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Abstract. In this paper a Grammar Guided Genetic Programming-
based method for the learning of rule-based classification systems is pro-
posed. The method learns disjunctive normal form rules generated by
means of a context-free grammar. The individual constitutes a rule based
decision list that represents the full classifier. To overcome the problem
of computational time of this system, it parallelizes the evaluation phase
reducing significantly the computation time. Moreover, different opera-
tor genetics are designed to maintain the diversity of the population and
get a compact set of rules. The results obtained have been validated by
the use of non-parametric statistical tests, showing a good performance
in terms of accuracy and interpretability.
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1 Introduction

The general idea of discovering knowledge in large amounts of data is both ap-
pealing and intuitive, but technically it is significantly challenging and difficult,
especially in the fields where really huge amounts of relational data have been
collected over last decades. In this paper we focus on classification which is a
well-known task in data mining.

The classification task has been overcomed with numerous computer tech-
niques (rule learning, instance based learning, neural networks, support vector
machines, statistical classifiers and so on). These include crisp rule learning [10,
6], decision trees [15], evolutionary algorithms [3, 4, 13, 20] and specifically Ge-
netic Programming (GP) algorithms [7, 11, 18, 19]. One of the best advantage of
rule-based system is that they provide interpretable solutions to the user. When
considering a rule-based learning system, the different genetic learning methods
follow two approaches in order to encode rules within a population of individu-
als. The first one represents an individual as a rule set, this proposal is known
as Pittsburgh approach [17]. The second one represents an individual as a single
rule, and the whole rule set is provided by combining several individuals in a
population (rule cooperation) or via different evolutionary runs (rule competi-
tion). In turn, within the individual as a single rule approach, there are three
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generic proposals: Michigan, Iterative Rule Learning and Genetic Cooperative-
Competitive Learning).

The main advantage of the Pittsburgh model compared to other approaches
is that it allows to address the cooperation-competition problem, dealing the
interaction among rules in the evolutionary process. However, its main problem
is controlling the number of rules of the individuals, as the total number of rules
in the population can grow quite, increasing the computational cost and becom-
ing unmanageable problems. On the other hand, the other approches provide
good results but are inefficient methods and have addressed the cooperation-
competition problem by not dealing the interaction between rules in the evolu-
tionary process.

In this paper we propose a Grammar Guided GP (G3P) based algorithm that
learns disjunctive normal form (DNF) rules generated by means of a context-
free grammar, coded as one rule base decision list [16] per individual (Pittsburgh
approach). This provides easily interpretable and understandable rules, and it
also considers the interaction among the rules in the evolutionary process. The
genetic operators are designed to work on two levels. On the one hand, it allows
the optimization of particular rules by combining the rules to obtain the bests
disjunction and conjunction of attribute-value comparisons. On the other hand,
it address the problem of cooperation-competition, considering the interaction
that occurs among the rules when these are combined to form the final classifiers.

Evolving full classifiers allows us to evaluate the relationship among rules but
introduces greater complexity and computation time. To solve this problem and
reduce the computation time, the evaluation phase for fitness computation is
parallelized using the GPU or multiple CPU threads. Furthermore, the problem
of controlling the number of rules is solved by setting a parameter with the
maximum number of rules per class. This parameter allows the user to decide to
obtain simpler or more complex classificators by limiting the number of rules.

An experimental study involving 18 datasets and 11 well-known classification
algorithms shows that the algorithm obtains accurate and comprehensible rules.
Non-parametric statistical methods have been used to compare and analyze the
accuracy of the experimental results. They show the good performance in terms
of accuracy of our approach compared to other traditional methods analyzed.
Moreover, the suitability of some components such as the use of specific genetic
operators and the use of full classifier take advantages with respect to the rest
of GP and G3P-based methods considered in the study.

The remainder of this paper is organized as follows. Section 2 presents the
proposed GP classification algorithm and discusses the genetic operators, the
fitness function and the generational model. Section 3 describes the experimental
study. In Section 4, the results will be announced and finally the last section
presents the final remarks of our investigation and outlines future research work.
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2 Algorithm

This section details the algorithm proposed. It describes the encoding of the in-
dividual’s genotype, the genetic operators, the fitness function, the initialization
criterion and the generational model.

