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Abstract— In this paper we present a new approach for laser-
based environment device control systems by laser pointer for
handicapped people. The paper proposes the design of a Fuzzy
Rule Base System for laser pointer detection. The idea is to
improve the success rate of the previous approaches decreasing
as much as possible the false offs, i.e., the detection of a false
laser spot (since this could lead to dangerous situations).

To this end, Genetic Fuzzy Systems have also been employed
for improving the laser spot system detection thus reducing the
system false offs, that is the main objective in this problem.
The system presented in this paper, using a Fuzzy Rule Base
System adjusted by a Genetic Algorithm, shows a better success
rate, and the most important thing, the not desired false offs
are completely avoided.

I. INTRODUCTION

Nowadays, people with handicap or chronic illness have
less problems to control their home devices than some years
ago. Thanks to the research effort in smart homes [1], [2],
[3], [4], [5], systems designed for disabled people have
been successfully developed. These kinds of systems are
adapted to the needs of elderly or disabled people thanks
to a computer system which controls the appliances of
their homes, by means of which, they can have a normal
life. Further, such automatic systems are also able to send
information about the behavior of the people in a home in
order to avoid dangerous situations. An extensive review on
smart homes can be found in [1], showing the great evolution
of these kinds of systems in the last years.

We can find different kinds of smart home systems in the
specialized literature. Park et al. [2] presented a robotic smart
house, by means of which disabled people can be assisted
by a robot sending orders with body movements. Other
researchers have used non-invasive brain-computer interfaces
[3], where a brain computer interface is used to control
different devices. On the other hand, the work presented
in [4] makes use of a robot for helping disabled people
to pick up different objects. In this work, the authors also
proposed an interesting way to point out the desired objects
by means of a laser pointer. The robot should then be able
to detect the laser spot on an object in order to pick up this
object. Since they represent cheap and easy to handle devices,
laser pointers have been used as an indicator element for
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Jesús Alcalá-Fdéz, Rafael Alcalá and Francisco Herrera are with the
Department of Computer Science and Artificial Intelligence, CITIC-UGR
(Research Center on Information and Communications Technology), Uni-
versity of Granada, 18071 Granada, Spain, (e-mail: {jalcala, alcala, her-
rera}@decsai.ugr.es).

controling large displays [6], [7], [8], [9] and now they have
been also used to help to disabled people in home device
environment control.

To this end, an environment device control system for
handicapped people has been recently presented in [5]. By
means of this system, a handicapped person can use a laser
pointer in order to indicate which home device he wants to
use. A video camera takes an environment image and sends
it to the computer. This image is analyzed with different
algorithms for detecting a laser spot. Finally, if the laser spot
is on a home device, a KNX/EIB domotic system [10] sends
an order for controlling it. Thanks to this kind of systems,
people with handicap will be able to control their home
devices easily by a laser pointer.

The main goal in these types of systems is to detect
the laser spot effectively. In [4], the authors deal with this
problem by using especial physical filters in the video camera
while it is taking the environment photos, with the aim of
only capturing the laser spot. However, this is still an open
problem that can be addressed by using laser spot detection
algorithms based on the original non-filtered images.

As we have mention, we also presented in [5] a set
of algorithms, that can detect the laser spot effectively on
the image obtained by the video camera. Nevertheless, this
algorithms have false offs, when a laser spot is detected by
the algorithm but the image does not have any laser spot. In
this event, a wrong order is sent to the domotic system which
could provoke undesirable, dangerous or at least unexpected,
situations.

