3.90 95.65 78.26 44.13 16.26 3

Table 2. Mean classification accuracy and standard deviation for: LMT, SLogistic, MLogistic,

C4.5, CART, NBTree, LTreeLin, LTreeLog, M5', ABOOST and EPUNN method.

Data set LMT SLogistic MLogistic C4.5 CART NBTree

Heart-stat 83.22±6.50 83.30±6.48 83.67±6.43 78.15±7.42 78.00±8.25 80.59±7.12

Ionosphere 92.99±4.13 87.78±4.99 87.72±5.57 89.74±4.38 89.80±4.78 89.49±5.12

Balance 89.71±2.68 88.74±2.91 89.44±3.29 77.82±3.42 78.09±3.97 75.83±5.32

Australian 85.04±3.84 85.04±3.97 85.33±3.85 85.57±3.96 84.55±4.20 85.07±4.03

Data set LTreeLin LTreeLog M5' ABoost(10) ABoost(100) EPUNN W/L

Heart-stat 83.52±6.28 83.00±6.83 82.15±6.77 78.59±7.15 80.44±7.08 81.89±6.90 5/6

Ionosphere 88.95±5.10 88.18±5.06 89.92±4.18 93.05±3.92 94.02±3.83 89.63±5.52 7/4

Balance 92.86±3.22 92.78±3.49 87.76±2.23 78.35±3.78 76.11±4.09 95.69±2.36 11/0

Australian 84.99±3.91 84.64±4.09 85.39±3.87 84.01±4.36 86.43±3.98 85.74±3.90 10/1

6 Conclusions

We propose a classification method that combines a nonlinear model, based on a

special class of feed-forward neural network, namely product-unit neural networks,

and an evolutionary algorithm that finds the optimal structure of the model and

estimates the corresponding parameters. Up to now, the studies on product units have

been applied mainly to solve regression problems and have not addressed the problem

of the design of both structure and weights simultaneously in this kind of neural

network, either using classic or evolutionary based methods. Our approach uses

softmax transformation and the cross-entropy error function. From a statistical point

of view, the approach can be seen as nonlinear multinomial logistic regression,

where optimization of the log-likelihood is made by using evolutionary computation.

The empirical results show that the evolutionary product-unit model performs well

compared to other learning classification techniques. We obtain very promising results

in terms of classification accuracy and the complexity of the classifier.

References

[1] T. J. Hastie and R. J. Tibshirani, Generalized Additive Models. London: Chapman &

Hall, 1990.

[2] C. Kooperberg, S. Bose, and C. J. Stone, "Polychotomous Regression," Journal of the

American Statistical Association, vol. 92, pp. 117-127, 1997.

[3] R. Durbin and D. Rumelhart, "Products Units: A computationally powerful and

biologically plausible extension to backpropagation networks," Neural Computation,

vol. 1, pp. 133-142, 1989.

[4] A. C. Martínez-Estudillo, F. J. Martínez-Estudillo, C. Hervás-Martínez, et al.,

"Evolutionary Product Unit based Neural Networks for Regression," Neural

Networks, pp. 477-486, 2006.

[5] A. C. Martínez-Estudillo, C. Hervás-Martínez, A. C. Martínez-Estudillo, et al.,

"Hybridation of evolutionary algorithms and local search by means of a clustering

method," IEEE Transactions on Systems, Man and Cybernetics, Part. B: Cybernetics,

vol. 36, pp. 534-546, 2006.

[6] X. Yao, "Evolving artificial neural network," Proceedings of the IEEE, vol. 9 (87),

pp. 1423-1447, 1999.

[7] C. Blake and C. J. Merz, " UCI repository of machine learning data bases,"

www.ics.uci.edu/ mlearn/MLRepository.thml, 1998.

[8] M. Schmitt, "On the Complexity of Computing and Learning with Multiplicative

Neural Networks," Neural Computation, vol. 14, pp. 241-301, 2001.

[9] A. Ismail and A. P. Engelbrecht, "Global optimization algorithms for training product

units neural networks," presented at International Joint Conference on Neural

Networks IJCNN`2000, Como, Italy, 2000.

[10] A. P. Engelbrecht and A. Ismail, "Training product unit neural networks," Stability

and Control: Theory and Applications, vol. 2, pp. 59-74, 1999.

[11] K. Saito and R. Nakano, "Extracting Regression Rules From Neural Networks,"

Neural Networks, vol. 15, pp. 1279-1288, 2002.

[12] N. Landwehr, M. Hall, and F. Eibe, "Logistic Model Trees," Machine Learning, vol.

59, pp. 161-205, 2005.

