
  

 

Abstract— A new methodology to learn descriptive linguistic 

Fuzzy Rule-based System Knowledge Bases from examples 

based on the combination of fuzzy clustering and evolutionary 

simultaneous rule selection and membership functions tuning is 

presented in this work.  Fuzzy clustering is used to achieve a 

preliminary description of the data, in other words to obtain 

information on the definition of the linguistic terms and rules 

instead of predefined linguistic terms and rules that use them.  

The evolutionary algorithm obtains the final compact and 

accurate knowledge base selecting a subset of rules with high 

level of cooperation and fine-tuning the linguistic terms 

involved.  The results obtained with this proposal improves 

accuracy as well as complexity through the number of rules 

compared with a classic algorithm and a reference algorithm 

both well known in the literature, as the experimental study 

developed shows, using several different data sets.  

 

 
 

I. INTRODUCTION 
 

N the framework of the design of fuzzy linguistic rule –

based systems (FRBSs) for fuzzy modelling, the main 

element related with the problem to solve is the Knowledge 

Base (KB) that basically contains the fuzzy Rule Base (RB) 

as well as the fuzzy membership functions definition of the 

related variables.  For this reason, the RB learning [1, 2, 3] 

and membership functions tuning [4, 5, 6] are problems that 

have traditionally been of great interest and widely studied 

in the specialist literature [7]. 

 Recent research on the design of fuzzy linguistic models 

[6] has focused on methods aimed at generating FRBSs with 

an appropriate trade-off-between two usually contradictory 

features, accuracy and interpretability, in the sense of system 

complexity, so as to obtain reliable and understandable 

models.  

 Learning the KB or its elements from examples 

automatically allows fuzzy models to be created easily.  The 

balance between interpretability, in the sense of complexity, 

and accuracy directly affects the KB design.  When the main 

aim is to obtain a compact set of rules, i.e. when the 

interpretability is the main target, the accuracy decreases; in 

contrast, when higher accuracy is intended, the number of 
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rules usually rises.  Learning methodologies for interpretable  

and still accurate FRBSs is therefore an issue of interest 

nowadays. 

 In line with these ideas, in this paper we present a 

methodology for the design of linguistic KBs from examples 

aimed at a more readily achievable accuracy and 

interpretability by using fuzzy clustering and evolutionary 

selection of the rules and tuning of the membership 

functions.  Fuzzy clustering, also well known in fuzzy 

modelling [8], lets us create rules that individually describe 

the training data set while the evolutionary selection and fine 

tuning [4,6] favour a good level of cooperation between 

rules (inside the RB) and between the RB and the 

membership functions of the related variables, in order to 

have compact and accurate KBs.  The novelty of this 

proposal is the way of combining fuzzy clustering and 

genetic fuzzy systems selection and tuning in a procedure to 

obtain Mamdani descriptive fuzzy systems knowledge bases 

for fuzzy modelling with higher levels of accuracy and 

compactness than other methodologies.    

 To explain how this is achieved, Section II describes the 

proposed methodology in depth, Section III shows the 

experimental study carried out with four applications and 

comparing the proposed methodology with two other 

learning methodologies, and finally Section IV presents 

some concluding remarks. 

 
 

II. CEST METHODOLOGY 
 

This paper proposes a new methodology for generating 

KBs for descriptive fuzzy linguistic systems from examples.  

It is based on the idea of placing rules and membership 

functions where they are needed to describe the training data 

set, instead of equilaterally partitioning the universe of the 

variables and then looking for the rules to describe the 

examples to cover.  This is accomplished by using fuzzy 

clustering.  Additionally, the proposed methodology benefits 

from the use of evolutionary algorithms to select the subset 

of rules with the best cooperation together and to tune the 

membership functions.  We designate it CEST methodology 

(Clustering and Evolutionary Selection and Tuning). 

This section describes in detail the elements of this 

methodology, which has two sequential steps: The first step 

is devoted to generating a set of candidate rules to depict the 

training data set and is carried out using a fuzzy clustering 

algorithm.  This candidate rule set can be considered as an 

approximative fuzzy linguistic system.   
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The first step concludes transforming the approximative 

fuzzy system to descriptive.  The rules generated in this way 

are good rules to describe the data set individually, but they 

cannot perform together in a fuzzy system where there is 

interaction between rules.  The second step employs an 

evolutionary algorithm to select the rules and tune the 

membership functions, both simultaneously to achieve the 

best collaboration between the two elements of the KB: RB 

(set of rules) and the data base (membership functions).  