In this paper, we present a new approach to detect the
laser spot in the environment device control system presented
in [5]. It consists of a Fuzzy Rule Based System (FRBS)
[14], [15] for trying to improve the success rate in images
without laser spot, and to completely avoid the false offs of
the previous systems. Since it is a very particular problem, in
which only a few training examples are available, the rules
comprising this FRBS will be initially obtained by an expert.
Even though that this initial system improves the success rate
of the previous techniques in [5], it still presents false offs.
In any event, we will benefit from the expert knowledge to
obtain the initial definition of the FRBS, in order to later
improve the FRBS performance by applying a genetic tuning
of the Membership Functions (MFs) [11], [12], [13]. The
results obtained by the tuned FBRS show a better success
rate, and the most important thing, the not desired false offs
are completely avoided.

This contribution is arranged as follows. In section II,
the environment device system for handicapped people by



using a laser pointer is described together with the previous
work. The initial FRBS designed by an expert is described
in section III. Section IV introduces the genetic tuning of
MFs and describes the Genetic Algorithm (GA) used in this
work. The results obtained by the initial and the tuned FRBS
are shown and analyzed by comparing them to the previous
technique in section V. Finally, section VI points out some
conclusions.

II. SYSTEM DESCRIPTION AND PREVIOUS WORK

As we mentioned, the laser pointer systems enable hand-
icapped people to control different home devices. These
systems analyze different environment images sent by a video
camera, detect the laser spot on these images and automati-
cally recognizes the device which the user has selected with
the laser pointer, sending the necessary orders to control the
home device by means of a domotic system.

In our case, this system consists of three sections (see
figure 1):

Fig. 1. Environment control system

• 1st Section: The family tool let family members or
teachers select the home devices that will be controlled
by the system. In this tool, they will able to mark the
active zone for each home device using the images sent
by the video camera.

• 2nd Section: In this section the system uses different
techniques in order to analyze the image sent by the
video camera and to locate the position of the laser
spot.

• 3rd Section: KNX/EIB architecture [10] let the system
to control the different home devices. Once the laser
spot is found and it is in an active zone, the system
sends to the domotic system the necessary orders to
turn on/off the device selected.

This contribution is focused on the 2nd Section, in order
to improve the laser spot detection ability, which becomes
one of the most important tasks in these kinds of systems.

The home environment control system based on laser pointer
presented in [5] used three different algorithms, Dynamic
Umbralization, Template Matching and Template Matching
+ Dynamic Umbralization to detect the laser spot. In the
following subsections, we will briefly introduce the methods
that we have presented in this previous work to detect the
laser spot on an image (more information on the 1st and the
3rd Sections, and a deeper description of these algorithms
can be found in [5]).

A. Dynamic Umbralization

Dynamic Umbralization (DU) was the first algorithm used
in this system. This algorithm calculates a threshold value, by
means of which, the pixels under this value are eliminated.
The threshold value is calculated by means of the following
expression:

Vumb = ((Sv Imin)− (Sv Imax)) ∗ X

20
+ (Sv Imin), (1)

where Sv Imin and Sv Imax are the minimum and maxi-
mum sub intervals balance, and X is the sum of the balance
parameters obtained from the pixel numerical information
(see [5] for more information on how this values are calcu-
lated). As a consequence of this umbralization, the resultant
image has the candidate pixels of the laser spot searched.

B. Template Matching

In order to improve the system performance, we have
also used a second technique, namely Template Matching
(TM). The algorithm that uses TM is based on convolution
techniques. By means of this algorithm, an image named
template is searched on the image sent by the video camera.
A template is a laser spot image previously stored. Figure 2
shows a template image example.

Fig. 2. Laser spot template

Each image sent by the video camera may have a section
similar to the used template. The TM algorithm searches
for such template on the obtained environment image. This
algorithm obtains the probability of coincidence between
the analyzed image sections and the template image. This
probability ranges between -1 and 1, by using the following
expression:

Φ(Ir, Il) =
∑

i,j∈[−w,w] AB√∑
i,j∈[−w,w] A2

∑
i,j∈[−w,w] B2 ,

A = Ir(x + i, y + j)− Ir(x, y),

B = Il(x′ + i, y′ + j)− Il(x′, y′), (2)



where the expression part known as A contains the set of
pixels which are in the principal image section, and the
section known as B contains the set of laser template pixels
(see [5] for more information on how this formula can be
applied). The TM algorithm proposes the image section with
the highest correlation since, the laser spot should be found
in the position of the obtained image section with the highest
correlation.