2.1 Individual representation

One of the main advantages of GP is the flexibility to represent the solutions.
Thus, GP can be employed to construct classifiers using different kinds of rep-
resentations, e.g. decision trees, classification rules, discriminant functions, and
many more [9]. In our case, the individuals in the Pittsburgh GP algorithm
are classifiers where each individual is a set of classification rules generated by
means of a context-free grammar and whose expression tree is composed by
terminal and non-terminal nodes. A classifier can be expressed as a set of IF-
antecedent-THEN-consequent rules in a decision rules list. The antecedent of
the rule represents a disjunction and conjunction of attribute-value comparisons
and the rule consequent specifies the class to be predicted for an instance that
satisfies all the conditions of the rule antecedent. The terminals set consists of
the attribute names and attribute values of the dataset being mined, logical op-
erators (AND, OR, NOT), relational operators (<, =, <>, >) and the interval
range operator (IN). We must ensure that the classifier contains at least one rule
for each class.

2.2 Genetic operators

This subsection describes the genetic crossover and mutation operators which
modify the genotype of the individuals throughout the evolutionary process.

Crossover operator

As mentioned, an individual represents a classifier as a set of rules. Taking
advantage of this representation, the crossover operator is designed to optimize
both the rules and the interaction among them in the classifier. So on the one
hand, the crossover applied on specific rules operates on two rules from the indi-
vidual and produces two new rules. Two random compatible nodes are selected
from within each rule and then the resultant sub-trees are swapped, generating
two child rules. These crossed rules become the decision list of a new individual.
On the other hand, the crossover applied on classifers acts over the individuals
swapping their rules. Given two parent individuals, two crossing points are cho-
sen (one by parent) so the rules are swapped from those points, building two
new individuals different from their parents. Therefore, selected crossing points
will ensure that at least one rule of a classifier will cross with the classification
rules from the other, i.e., it is not allowed to swap all the rules of a classifier.
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Mutation operator

The mutation operator can also be applied to the rules and the individuals.
The rules mutation operates either on a function node or a terminal node. It
randomly selects a node in a sub-tree and replaces it with a new randomly
created sub-tree. The mutation of an individual is determined by the random
elimination of a rule of the rule set with a probability degree.

2.3 Fitness function

The algorithm has two fitness functions. The first one evaluates the rules of each
individual independently. The second one evaluates the individuals checking the
success rates of the classifiers over the training set. It is necessary to evaluate
the rules of each individual first and then evaluate the classifiers success rates.

Fitness function applied on particular rules

The fitness function we use on particular rules is the proposed by Bojarczuk
et al. [11]. Specifically, each rule is evaluated over each instance and each class.
This obtains the results of the quality of the predictions of the rules for each class.
Thus, the consequent of a rule is reassigned to the class that has produced better
results. The rules fitness function combines two indicators that are commonplace
in the domain, namely the sensitivity (Se) and the specifity (Sp), which employ
the true positive (tp), false positive (fp), true negative (tn) and false negative
(fn) values from the match of the class of the instance and the predicted class.

Se =
tp

tp + fn
Sp =

tn
tn + fp

ruleF itness = Se ∗ Sp (1)

Fitness function applied on rule set (the classifier)

The classifiers fitness function is performed once the best consequent for
each rule is calculated. The fitness of a classifier is simply the success rate of the
classifier over the training set. Each instance is submitted to the decision list to
find the first rule that covers the instance. If the consequent of the rule matches
the class of the instance it is a hit, otherwise it is a fail.

The activation process of the rules defines in which order the rules are eval-
uated to determine which rule classifies each instance. The activation method
employed is a decision list. Thus, an instance is classified by the first rule of the
classifier that covers the instance and whose order is defined in the individual’s
genotype. If no rule covers the instance, it is classified using the default class
(most frequent class or defined by the user).
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Parallel evaluation phase

Many studies have proved the evaluation phase is by far the most expen-
sive [5] since it requires evaluating each rule over each instance. As mentioned, a
disadvantage of Pittsburgh approaches is their high computational complexity.
In fact, if you analyze our proposal, the total number of rules is the addition of
the number of rules for each individual. This number can be large and at least
the total number of rules is the product of the number of classes and the popula-
tion size. An evolutionary system that preforms crossover, mutation, evaluation
and selection on so many rules is really expensive.

