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Abstract. This paper presents a methodology to transform a problem to make it
suitable for classification methods, while reducing its complexity so that the clas-
sification models extracted are more accurate. The problem is represented by a
dataset, where each instance consists of a variable number of descriptors and a class
label. We study dataset transformations in order to describe each instance by a sin-
gle descriptor with its corresponding features and a class label. To analyze the suit-
ability of each transformation, we rely on measures that approximate the geometri-
cal complexity of the dataset. We search for the best transformation minimizing the
geometrical complexity. By using complexity measures, we are able to estimate the
intrinsic complexity of the dataset without being tied to any particular classifier.
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1. Introduction

The data complexity analysis [1] concerns the study of to what degree patterns can be ex-
tracted from datasets. Most of the research in pattern recognition, machine learning, and
other related areas have focused on designing competitive classifiers in terms of gener-
alization ability, explanatory capabilities, and computational time. However, limitations
in classification performance are often due to the difficulties of the dataset itself. The
data complexity analysis is a recent area of research that tries to characterize the intrinsic
complexity of a dataset and find relationships with classifier’s accuracy.

This paper uses the data complexity analysis to study problem transformations for a
particular case of breast cancer diagnosis. The original problem is not directly tractable
by a classifier, since each patient has a variable number of descriptors. Thus, prior to the
application of any classifier, the descriptors must be synthetized into a single one. Sev-
eral synthetic representations are possible, each leading different classification results.
Moreover, due to the nature of the problem, the domain experts are unable to specify
the best one. A previous approach was to use the classifier’s accuracy as a measure of
quality of the different synthetic representations. A limitation of the approach was that
the classifier’s accuracy depended both on classifier’s bias and dataset characteristics,
misleading the selection of the best method and confusing the interpretation provided to



the human experts. We consider the characterization of data complexity as a method to
select the best synthetic representation. The proposed methodology sets a framework that
guides us in the selection of problem transformations without being tied to any particular
classifier. Our results are also meaningful to the domain experts, because they provide
intrinsic information of the problem at hand.

The paper is structured as follows. Section 2 reviews the data complexity analysis
and its application to classification problems. Section 3 describes the problem we ad-
dress in more detail. Next, we study problem transformations and their charaterization
by means of the complexity analysis. We present the results and finally, we summarize
the conclusions and future work.

2. Analysis of Data Complexity

The complexity of a classification problem can be attributed to three main sources [2].
Class ambiguity is identified as the difficulty given by non-distinguishable classes. This
may be due to the intrinsic ambiguity of the problem, or to the fact that the features are
not sufficient to discriminate between the classes. Class ambiguity sets a lower bound
on the achievable error rate, which is called Bayes error. The sparsity of the training set
is related to the number and representativity of the available instances. The boundary
complexity, the third source of difficulty, can be characterized by the Kolmogorov com-
plexity, or the minimum length of a computer program needed to reproduce the class
boundary. Class ambiguity and training set sparsity are properties of the specific dataset.
Once the dataset is fixed, these complexities are irrecoverable. On the other hand, the
geometrical complexity is more relevant to the study of classifier’s behavior. The charac-
terization of the boundary complexity may be useful to explain the different performance
of several classifiers on a given dataset. That is why recent studies on data complexity
have been mainly focused on the boundary complexity.

2.1. Applications of Data Complexity Analysis

One of the primary goals of the data complexity analysis was to understand the classi-
fier’s performance. The idea arose from the difficulty of traditional studies to understand
the differences among several classifiers when compared on several datasets. The com-
mon table with comparison of accuracies did not reveal the reasons why a given classifier
performed better or worse than others for certain problems. Thus, some studies tried to
characterize the dataset complexity and relate it to the classifier’s performance. By doing
so, one could build a model of classifier’s accuracy based on dataset complexity and use
the model to set expectations of classifier’s accuracy. Some studies in this direction found
linear correlations between the classifier’s error and some measures of complexity [3,4].
Other investigations attempted to find domains of competence of several classifiers in a
space defined by complexity measures [5,6]. Thus, given a new problem characterized by
its complexity, the model could be used as a guide for classifier selection. Often, a learn-
ing algorithm has different configurations available. Therefore, the same methodology
could be used to extract rules for classifier’s adaption to a particular problem.