C. Template Matching + Dynamic Umbralization

The algorithm described above has the same problem that
the DU algorithm, the false offs. Trying to improve the
algorithms and to eliminate the false offs, we proposed a
new approach in [5] by joining both techniques in a new
algorithm. The first step is to calculate the image section
with highest correlation, by using the TM algorithm. The
second step is to check if the section calculated is a laser
spot image by using the DU algorithm. In this step, if the
image calculated has pixels with high energy, these pixels
will not be eliminated, and it is possible to say that the image
calculated is a laser spot image.

III. INITIAL FUZZY RULE BASED-SYSTEM DESIGN FROM
EXPERT’S EXPERIENCE

The previous algorithms have good success rate in images
with laser spot, but still they have some false offs. In order to
improve the results presented in [5], we propose the design
of a FRBS for determining whether an image section is
detected as a laser spot or not. This way working allows to
have a system based on labels [14], [15], with a near human
language, making easy the derivation of rules [16] that can
provide a positive or negative response for each analyzed
image section.

The first step is to determine a set of interesting system
variables by analyzing some example images, with and
without laser spots. From images with a laser spot we can
determine the set of parameters/variables which can better
characterize an image as a laser spot. In Figure 3, an example
of images with and without laser spot is presented.

An interesting characteristic is that the laser spot pixels
should present high energy in any image. The pixels val-
ues of a laser spot in an RGB system are approximately
[255,255,255]. Moreover, we can observe that a laser spot is
similar to a circle. These two properties should be present
at any part of the analyzed image in order to detect that the
laser spot is present in such image. In order to consider these
two properties for obtaining a correct laser spot detection, we
are going to consider five input variables. They are described
in the next.

Figure 4 shows a typical laser spot image histogram. If
the laser spot image histogram is analyzed, we can observe
that there is a set of pixels which indicate us that the image
has a section with high energy pixels. The algorithm has
to eliminate every no laser pixel of the image. To do this,
the percentile 80 of the histogram distribution is calculated.
Once it has been calculated, every pixel under this value is
eliminated. The remaining pixels in the imagen may be the

Fig. 3. Image with laser spot (top), Image without laser spot (bottom)

laser spot pixels. The percentile 80 together with the number
of laser spot pixels (not eliminated pixels), will be two of
the FRBS input variables.

Once the pixels under percentile 80 have been eliminated,
the image has only a set of candidate laser pixels. This set
of pixels should be similar to a circle. In order to take this
fact into account, the values for the next two input variables,
long and cross standard deviation, are calculated. Figure 5
shows as the laser spot standard deviations are obtained. For
obtaining the standard deviation values, the diameters shown
in Figure 5 have to be obtained. Once, the diameters are
obtained, the standard deviations calculated.

Finally, the similarity to a perfect circle is calculated.
For this, an image with a perfect circle is generated. Using
the TM technique (see expresion 2), the main image and
the image generated are compared. The correlation between
these images is the similarity to a perfect circle, which also
represents an input variable.

To sum up, the six variables determined by the expert (five
inputs and one output) represent the following information:
• X1: Long standard deviation.
• X2: Cross standard deviation.
• X3: Similarity to perfect circle value.
• X4: Laser spot number of pixels.
• X5: Percentile 80 value.
• Y: Laser spot probability (laser spot is detected if this
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Fig. 6. MFs

Fig. 4. Laser spot image histogram

Fig. 5. Laser spot (top). High and long standard deviation (bottom left).
Cross circle standard deviation (bottom right).

value is over a threshold).
Figure 6 shows the associated intervals and the MF def-

initions obtained from the expert experience. These MFs
have been tuned by hand by an expert in order to obtain
useful definitions. Once the input variables and their domains
have been defined, the expert can define useful rules for the
detection task. Table I shows the set of rules determined by
the expert by using the linguistic concepts defined for each
variable.