Each stage is described in the following separate 

subsections. 

A. Generation of Candidate Rules by Means of a Fuzzy 

Clustering Algorithm 

 Classical clustering algorithms generate a partition of a 

data set so that each item is assigned to a cluster.  These 

algorithms use the so called “rigid partition” derived from 

classical sets theory: the elements of the partition matrix 

obtained from the data matrix (with n elements) can only 

contain values 0 or 1; with zero indicating null membership 

and one indicating whole membership to each of the c 

partitions (clusters).  That is, the elements must fulfil: 
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where ik represents the membership degree of the k
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 Fuzzy partition is a generalization of the previous one, so 

that it holds the same conditions and constraints for its 

elements, except that in this case real values between zero 

and one are allowed (partial membership grade).  Therefore, 

samples may belong to more than one group, so the selecting 

and clustering capacity of the samples increases.  From this 

we may deduce that the elements of a fuzzy partition fulfil 

the conditions given in (1), except that now condition (a) 

will be written as: 
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 The Isodata algorithm [9] was modified by [10] and 

generalized in [11] and [12] until conversion into the well-

known general-purpose fuzzy-clustering algorithm Fuzzy C-

Means (FCM) [13].  This algorithm is based on the 

minimization of distances between two data points and the 

prototypes of cluster centres (c-means).  Basically, this 

algorithm attempts to classify n elements xk  X with 1 

kn, with p characteristics each, that is, X  p, into c fuzzy  

clusters, assigning a membership degree ik (2).  To this end, 

the algorithm to try minimize the following cost function (3) 
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where U=(µik) is the membership matrix of X, P=[v1, v2, ..., 

vc] is a vector of cluster centre prototypes which must be 

determined, and 



m [1,] is a weighting exponent which 

determines the degree of fuzziness of the resulting clusters 

(in this paper m=2  was considered) and is the norm used for 

measuring distances.  
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 Finally, the cost function J is minimized to obtain the 

components of U and P, that is, the membership matrix and 

the vector of cluster centre prototypes.  The necessary 

conditions to minimize J are:  
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The final goal of this phase of the proposed methodology 

is to obtain a fuzzy rules system from a multi-parametric 

quantitative dataset.  To do so, a fuzzy clustering algorithm 

[14] based on the methodology proposed by Sugeno and 

Yasukawa in [15] was applied, with the aim of building a 

fuzzy model based on fuzzy rules of the form:  

 
 

Ri: IF xi Ai THEN y  Bi   (7) 

 

 

Where X=[x1, x2,..., xn]  n are input variables 

(antecedents), A=[A1, A2,..., An] are n fuzzy sets, y   is 

an output variable (consequent), and B=[B1, B2,..., Bm] are m 

fuzzy sets. 

Therefore, the methodology used to obtain the fuzzy 

model basically consists of applying the fuzzy partition 

FCM to the output parameter y.  As a result of this process, 

the membership grade is obtained of each output element of 

the dataset to each fuzzy set Bi.  Once a partition of the 

output space in fuzzy clusters Bi is obtained, a projection of 

these clusters on the input space is carried out, obtaining a 

fuzzy set in n as result, which projected on each axis 

assigns to each input parameter xi a fuzzy set Ai (7), as 

illustrated in Figure 1. 
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        Fig. 1: Projection of fuzzy clusters 

 

The number of candidate fuzzy rules that are generated by 

means of this methodology is based on the approach 

proposed by Fukuyama in [16], which basically consists of   

measuring the variance of the elements in a cluster and the 

variance between clusters.  In this way, the optimum number 

of clusters is the value that minimizes the variance in each 

cluster and maximizes the variance between them.  In this 

paper, the number of rules generated were empirically 

determined and we determined to use two or four times the 

optimum calculated with these criteria depending on the 

problem, with the aim of starting the next evolutionary 

selection step with a number of rules large enough to let the 

algorithm perform the search process better, which is based 

on selecting a subset with high cooperation, as we describe 

in the next subsection. 

It is important to point that this methodology proposes the 

partitions of the variables in the universe of discourse quite 

differently from most methods for generating fuzzy KBs that 

use a uniform partition independently of the dataset to be 

described.  It also creates rules together with the definition 

of the membership functions, instead of producing rules 

using predefined membership functions. 