The data complexity analysis can also be used at the preprocessing stages of classifi-
cation, such as in prototype selection [11,10] and feature selection. There, the character-
ization of the dataset is employed to select a suitable problem with reduced dimension-



ality. This paper explores the application of the data complexity analysis to find proper
transformations of a classification problem.

2.2. Data Complexity Measures

Ho & Basu [2] proposed a set of metrics estimating data complexity. The metrics are
classified in four categories as follows.

2.2.1. Overlap of Individual Feature Values

These metrics evaluate the power of individual attributes to discriminate between classes.

Maximum Fisher’s discriminant ratio (F1): For each attribute, the Fisher’s discrimi-
nant ratio is calculated as: f = (μ1 − μ2)2/(σ2

1 + σ2
2), where μ1, μ2 and σ2

1 , σ2
2 are the

means and variances of the attribute for each of the two classes, respectively. The metric
uses the most discriminant feature as the one having the maximum Fisher’s value.

Volume of overlap region (F2): The overlap region of a feature is computed as the
overlap range divided by the total range of that feature. F2 is the product of the overlap
regions of each attribute.

Feature efficiency (F3): It describes to what extent each feature contributes to the class
separation. It consists in removing the ambiguous instances (i.e., those instances belong-
ing to different classes that fall in the overlapping region) for each feature. The efficiency
of each feature is the ratio of the remaining non-overlapping points to the total number
of points. The largest feature efficiency of all features is taken as F3.

2.2.2. Separability of classes

This family of metrics takes into account the dispersion of classes in the feature space
based on neighborhood distances.

Length of class boundary (N1): It refers to the percentage of points in the dataset that
lie in the class boundary [9]. Firstly, we generate the minimum spanning tree (MST)
connecting all training samples, using the Euclidian distance between each pair of points.
Then, we compute the fraction of points joining opposite classes to the total number of
points. This measure is sensitive to the separability of classes and the clustering tendency
of points belonging to the same class.

Ratio of average intra/inter-class nearest neighbor distances (N2): For each point, we
calculate its nearest neighbor point belonging to the same class and the nearest neighbor
belonging to the opposite class. Then, the averaged distances connecting intra-class near-
est neighbor points are divided by the averaged distances of inter-class nearest neighbors.

2.2.3. Geometry of Class Manifolds

It evaluates the overlap between classes and how the classes are distributed as hyper-
spheres in the feature space. This is more related to the interior descriptions of geometry.

Nonlinearity (N4): It estimates a convex hull for each class by linear interpolation of
randomly drawn pairs of points from the same class. Then, a nearest neighbor classi-
fier is trained with the original training set and tested with the extended set of points
approximating the convex hull. N4 is the error of the classifier.



Area Number of holes
Perimeter Convex perimeter
Compactness Roughness
Box Min. X,Y; Max. X,Y Length
Feret (min. bounding box) X,Y Breadth
Feret minimum diameter Elongation
Feret maximum diameter Centroid X,Y
Feret mean diameter Angle of principal axis
Feret elongation Angle of secondary axis

Figure 1. Example of a mammographic image with several microcalcifications (left) and set of features ex-
tracted from each microcalcification (right)

2.2.4. Sparsity

The sparsity is estimated as the number of points to the number of dimensions.

3. The Problem

The problem addressed in this paper consists in the breast cancer diagnosis based on
the features extracted from mammographic images. Mammographic images may con-
tain microcalcifications, which are tiny specks of mineral deposits (calcium), that can
be found scattered or clustered throughout the mammary gland. The specks may either
indicate the presence of tiny benign cysts or early breast cancer. In the latter case, studies
reveal that shapes and sizes of microcalcifications are relevant features to determine if
they constitute high risk of malignant cancer.

The dataset we used was obtained from mammograms collected by Dr. Josep Trueta
University Hospital, whose diagnosis was known from biopsies. Each mammogram was
digitized and later processed [7]. The result was a set of 216 instances, where each in-
stance belonged to a mammogram with variable number of microcalcifications and a
class label that corresponded to the diagnosis. Each microcalcification was characterized
by 23 features mostly describing shapes and sizes. Figure 1 shows an example of a mam-
mogramphic image and the list of features obtained for each microcalcification. For more
details, see [7].

In this application, an instance-based learner was used [12]. The reason was that the
most similar images to the new case were presented to the human expert as a way of
explaining the diagnosis. Due to the variable number of microcalcifications present in
each instance, the problem was untractable directly by the classifier. Early works aver-
aged the features of all microcalcifications as a synthetic case [12]. Although the clas-
sification performance reached the same accuracy as the human experts, there was un-
certainty about the correct method of synthetizing the different microcalcifications. We
wondered whether other methods could be used that were easier for the human experts
when performing a visual inspection of the mamographic image.