To solve this problem, numerous studies have parallelized the evaluation
phase of these algorithms. Among the references there are two main ways to
perform the parallelization. One is the use of different threads and the second
one in more recent works is the use of GPUs [14]. The most efficient approaches
conclude they can speed up the evaluation phase more than 800 times [5]. There-
fore, we will take advantage of its parallelization capability to solve the high
computational cost problem of the evaluation phase, specifically in Pittsburgh
approaches, by using the GPU.

Our system divides the evaluation phase into two functions: rules fitness
function and individuals fitness function. The rules evaluation can be performed
completely parallel using GPUs, but also the evaluation of individuals can be
parallelized. Each individual can be tested as a rule over the training set in-
dependently. Therefore, our model will take advantage of both parallel fitness
functions to reduce the computational cost. The full description of the parallel
model would exceed the scope and the number of pages of this paper but it is
detailed in [5].

2.4 Initialization

The initialization of the algorithm with a genetically diverse population is crucial
for a successful outcome. The problem of the fitness function we use to evaluate
the rules is that a minority class can ignored. Therefore, we must ensure that
individuals contains at least one rule for each class. One way to do this, once the
individuals are created, is to complete with new rules of the classes that have
not yet been covered by at least one rule. As it might be very expensive to get
at least one rule for each and every one of the classes, the process of completing
the individual is performed up to a number of times depending on the number
of classes. This way, we try most of the classes to be represented in the classifier.
Finally, among all the rules of all individuals we decide to keep the best rule for
each class that will help us later to fill the classifiers with the rules of the classes
that could be missing.
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Fig. 1. Algorithm flowchart.

2.5 Generational model

In this section we describe the generational model represented in Fig. 1. The left
box represents the initialization of individuals described before. Once the popu-
lation is initialized, the algorithm iteratively proceeds to apply genetic operators
crossover and mutation described in the section 2.2. Specifically, the algorithm
performs the individuals crossover swapping subsets of rules. The individuals can
mutate eliminating some of its rules. The rules within each individual are crossed
together and mutated, obtaining new classification rules. These new rules must
be evaluated to get their consequents and fitness values.

To ensure the survival of the best rules, the algorithm checks in each gener-
ation and for each class if any new rule is better than the one stored for that
class, if so the rule is replaced by the new one. As the crossover operator may
have created individuals that exceed the maximum number of rules allowed, we
can simplify by selecting the best rules subset.

The individual must be completed by rules from uncovered classes, taking the
best rules from the pool to cover them. Once completed, each individual must
be evaluated to get its fitness using the training data. We employ elitism to keep
a subset of the best individuals in each generation to ensure the survival of the
fittest individuals. The algorithm finishes when it has found an individual that
correctly classifies all the training instances or when the algorithm has iterated
a certain number of generations.
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3 Experimental study

This section describes the details of the experiments, discuss the application
domains, the algorithms used and the settings of the tests.

The experiments performed compare the results of 11 different classification
algorithms using 18 datasets. These algorithms are available on the JCLEC [21]
website and KEEL [2] website. The datasets employed have been selected from
the KEEL repository website[1]. These datasets are very varied considering dif-
ferent degrees of complexity, number of classes, number of features and number
of instances. Thus, the number of classes ranges up to 10, the number of features
ranges from 4 to 60 and the number of instances ranges from 101 to 58000.

To properly evaluate the performance of the algorithm proposed it is con-
sidered to make a comparative study with some evolutionary crisp rule learning
algorithms for classification (De Falco et al. [7], Bojarczuk et al. [11], Tan et
al. [18, 19], MPLCS [3], ILGA [13], CORE [20] and UCS [4]), two rule learning
algorithms widely extended (PART [10] y RIPPER [6]) and a classic decision
tree algorithm (C4.5 [15]). For each algorithm, the values of the parameters to
be configured by the user were set to the default values provided by the authors.
The population size and the number of generations for our proposal are both
set to 200, i.e. the algorithm deals with 200 candidate full classifiers, and the
maximum number of rules per class is set to 3. The results are validated using
10-fold cross validation and 10 runs with different seeds for stochastic methods.
The results provided are the average of the 100 executions. A CPU time compar-
ison analysis would exceed the number of pages of this paper and the execution
time of the proposal is definitely higher than the other algorithms.