As commented at the beginning of Section II, the result  

 

 
Fig. 2: Example of candidate rules by means of an approximative system 

of the rule generation process in this point is an 

approximative fuzzy system because each individual rule has 

its own labels for each variable.  Moreover, membership 

functions are of trapezoidal shape.  Figure 2 shows the 

approximate KB obtained at this point of the procedure. 

However, we want to achieve a descriptive, more 

interpretable fuzzy system.  To do so, we transform the 

output of the clustering process in the way described here.  

In this paper, we have opted to assign triangular fuzzy labels 

(antecedent and consequent).  Therefore, we convert the 

trapezoidal membership functions into triangular labels, 

where the amplitude of the base of the triangle corresponds 

to the largest base of the trapezoid. 

The next step is to obtain a descriptive fuzzy system from 

the approximative one, that is, to reduce the number of 

membership functions we have for each variable to a fixed 

number, previously defined by the user, number of 

membership functions.  To do so, an algorithm based on the 

K-nearest neighbour is employed.  Hence, we obtain a 

prefixed number of different groups of triangular 

membership functions for each variable, and each of these 

groups will be represented by a single triangle whose 

position and base are calculated as the average of their 

represented triangular fuzzy labels.  In this way, the 

approximative fuzzy KB has been transformed into a 

descriptive one derived from it.  Figure 3 shows an example 

of a RB obtained following this method from the RB of 

Figure 2.  It can be seen that the first rule in the first variable 

uses the same label as the third rule, and likewise the second 

with the seventh and the fourth with the fifth, and so on.   

The transformation of the approximate system rules into a 

descriptive one involves an approximation, so each 

individual rule loses accuracy in this process.  This is 

partially offset by the membership functions tuning 

performed in the next step of the methodology. 

 

 
         Fig. 3: Example of candidate rules by means of a descriptive system 

Output Space 

Input Space 

272



  

B. Genetic Selection and Tuning of the Candidate Rules Set  

The set of rules and membership functions of each 

variable involved that were generated in the previous step 

are used in this second step to find the final set of rules, and  

to tune the membership functions.  

The method used in this paper is similar to the one 

presented in [6].  It uses an evolutionary algorithm in which 

both elements, candidate rules and membership functions 

associated with each variable, are encoded in each 

chromosome.  Thus, the scheme selected is a dual coding 

(CSS+CST), shown in Figure 4, where:  

1) CSS encodes the rules to be selected: This is carried out 

using a binary string of N genes, each one representing a 

candidate rule from the clustering process performed in the 

first step of the proposed methodology.  The initial set of 

candidate rules are good rules individually, but can be 

redundant rules, conflicting, or in general rules with low 

level of cooperation.  The selected rules will have the value 

"1" on their corresponding gene in the chain, whereas "0" 

means the opposite.  This way of selecting a rule set allows 

the evolutionary algorithm to choose a subset of rules with a 

higher level of cooperation between them [3], that is, rules 

that operate well together in the fuzzy rule-based system 

with defuzzifier where interaction between rules is one of 

the main points.  

2) CST encodes the membership functions to be tuned: 

Using the so-called lateral tuning [4], which uses only the 

displacement and the amplitude of the membership 

functions.  This method for tuning membership functions has 

some advantages over classical tuning [5]: It enables the 

position and amplitude of membership functions to be found 

more easily, thanks to the use of a smaller number of 

parameters, two against three for triangular shape 

membership functions, and more interestingly, lateral tuning 

keeps the symmetry of the labels, benefiting the 

interpretability of the resulting system.  The lower number 

of degrees of freedom may seem to be a drawback, but a 

lower number of parameters actually lets us find better 

solutions easily [4].  

 
         Fig. 4: Scheme Dual Coding (CSS+CST) 

The evolutionary model employed in this work is derived 

from CHC model [17].  This model has a good balance 

between exploration and exploitation, making it a good 

choice for problems with complex search spaces.  The 

evolutionary model is characterized in that each generation 

uses a parent population of size M to generate an 

intermediate population of M individuals.  These individuals 

will be randomly paired and used to generate M’ 

descendants, giving rise to a competition for survival, where 

the best M chromosomes from parents and offspring 

populations are selected to form the new generation. 

No mutation is applied during the recombination phase.  

Instead, when the population converges or the search stops 

making progress (i.e., the difference threshold has dropped 

to zero and none of the newly generated offspring are better 

than any member of the parent population), the population is 

reinitialized.  The restarted population completely consists 

of random individuals except for one of them, which must be 

the best individual found so far. 