A possible procedure is to test the error of the classifier with the datasets obtained
from different types of transformations and then, choose the best transformation as the
one with the minimum error. However, this can lead to conclusions too tied to the clas-
sifiers applied. That is, the error of the classifier is influenced both by the complexity
of the dataset and the proper design of the classifier. By studying the complexity of the
dataset, we can provide a more theoretical framework. Our proposal is to characterize the



Table 1. Problem transformations

Method Synthetic case

Average Average of all attributes

Centroid Feature values belonging to the centroid of the cluster

Random A random microcalcification

All Each microcalcification constitutes a different case

Min. area The microcalcification with the minimum area

Max. roughness The microcalcification with the maximum roughness

Max. compactness The microcalcification with the maximum compactness

Max. elongation The microcalcification with the maximum elongation

Max. feret elongation The microcalcification with the maximum feret elongation

Max. holes The microcalcification with the maximum number of holes

complexity of each dataset resulting from the different transformations and then select
the best transformation based on the minimum complexity.

4. Results

Table 1 describes the different problem transformations we analyzed to synthetize a num-
ber of microcalcifications into a single one. The average approach involves all microcal-
cifications present in the mammogram and computes their average feature values. These
are the feature values used as the synthetic case. The centroid approach computes the
centroid point of all microcalcifications, considering Euclidean distances. We included
a random selection of a microcalcification to test whether the selection of a particular
microcalcification was relevant. We also included the case where all microcalcifications
were used as different cases, each labeled with the class corresponding to the global di-
agnosis given by the biopsy. The rest of methods select a particular microcalcification,
based on the value of a single feature. We based our selection on an early analysis of data
[8] that revealed that the most relevant set of features for cancer discrimination were: the
area, compactness, feret elongation, number of holes, roughness, and elongation. Thus,
the different transformations selected a single microcalcification which were: the mi-
crocalcification with the minimum area, the maximum roughness, the maximum com-
pactness, the maximum elongation, the maximum feret elongation, and the maximum
number of holes, respectively.

Table 2 shows the values of the complexity metrics computed for each problem
transformation. See that each transformation is characterized by a complexity space of 6
metrics, where F1, F2, and F3 evaluate the discriminative power of features, N1 and N2
consider the separability of classes, and N4 the nonlinearity of class boundary. The rows
are sorted in ascending order of metric N1.

To our understanding, the metrics that compute the discrimination of individual fea-
tures are not very relevant to the complexity estimation. For example, a high value of
F1 indicates that an attribute discriminates well and consequently, the problem should be
easy. However, a small value for F1 does not necessarily imply a difficult problem. We
should look at the rest of the metrics to complete our estimation. The values obtained
in F1, F2, and F3 are very close in all transformations. The exception is the Average
approach, which obtains simultaneously a high value in F1 and F3 (see figure 2(a)). This



Table 2. Complexity of problem transformations (columns F1 to N4) and error of nearest neighbor classifiers
(columns 1-NN and 3-NN). The most complex problem according to the given metric is marked in bold, and
the easiest problem is marked in itallic.

Dataset F1 F2 F3 N1 N2 N4 1-NN 3-NN

Average 0.3131 0.0081 0.1019 0.528 0.899 0.9653 0.370 0.347

Max. holes 0.0976 0.0039 0.0463 0.574 0.927 0.9730 0.398 0.394

Random 0.0356 0.0015 0.0509 0.588 0.961 0.9614 0.421 0.394

All 0.0150 0.0080 0.0052 0.593 0.928 0.9516 0.411 0.394

Max. roughness 0.0878 0.0044 0.0463 0.616 0.955 0.9730 0.421 0.458

Centroid 0.0700 0.0072 0.0463 0.620 0.972 0.9653 0.458 0.458

Max. elongation 0.0969 0.0027 0.0509 0.630 0.967 0.9691 0.472 0.449

Max. compact. 0.0969 0.0027 0.0509 0.630 0.967 0.9691 0.472 0.449

Max. feret elong. 0.2518 0.0108 0.0463 0.676 1 0.9769 0.468 0.421

Min. area 0.1379 0.0172 0.0556 0.704 0.979 0.9846 0.472 0.454

could indicate that its complexity is low. The All transformation gives the smallest values
in F1 and F3. On the other hand, the two largest values of F2 (since F2 is the volume
overlap, a large value of F2 could mean a difficult problem) correspond to Max. feret
elong. and Min. area. Both transformations also give the largest values in N1 (see figure
2(b)). This couple effect may point that these are the most difficult datasets.