The experiments were executed in an Intel i7 quadcore machine with 12 GB
DDR3-1600 and two NVIDIA GTX 480 GPUs, which are 3 billion transistors
GPUs with 480 cores and 1.5 GB GDDR5. The operating system was Ubuntu
Linux 10.10 64 bits, the GPU computing software was NVIDIA CUDA 3.1 and
the compiler GCC 4.4.4.

4 Results

In this section we provide the results of the experiments and discuss the per-
formance of the algorithms over the datasets. Table 1 shows the average results
of the predictive accuracy obtained running each algorithm ten times in each of
the datasets tests folds. The last but one row shows the average accuracy over
all the datasets.

Analyzing the results of the table notice that the algorithm proposed obtains
better average accuracy results and ranking. Its accuracy is higher than most
algorithms and is very close and slightly higher than the algorithms MPLCS,
UCS and C4.5. In those datasets in which our algorithm does not achieve the
best results, its accuracy is usually quite competitive. Moreover, the algorithm
does not stand out negatively in any dataset.

In order to analyze the results and discover the existence of significant dif-
ferences between the algorithms, a series of statistical tests [8, 12] were carried
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Table 1. Experiments results: predictive accuracy (%)

Dataset Proposal Falco Bojarczuk Tan [18] Tan [19] MPLCS ILGA CORE UCS C4.5 PART RIPPER

Zoo 95.90% 61.73% 86.31% 93.43% 92.75% 95.50% 84.67% 94.58% 96.50% 92.80% 86.13% 93.41%
Iris 95.82% 76.20% 84.40% 89.67% 75.34% 96.00% 93.33% 94.67% 92.00% 96.67% 33.33% 94.00%
Hepatitis 88.51% 68.85% 74.44% 73.50% 83.43% 85.15% 77.92% 83.43% 80.74% 85.66% 84.17% 79.09%
Wine 94.58% 63.72% 79.33% 75.81% 66.24% 91.54% 89.28% 95.49% 91.57% 94.90% 63.98% 93.79%
Sonar 75.09% 61.90% 66.31% 60.57% 59.05% 76.81% 71.57% 53.38% 77.83% 70.54% 60.53% 72.45%
Glass 69.39% 31.79% 39.98% 36.88% 48.85% 65.88% 52.40% 50.97% 66.07% 68.86% 46.50% 63.47%
New-thyroid 94.40% 69.18% 75.54% 73.65% 78.66% 91.65% 90.71% 91.21% 93.55% 93.52% 77.22% 93.05%
Heart 81.85% 66.78% 74.37% 72.55% 76.30% 83.70% 64.44% 71.11% 80.37% 78.14% 57.77% 76.29%
Dermatology 94.96% 45.61% 73.59% 77.29% 76.56% 95.53% 60.81% 43.86% 96.36% 94.35% 73.12% 94.42%
Haberman 73.82% 65.92% 68.43% 52.70% 70.18% 72.17% 71.89% 70.88% 72.18% 71.19% 73.53% 46.72%
Ecoli 78.92% 51.72% 57.63% 50.48% 65.19% 80.67% 63.10% 65.78% 79.49% 77.37% 44.67% 72.63%
Australian 85.41% 72.42% 84.29% 75.77% 78.41% 86.96% 85.07% 83.33% 86.09% 85.21% 60.72% 81.44%
Pima 75.01% 69.82% 67.59% 62.98% 66.68% 74.60% 73.19% 72.28% 76.04% 72.53% 65.11% 69.53%
Vehicle 70.59% 31.11% 41.67% 36.04% 41.52% 71.15% 57.24% 40.05% 72.45% 66.66% 37.85% 70.44%
Contraceptive 55.61% 40.75% 42.68% 40.37% 44.00% 55.47% 43.59% 45.01% 49.49% 51.19% 42.90% 50.78%
Thyroid 99.22% 68.05% 51.39% 52.92% 92.43% 94.72% 94.10% 68.00% 96.99% 99.56% 92.58% 99.37%
Penbased 83.32% 25.54% 40.29% 35.76% 44.90% 91.80% 53.25% 15.69% 14.28% 94.89% 15.86% 96.15%
Shuttle 99.97% 61.16% 75.51% 63.55% 89.51% 99.60% 93.67% 91.60% 99.62% 99.96% 99.60% 99.96%