Although the CHC algorithm was designed for binary-

encoded chromosomes, there are versions for use with real-

encoded chromosomes.  This is the one used in this work for 

the chromosome part that contains the lateral tuning of 

membership functions.  In these cases, the BLX-α crossover 

(α=0.5) is used in order to recombine the parent's genes.  

This produces two descendants for each pair of parents, so 

that the offspring generated by this crossover operator is the 

same size as the initial population.  The Hamming distance 

is computed by translating the real-coded genes into strings 

and by taking into account whether each character is 

different or not.  Only those string pairs which differ from 

each other by a number of bits (mating threshold) are mated.  

The initial threshold is set to L/4 where L is the length of the 

string.  When no offspring is inserted into the new 

population, the threshold is reduced by 1. 

The learning of both elements simultaneously, rule 

selection and lateral tuning of membership functions, lets us 

obtain not only a set of rules with a good level of 

cooperation, but at the same time their corresponding best 

combination of membership function tuning to achieve good 

precision.  Figure 5 illustrates an example of the final RB 

after the last step considering that they have been tuned only 

(none of them were unselected). 
 

 

     
     Fig. 5: Example of final rules after genetic selection and tuning 
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The objective to be minimized by the evolutionary 

algorithm is the classic Mean Square Error (MSE), which is 

a standard average accuracy performance whose expression 

is (8): 



ECM  (S)B   = 

1

2
   ( yk - S (xk) )

2

k=1

P



P
, 

 

Where S is the fuzzy model, P is the number of pairs in 

the dataset Zk = (xk,yk), k=1,..,P, with xk the values of input 

variables and yk their associated values corresponding to the 

output variable. 

III. EXPERIMENTAL STUDY CARRIED OUT 
 

We shall describe the experimental study developed to 

show the usefulness of the proposed methodology, CEST.  

To do so, we selected four data sets and compared the results 

obtained by CEST with those obtained with a well known 

reference method, WM [1] and also with COR [3], which is 

also a well known methodology that offers a set of rules with 

a good level of cooperation between them instead of the best 

individual rules.   

Taking into account that CEST methodology includes a 

second step that reduces the rule set and tunes the 

membership functions, and in order to carry out the 

comparative study in similar conditions, we decided to use 

WM and COR, adding to them the second step of CEST, 

which we name “EST” (Evolutionary Selection and Tuning), 

so the resulting methods compared with CEST will be 

WM+EST and COR+EST.  The EST significantly increases 

the compactness and accuracy of the WM and COR 

conventional RBs.   

A. Description of the Problems and Comparison 

Methodology 

 We selected four problems with different number of 

variables and amount of data for the experimental study 

(these data sets are available at http://www.keel.es/ [18]).  

They are as follows: 

 1) An electrical distribution problem (SE), [19]: Estimates 

the maintenance cost of medium voltage lines in a city.  

There are 1059 data items, 4 continuous input variables and 

one output. 2) The data set Weather in Ankara (WA), [20]: 

Contains the weather information for Ankara from 

01/01/1994 to 05/28/1998.  From a given set of features, the 

aim is to predict the mean temperature.  There are 1609 data 

items, 9 continuous input variables and one output. 

3) The data set Quake (Q): A regression data set where 

the task is to approximate the strength of an earthquake 

given the depth of its focal point, its latitude and longitude.  

There are 2178 data items, 3 continuous input variables and 

one output. 

4) The data set Treasury (TR): Contains the Economic 

data information of the USA from 04/01/1980 to 04/02/2000 

on a weekly basis.  From a set of given features, the goal is 

to predict 1 Month CD Rate.  There are 1049 data items, 15 

continuous input variables and one output. 

We used the average values of the MSE to measure the 

average accuracy for each model.  We also used 5-cross 

validation, i.e. 5 random data partitions, each with 20% (4 

with 211 examples and one with 212 for the SE problem, 4 

with 322 examples and one with 321 for the WA problem, 4 

with 435 examples and one with 438 for Problem Q and 4 

with 210 examples and one with 209 for Problem TR).  The 

combination of 4 of them (80%) is used as training and the 

fifth as test.  We ran a total of 30 experiments for each 

evolutionary learning process, that is, we use 5 seeds for the 

random number generator and 6 partitions.  

The corresponding RBs were generated for each partition.  

using the WM [1] and COR [3] methods.  These methods 

generate about 65 rules in the case of problem SE, 156 in the 

problem WA, 54 in the problem Q and 75 in the problem 

TR.  The aforementioned number of rules represents the 

values before the process of posting their RBs with EST. 