TABLE I
FUZZY RULES

Rule X1 X2 X3 X4 X5 Y

1 regular regular no-similar medium Low

2 regular regular Similar medium High

3 regular regular semi-similar medium High

4 irregular irregular no-similar medium Low

5 irregular irregular semi-similar medium Low

6 irregular irregular similar medium Medium

7 no-similar medium Low

8 semi-similar medium Low

9 irregular regular medium Low

10 regular irregular medium Low

11 high medium Low

12 regular regular semi-similar medium medium Medium

13 low Low

14 high High

In order to apply the obtained FRBS in the laser spot
recognition task, it is combined with TM, giving way to
a new hybrid technique, TM + FRBS. The first algorithm,
TM, analizes the image sent by the video camera together
with a template image. This obtains the image section with



the highest correlation. The obtained image section is then
analyzed by using the FRBS described. This new combi-
nation of algorithms directly presents a better performance
than the algorithms described in sections II-A and II-B.
The corresponding results will be shown in the experimental
section.

IV. GENETIC TUNING OF THE PROPOSED FUZZY
RULE-BASED SYSTEM

Even though that the new approach, TM + FRBS, has
better results than the previous techniques, it can be further
refined by performing a genetic tuning of the MFs, i.e., by
means of a GA [17], [18], the MFs of the FRBS are adjusted.
This kind of hybridization between fuzzy logic [14], [15] and
GAs is well-known as Genetic Fuzzy Systems (GFSs) [11],
[12], [13].

This section briefly introduces the genetic tuning technique
and the GA used to optimize the MF parameters of the initial
FRBS presented in the previous section.

A. Genetic Tuning of Membership Functions

With the aim of making a FRBS performs better, some
approaches try to improve the preliminary Data Base (DB)
definition, i.e., the definitions of the MFs, or the inference
engine parameters once the Rule Base (RB) has been derived
[11], [12], [13]. In order to do so, a tuning process consid-
ering the whole KB obtained (the preliminary DB and the
derived RB) is used a posteriori to adjust the MFs or the
inference engine parameters. A graphical representation of
the tuning process is shown in figure 7.

 Genetic Tuning 

Definitive
      RB

Evaluation
   Module

RB Learning
    Process

           DB/
Inference Engine
    Parameters

Fig. 7. Genetic tuning process.

Among the different possibilities to perform tuning, one of
the most widely-used approaches to enhance the performance
of FRBSs is the one focused on the DB definition, usually
named tuning of MFs, or DB tuning [19], [20], [21], [22],
[23], [24], [25], [26]. In [22], we can find a first and classic
proposal on the tuning of MFs. In this case, the tuning meth-
ods refine the parameters that identify the MFs associated to
the labels comprising the DB. Classically, due the wide use
of the triangular-shaped MFs, the tuning methods [11], [22],
[23], [24], [26] refine the three definition parameters that
identify these kinds of MFs (see Figure 8).

In this paper, we perform a DB tuning to refine the three
definition parameters that identify the triangular-shaped MFs
in order to improve the FRBS performance in the laser

T T'

a a' b'b c' c

Fig. 8. Tuning by changing the basic MF parameters.

pointer environment control problem. In the next subsection,
the evolutionary algorithm used to perform the genetic tuning
is described.

B. Evolutionary Algorithm

To perform the genetic tuning we consider a GA that
presents a real coding scheme and uses the stochastic univer-
sal sampling as selection procedure together with an elitist
scheme. The operators employed for performing the individ-
ual recombination and mutation are uniform mutation and
the max-min-arithmetical crossover [23]. In the following,
the components needed to design this process are explained.