Average (%) 84.02% 57.34% 65.76% 62.44% 69.44% 83.82% 73.34% 68.40% 78.98% 83.00% 61.97% 80.38%

Ranking 2.22 10.56 8.72 9.72 8.08 3.03 7.00 7.25 3.56 3.58 9.19 5.14

out. We use the Iman and Davenport test to rank the k algorithms over the
N datasets. The average rank according to the F-distribution throughout all
the datasets is shown in the last row of the table. Notice that the best global
position, the lowest ranking value, corresponds to the obtained by our proposal.

The Iman and Davenport statistic for average accuracy distributed according
to F-distribution with k − 1 = 11 and (k − 1)(N − 1) = 187 degrees of fredom
is 30.1460. This value does not belong to the critical interval [0, F0.01,11,187 =
2.3439] for p = 0.01. Thus, we reject the null-hypothesis that all the algorithms
perform equally well. In order to analyse if there are significant differences among
the algorithms, we use the Bonferroni-Dunn test to reveal the difference in per-
formance using a critical difference (CD) value for p = 0.01 equal to 3.9865.

Fig. 2. Bonferroni-Dunn test. The noncritical range is shown shaded.

The results indicate that a significance level of p = 0.01 (i.e., with a probabil-
ity of 99%), there are significant differences between our algorithm and De Falco
et al., Bojarczuk et al., Tan et al. [18, 19], PART, IGLA and CORE algorithms
being our algorithm statistically better. These differences are shown in Fig. 2.
The figure represents the algorithm’s ranking and the critical distance interval.
Regarding to the other algorithms, the test does not indicate significant differ-
ences. However, our proposal obtains the lowest ranking value, indicating that
considering all datasets, it obtains better results in a greater number of them
than other proposals.
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5 Conclusions

In this paper we have proposed a G3P algorithm that optimizes the class predic-
tion accuracy of a decision list as a set of interpretable DNF rules. The encoding
of the individuals have allowed us to design specific crossover and mutation oper-
ators that consider the interaction among the rules in the evolutionary process.
The algorithm overcomes the high computational complexity of Pittsburgh ap-
proaches by the parallelization of the evaluation phase. Nevertheless, in spite of
this improvement, the complexity of the algorithm is still high. The experiments
carried out compare the results of our proposal with other classic algorithms
for solving classification problems considering 11 algorithms and 18 datasets. A
statistical study on results validates the model showing that it provides the most
accurate classifiers since obtaining the lowest ranking in the general comparative.

The algorithm design is complex and the execution time is high even us-
ing GPUs for the evaluation of the individuals. The individual representation
is as a set of classification rules and it is necessary to evaluate both rules and
classifiers every generation. Therefore, the algorithm performs slow regarding to
the other algorithms from the experimental. Nevertheless, the idea of this work
was to experiment a highly complex G3P Pittsburgh algorithm for classification
accelerated using GPUs, since GPUs have been successfully used in Michigan
approaches to speed up the evaluation phase [5]. Therefore, there is no a sequen-
tial implementation of the algorithm to compare with, since it would require
excessive CPU time.

Currently, databases are moving toward sparse data, unbalanced, multiple
labels, instances. It would be interesting to check the performance of the algo-
rithm in these contexts and to improve the efficiency of the algorithm to perform
faster.

Additional information of the paper such as the algorithm’s code, the ex-
perimental setup and the datasets are published and available on the website:
http://www.uco.es/grupos/kdis/kdiswiki/HAIS11
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