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Abstract—In this work, we extend the genetic lateral tuning covering region of such label, although it involves a slight
of membership functions [1] based on the linguistic 2-tuples |ost of interpretability.

representation [2], in order to also perform a tuning of the . ) .
support amplitude of the membership functions. To do so, In this work, we extend the 2-tuples representation model

we present a new symbolic representation which extends the 0 also perform a tuning of the support amplitude of the
linguistic 2-tuples representation model with a parameter3 to membership functions, with the main aim of improving the
represent the amplitude variation of the support of its associated system accuracy and trying to maintain part of the inter-
membership function. pretability as much as possible respect to the lateral tuning.
To do so, we present a new symbolic representation with three
|. INTRODUCTION values §, «, ) respectively representing a label, the lateral
efjisplacement and the amplitude variation of the support of its
1gflssociated membership function. The tuning method consists
of the optimization of the two parametersand § for each

The Linguistic Fuzzy Modeling (LFM) pretends to mod
systems building linguistic models with a good trade-o

betweerinterpretabilityandaccuracy However, in this kind of label considered in the Rule Base (RB). It also involves a

modeling theaccuracyand theinterpretability of the obtained earch space reduction respect to the classical tuning that helps

mode_l are contradictory properties directly depending on tﬁg the evolutionary search technique to obtain more precise
learning process and/or the model structure. To overcome tpis

. o ; <nowledge Bases.
problem, many different possibilities have been considered in

the specialized literature [3], improving the accuracy of the The next section p.resents.the proposed lateral and amplitude

LFM and maintaining the interpretability to a high degree. wning of m.embershl'p functions and the new m.odel for rqle
One of the most used approaches to improve the accuréggresentatlor_l. Sectl_on ”_I Proposes th_e evolutionary tuning

of the fuzzy rule-based systems (FRBSs) is the tuning of MEQ thod considered in this work. Section IV shows an ex-

which consists of the variation of the different parameter%érimemaI study of the method behavior applied on a real-

that identify the membership functions associated to the |ab¥\{grld egtlmauon problem. Finally, section V points out some
composing the Data Base (DB), 3 parameters when triangu‘fé’PCIUdmg remarks.

membership functions [4] are considered. In the case of

problems presenting a large number of variables this leads to

tuning models with too many parameters, which could affect to Il. LATERAL AND AMPLITUDE TUNING

the good performance of the optimization method considered.I thi i il introd the lateral tuni f
In [1], a new linguistic rule representation model was n this section, we will introduce the lateral tuning o

presented for the genetic tuning of the DB. This approaéﬂe.mbersmp functions. Then, 'the extgnsmn of the "T"tera'
is based on the linguistic 2-tuples representation [2], whi Hning to also perform the amplltudg tuning will b_e descnbe_d,
allows the lateral displacement of the labels considering Rfesenting the new rule representation and two different tuning

unique parameter per label. In this way, two main objectiv@é)proaChes (global approach and local approach).
were achieved:

« to obtain linguistic labels containing a set of samples

with a better covering degree (accuracy improvementd) Preliminaries: The Lateral Tuning

maintaining their original shapes, and . In [1], a new model of tuning of FRBSs was proposed
« toreduce the search space respect to the classical tunig@sidering the linguistic 2-tuples representation scheme in-
in order to easily obtain optimal models. troduced in [2], which allows the lateral displacement of the

However, the amplitude of the support of the membershgupport of a label and maintains the interpretability associated
functions is fixed through this tuning process. This amplitude the obtained linguistic FRBSs. This proposal also introduces
determines the specificity of a label and involves a potentialnew model for rule representation based on the symbolic
accuracy improvement, since it could determine the bdsanslation concept.
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ES VS S Y, M L VL EL In [2], both the linguistic 2-tuples representation model and
the needed elements for linguistic information comparison and
aggregation are presented and applied to the Decision Making
framework. In the context of the FRBSs, we are going to see
its use in the linguistic rule representation. In the next we
present this approach considering a simple control problem.
Let us consider a control problem with two input variables,
one output variable and a DB defined from experts determining
the membership functions for the following labels:

X1: Error — {N,Z, P},
Xy wvError — {N, Z, P},
Y: Power — {L,M,H} .

Y. M Based on this DB definition, an example of classical rule
ES VS S 72 L VL EL  and linguistic 2-tuples represented rule is:

Classical Rule
R1: If the error is Zero and theyError is Positive
then thePower is High .

Rule with 2-Tuples Representatjon
R1: If the error is (Zero, 0.3) and theyError is
(Positive, -0.2) then th@ower is (High, -0.1) .

Analized from the rule interpretability point of view, we
could interpret the obtained rule as:

Fig. 1. Lateral Displacement of the Linguistic Label M If the Error is “higher than Zero” and
the Error Variation is “a little smaller than Positive”

then thePower is “a bit smaller than High”.
Figure 1 shows the lateral displacement of the label M. The
new label %" is located between B and M, being enoug
smaller than M but closer to M.
The symbolic translation of a linguistic term is a numbe
within the interval [-0.5, 0.5) that expresses the domain of The lateral tuning model tunes the lateral displacements
a label when it is moving between its two lateral label®f the support of the membership functions whereas the

%. The Lateral and Amplitude Tuning of Membership Func-
jons

Formally, we have the pair, amplitude of the support of such membership functions re-
. mains fixed during all the tuning process. However, This
(si,0i), si €5, a; €[-0.5,0.5). amplitude determines the specificity of a label and involves a