1) Chromosome Evaluation: For each input example, the
FRBS generates a output value into interval [0, 1]. If this
value is higher than a threshold value (L) the example will
be classificated as a laser spot image, in otherwise, it will
be classificated as image without a laser spot. Thus, a input
example can be considered as:
• False Negative (FN): If the example is classificated as

a image without laser spot and it is a laser spot image.
• False Positive (FP): If the example is classificated as a

laser spot image and it is a image without laser spot.
• Hit: If the example is correctly classificated.
The objective of this algorithm is to minimize the number

of FNs and FPs obtained by the FRBS. To evaluate a
determined chromosome Cj we use the following function:

Fitness(Cj) =
|FN |
|D|

+ 3 · |FP |
|D|

(3)

where |FN | is the number of FNs obtained, |FP | is the
number of FPs obtained and |D| is the dataset size. Notice
that the number of FPs is penalized in order to eliminate the
wrong orders send to the domotic system.

The fuzzy inference system uses the center of gravity
weighted by the matching strategy as a defuzzification oper-
ator and the minimum t-norm as implication and conjunctive
operators.

2) Coding Scheme and Initial Gene Pool: A real coding
scheme is considered. Each chromosome is a vector of real
numbers with size 3·F +1 (F being the number of MFs in the
given DB) in which the three parameters that identify each
MFs and the threshold value are coded. Then, a chromosome



TABLE II
TECHNIQUES USED IN THE EXPERIMENTS.

Method Ref. Year Description
TM+UD [5] 2008 Template Matching plus Dynamic Umbralization (described in Section II-C)

TM+FRBS proposed here - Template Matching plus FRBS from expert experience as explained in Section III
TM+FRBS (tuned) proposed here - Template Matching plus tuned FRBS by using GAs as explained in Section IV

Cj has the following form, being mi the number of MFs of
each of the n variables in the DB:

Cj = Cj1 Cj2 · · · Cjn Lj ,
Cji = (ai

j1, b
i
j1, c

i
j1, . . . , a

i
jmi , bi

jmi , ci
jmi), i = 1, · · · , n

The initial gene pool is created making use of the initial
DB definition. This initial DB with 0.5 as threshold value
is encoded directly into a chromosome, denoted as C1.
The remaining individuals are generated at random in the
variation intervals associated to each MF and to the threshold
value. For each MFj = (aj , bj , cj) where j = (1, ..., F ), the
variation intervals are calculated in the following way (See
Figure 9):

[I l
aj

, Ir
aj

] = [aj − (bj − aj)/2, aj + (bj − aj)/2]
[I l

bj
, Ir

bj
] = [bj − (bj − aj)/2, bj + (cj − bj)/2]

[I l
cj

, Ir
cj

] = [cj − (cj − bj)/2, cj + (cj − bj)/2]

(4)

Fig. 9. The variation intervals.

The variation interval for the threshold value is [0, 1].
Therefore, we create a population of chromosomes contain-
ing C1 as its first individual and the remaining ones initiated
randomly, with each gene being in its respective variation
interval.

3) Max-min-arithmetical crossover: If Cv =
(a1

v1, . . . , evk, . . . , Lv) and Cw = (a1
w1, . . . , ewk, . . . , Lw)

are to be crossed, the following four offspring are generated

C1 = aCw + (1− a)Cv

C2 = aCv + (1− a)Cw

C3 with e3k = min{evk, ewk}
C4 with e4k = max{evk, ewk}

(5)

This operator can use a parameter a which is either a
constant, or a variable whose value depends on the age of
the population. The resulting descendents are the two best of
the four aforesaid offspring.

4) Uniform mutation: If Cj = (a1
j1, . . . , ejk, . . . , Lj) is

a chromosome and the element ejk was selected for this
mutation (the domain of ejk is [el

jk, er
jk]), the result is a

vector C ′j = (a1
j1, . . . , e

′
jk, . . . , Lj) and

e′jk = ejk + (er
jk − ejk) · r, (6)

where r is a random number into the interval [−1.0, 1.0].