Metrics focused on the distribution of classes should convey more information on
complexity. That is why we sorted the rows by N1. Column N1 gives the values of the
length of class boundary and N2 the fraction of intra/inter-class distances. Regarding
the length of class boundary, the Average appears as the best transformation. This also
agrees with the values obtained by Average in F1 and F3. The worst approximations are
those that select a single microcalcification based on individual feature values (except for
the number of holes). Surprisingly, the approaches of using all microcalcifications and
selecting a random microcalcification give boundary lengths rather small (i.e., low com-
plexity). This means that all microcalcifications carry similar information for carcinoma
detection, which justifies why the average approach appears as the best transformation.
N1 and N2 are fairly correlated, as shown in plot 2(c). This is reasonable because the two
metrics test the class dispersion by using nearest neighbor distances.

Finally, N4 checks for nonlinearity. Under N4, the worst transformation is Min. area,
which agrees with the result of N1, N2, and F2.

In general, the metrics agree that the worst transformations are Max. feret elong. and
Min. area, while the Average appears as the best tranformation.

To validate whether our complexity estimation corresponded to the complexity as
seen by the classifiers, we tested two k-nearest neighbors (k-NN) classifiers and com-
puted their errors for each transformation. The classifiers’ error was estimated by an
stratified 10-fold cross-validation procedure. The two last columns of table 2 show the
error of the nearest neighbors (k=1 and k=3 respectively) for each transformation. See
that the error of the classifiers tends to rise for increasing values of N1. Also note that
the worst complex problems (as predicted by the complexity metrics) correspond to the
highest classifiers’ error, while the easiest problems correspond to the smallest errors.
Figures 2(e) and 2(f) show graphically the correlation between the classifiers’ error and
metric N1.

In [4] a linear correlation was observed between some classifiers’ error and metrics
N1 and N2. If we applied the model derived in the paper, for N1 ranging from 0.528 to
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Figure 2. Complexity projections and error of classifiers. Plots (a)-(d) show each transformation plotted in
several two-dimensional projections of the complexity measurement space. Plots (e)-(f) show the error of 1-NN
and 3-NN vs. metric N1.

0.704, we would predict a classifier’s error in the interval [0.3,0.5]. See that the results
obtained by our classifiers fit correctly this model, which confirms the suitability of the
complexity measurement space to set estimations of the classifier’s error.

5. Conclusions

The data complexity analysis has provided a theoretical framework to select and justify
the best transformation for the problem of breast cancer diagnosis based on features ex-
tracted from a variable number of microcalcifications present in a mammogram image.
By selecting the transformation that minimizes data complexity, we are able to increase
the generalization ability of classifiers and thus, give better support to the breast cancer
diagnosis. Besides, the analysis may be meaningful to experts, since it provides guide-
lines on how to inspect visually the microcalcifications.

The estimation of complexity in all the studied transformations has been fairly high,
which consequently has lead to a high classifier’s error. The results reveal that the breast
cancer diagnosis relying only on microcalcifications reach a maximum accuracy rate that
seems difficult to be overcome, regardless of the efforts for transforming the dataset or
using better adapted classifiers. Probably some attributes are missing, specifically those
relating patient’s age, antecedents, etc. (as considered by the experts). It would be inter-
esting to see how the data complexity decreases with the addition of such new features.

Our results may be also limited due to a sparse sample. In fact, the dataset contained
only 216 instances. The finite and sparse samples limit our knowledge about the geo-



metrical complexity, thus we are addressing only the apparent complexity of a problem
based on a given training dataset.

The study of data complexity provides expectations on the error of classifiers. Thus,
besides searching for the best classifier solving a particular problem, we may seek for
problem transformations that present data in a more learnable way. A similar methodol-
ogy could be adapted to processes such as feature extraction, selection, and aggregation.
The data complexity analysis has also served to identify the domains of competence of
classifiers in the complexity measurement space. As a further step, one could use these
studies to transform a given dataset for a particular type of classifier; i.e., translating the
problem to the domain of competence of the classifier of interest.
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