In the case of the CEST methodology, empirically we 

chose to generate twice the optimum number of rules 

according to the criteria described in [19] for problem SE, 

i.e.  an average of about 20 rules, an average of 66 rules for 

the WA problem, which is four times the optimum, and 

finally for problems Q and TR we use the optimum, which is 

15 and 90 rules, respectively. 

The population size of the CHC evolutionary algorithm is 

50 individuals randomly initialized within their ranges of 

variation except one, initialized with the following 

configuration: 
 

1) CSS part of the chromosome (rule selection): All genes 

with "1", that is, all the rules provided by the clustering step  

are active at the beginning. 

2) CST part, (membership functions tuning): With the 

initial position of the labels resulting from the previous 

stage, that is, the position computed by the K-nearest 

neighbour algorithm. 

For all problems, the number of evaluations of the 

evolutionary algorithm used is 200.000, determined 

empirically by several previous tests.  

The objective function of the evolutionary algorithm is the 

aforementioned of expression (7). 

B. Results and Analysis 

 This section shows and analyses the results obtained in the 

experimental study. 

The different tables from I to IV show the results 

corresponding to problems SE, WA, Q and TR respectively.  

The columns in these tables show, from left to right, the KB 

learning method, the average number of rules obtained by 

them, and the MSE in training and test.  Likewise, we have 

included along with the MSE columns the result of applying 

the Student t-test (column t-test) with 95% confidence to the 

best average result of the corresponding column, comparing 

(8) 
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1 to 1 with the rest of average results.  The interpretation of 

this column is as follows: 

* Indicates the result with the best average. 

+ Indicates a significantly worse performance than the best. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Viewing the results, we can analyse the following: 

-  Results obtained by methods WM and COR are 

comparatively worse than if we use the CEST 

methodology  or add EST to WM and COR. 

- The improvement of the proposed method CEST is 

clearly visible, improving the accuracy (reducing MSE) 

in training as well in test, and complexity (with few 

rules), and also independently of the problem.  

- In the case of problem SE (Table I) and problem Q 

(Table III), the reduction of rules is very important, 

while the improvement in the MSE is only slightly 

better.  Nevertheless, viewing problems WA (Table II) 

and TR (Table IV), the most important improvement is 

shown by the MSE, while the improvement in the 

number of rules is also important, but lower.  Problems 

WA and TR have more variables, so we think that this 

may be the reason: when the problem has several 

variables, the improvements are greater in accuracy, 

whereas if the problem has few variables, the best 

improvements are obtained in the compactness of the 

RB.  All in all, we consider that we must continue 

studying this effect in order to characterize it. 

 

Finally, we wish to point out that the advantage of CEST, 

is not the evolutionary selection and tuning, since WM+EST 

and COR+EST are also using this step.  Nor is the main 

point of CEST the fuzzy clustering, because the candidate 

rules generated by the first step are very good rules 

individually, but cannot be used directly in a fuzzy rule-

based system with defuzzifier because they have a very high 

error rating, as a consequence of a lot of redundant rules and 

in general, due to a low cooperation between rules.  CEST 

achieves good results because it joins a good rule candidate 

generation process with an especially competent method to 

select a good subset of rules and obtain a very good tuning 

of the membership functions associated with the set of rules 

selected. 

IV. CONCLUSION 

 This work proposed a methodology to obtain fuzzy 

linguistic RBs from examples taking the number of labels 

desired for the granularity of the variables.  The 

methodology is based on the combination of two strategies: 

the generation of good individual candidate rules based on 

fuzzy clustering, without prior definition of the membership 

functions, and the evolutionary selection of the rules 

together with tuning of the membership functions, in order 

to obtain what is possibly the best subset of cooperating 

rules and their associated membership tuning.  KBs obtained 

in this way are compact and accurate, and the results 

obtained in the experimental study show that the complete 

design of KBs can improve accuracy and interpretability in 

the sense of complexity significantly more than post-

processing methods such as selection and tuning alone. 

 In future works, we would like to find a relation between 

the number of rules to be generated in the clustering step and 

the data set features, and of course continue with the 

experimental study, using more and different data sets to 

validate the good results presented in this work.  It could 

also be interesting to continue working in terms of 

interpretability: in this work we have simply considered the 

system complexity using the number of rules, but it is 

possible to define it using many other aspects and indexes 

[6, 7, 21, 22, 23, 24, 25] that can be considered and added.    
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