V. EXPERIMENTAL RESULTS

To evaluate the usefulness of the approaches proposed
in the previous sections, we have considered the previous
environment control system presented in [5]. In order to have
a performance measure and to perform the automatic tuning,
we were provided with a little set of data containing 105
images, of which 65 are an image with laser spot and 40 are
an image without laser spot. No more examples are available
at this moment since each image have to be obtained by hand
by the system experts, which consists on a tedious task in
order to represent adequately the different situations.

Within this framework, the experts intention was to try to
completely avoid false offs, if possible, while the detection
rate is maintained or even improved. The methods considered
in this study are shown in Table II. The previous technique
have been applied as it was done in [5]. In the case of the
genetic tuning-based approach, the input parameters for the
GA are:
• Evaluations = 50000
• Population size = 61
• Parameters a and b, 0.35 and 5 respectively.
• Crossover probability = 0.6
• Mutation probability = 0.1
• Umbral initial value (L) = 0.5

The results obtained by the different techniques are shown
in Table III. The following terms are used in this table:
• G.S.R.: General Success Rate of the system.
• S.R. with L.S.: Success Rate in Images with Laser Spot.
• S.R. without L.S.: Success Rate in Images without Laser

Spot.
From the results in Table III, we can point out that the use

of a FRBS obtained from the expert experience is able to
reach good performance levels, increasing the detection rate
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Fig. 10. Initial (grey) and Tuned MFs (black).

TABLE III
EXPERIMENTAL RESULTS WITH THE DIFFERENT TECHNIQUES.

Method G.S.R S.R. with L.S. S.R. without L.S.

TM+UD 76.19 % 63.08 % 97.50 %

TM+FRBS 80.00 % 69.23 % 97.50 %
TM+FRBS (tuned) 83.81 % 73.85 % 100.00 %

with respect to the previous technique but still presenting
some false offs. As can be seen, this last problem can be
solved by using an appropriate post-processing technique
that is still able to improve even more the detection rate.
Thus, GFSs can benefit from the expert knowledge to obtain
the set of rules in a problem with a few number of data,
later improving the system performance to much higher
performance levels and solving the main problem, the false
offs.

Once the initial FRBS is adjusted by the genetic tuning
process, a new set of MFs are generated. Figure 10 shows the
initial (by hand) and tuned MFs (by GA). As it can be seen,
only little changes are needed to completely avoid false offs.
It is particularly interesting the effects in circle similarity,
in which ‘Similar’ is applied to a wider range (increasing
the laser spot detection ability with respect to this variable).
On the contrary, in the standard deviation variables, in the
percentile 80 and even in the output variable, it becomes a
little bit more difficult to activate the labels that represent
the higher values (just for avoiding false offs).

VI. CONCLUDING REMARKS

In this paper we have presented a new approach for laser-
based environment device control system by laser pointer
for handicapped people. The paper analyses the application

of GFSs for laser pointer detection in images. In this way,
we make use of an initial FRBS developed by an expert in
order to asses laser spot detection together with a genetic
tuning process in order to reach high performance levels.
This genetic tuning process allows us to obtain a new set of
MFs increasing the success rate up to 73.85% in images with
laser spot, and a 100.00% (no false offs) in images without
a laser spot. The main achievement is that the false offs
have been eliminated while it is obtaining higher detection
rates. This represent a promising contribution to the problem,
since thanks to it we can avoid sending any wrong orders
to the domotic system, preventing from possibly dangerous
situations.

Thanks to the kinds of systems presented in this work,
handicapped people can have a normal live, independently
from their disability. These kinds of systems allow handi-
capped people to integrate both socially and professionally
giving them the right to enjoy a life as normal and complete
as possible; as the Rights of Disabled Persons says [27].
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