Figure 2 depicts the symbolic translation of a label repr@_otential accuracy improvement, since it could determine the
sented by the paifS,, —0.3), considering a se§ with five best covering region of such label, althougt the interpretability

linguistic terms represented by their ordinal valuég, (1, 2, IS lost to some degree. _
3, 4)). To adjust the displacements and amplitudes of the member-

ship function supports we propose a new rule representation
4 05 05 1 that considers two parametetsandj, relatively representing
I 1 the lateral displacement and the amplitude variation of a label.
In this way, each label can be represented by a 3-tuple,(
So S5 Se Ss S 3), wherea is a number within the interval [-0.5, 0.5) that
l l P | | expresses the domain of a label when it is moving between
I . . .
1.7 its two lateral labels (as in the 2-tuples representation), and
0 1 A 2 3 4 [ is also a number within the interval [-0.5, 0.5) that allows
) to increase or reduce the support amplitude of a label until
' a 50% of its original size. Let us consider a set of labgls
(S2,-0.3) representing a fuzzy partition. Formally, we have the triplet,

Fig. 2. Symbolic translation of a label (siy 4, Bi), s; €8, {ay, B} € [-0.5,0.5).
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Fig. 3. Lateral Displacement and Amplitude Variation of the Linguistic Lab

M considering the set of labelS={ES, VS, S, M, L, VL, EL}

Figure 3 depicts the lateral and amplitude variation of the
label M considering triangular and symmetrical equidistant
membership functions. The new labek" is located between
labels S and M, and has a shorter support than the original
label M. Let us represent the new labe),” as the 3-tuple
(M, «, ). The support of this labe§up,,, can be computed

in the following way:

Supy = cm — am

Supy, = Supyr + B * Supy
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« Global Tuning of the Semantics. The tuning is applied to
the level of linguistic partition. In this way, the paiX({,
label) takes the same tuning values in all the rules where
it is considered. For exampl&; is (High, 0.3, 0.1) will
present the same values for those rules in which the pair
" X; is High” was initially considered.

o Local Tuning of the Rules. In this case, the tuning is
applied to the level of rule. The paiX(, label) is tuned
in a different way in each rule, based on the quality
measures associated to the tuning method (usually the
system error).

Rule k: X; is (High, 0.2, 0.05)
Rule j: X; is (High, -0.1, 0.3)

Notice that, since symmetrical triangular membership func-
tions and a FITA First Infer, Then Aggrega)efuzzy infer-
ence [5] will be considered in both, the global and the local
approach, a tuning of the amplitude of the consequents has
no sense, by which th& parameter will be only applied
on the antecedents. In this way, considering the same control
problem of the previous subsection, an example of a 3-tuples
represented rule is (amplitude variation only applied in the
antecedents):

Rule with 3-Tuples Representatjon
R1: If the error is (Zero,0.3,0.1) and thegzError is
(Positive,-0.2,-0.4) then theower is (High,-0.1) .

On the other hand, the use of titefactor (amplitude) is

€lose to the use of non-linear scaling factors [6], [7] or lin-

guistic modifiers [6], [8]. However there are some differences

with these approaches:

« By using non-linear scaling factors or linguistic modifiers

an example that is covered by a label can not be uncov-

ered andvice versa which imposes some restrictions to
the search.

« Contrary to the non-linear scaling factors or linguistic
modifiers, the tuning of the support amplitude keeps
the shape of the membership functions (triangular and
symmetrical). In this way, from the parametersand
6 applied to each label, we could obtain the equivalent

triangular membership functions, by which the final tuned
FRBS could be represented as a classical Mamdani [9],

[10].

where ¢, and ay, are respectively the right and the left The eyolutionary lateral tuning method based on this repre-
extreme of the support of M, anflupy; is the size of the sentation model is shown in the next section.
support of M.

This proposal decreases the tuning complexity, since the 3 or!!l- EVOLUTIONARY POST-PROCESSINGALGORITHM
4 parameters per label (triangular or trapezoidal membershiprhe automatic definition of fuzzy systems can be considered
functions) are reduced to 2 parameters. In [1], two differeas an optimization or search process and nowadays, Evolu-
rule representation approaches were proposed for the lat¢i@hary Algorithms, particularly GAs, are considered as the
tuning of membership functions, a global approach andnaore known and used global search technique. Moreover,
local approach. We will consider the same two possibilitidhe genetic coding that they use allow them to include prior
to perform the proposal tuning, the most interpretable one akidowledge and to use it leading the search up. For this reason,
the most accurate one: Evolutionary Algorithms have been successfully applied to
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learn fuzzy systems in the last years, giving way to thB. DB Codification and Initial Gene Pool
appearance of the so called Genetic Fuzzy Systems (GFSs) [4}raking into account, that two different types of tuning have

[11]. been proposed (global tuning of the semantics and local tuning

Evolutionary Algorithms in general and, GAs in particulareg yhe ryles), there are two different kinds of coding methods.

has been widely used in the tuning of FRBSs. In this work, poth cases, a real coding scheme is considered, i.e., the real
we will consider the use of GAs to design the proposgd,ameters are the GA representation units (genes).

tuning, particular by the genetic model of CHC [12]. In the In the following both schemes are presented:
following, the components needed to design the evolutionary

tuning process are explained:

« Evolutionary model of CHC.
« DB caodification

« Initial gene pool

o Chromosome evaluation

« Genetic operators

o Global Tuning of the Semantics: Joint of the parameters
of the fuzzy partitions, laterak{*) and amplitude (')
tuning. Let us consider the following number of labels
per variable:(m?,...,m"), with n being the number
of system variablesn(— 1 input variables and output
variable). Then, a chromosome has the following form
(where each gene is associated to the tuning value of the

corresponding label),
A. Evolutionary model of CHC P g )

The genetic model of CHC makes use of a “Population- Cr=(Ct+c4,
based Selection” approachlV. parents and their corresponding
offspring are combined to select the b&sindividuals to take Cl=(cly,....ck 1 ek, o k),

part of the next population. The CHC approach makes use of CA=(cfy,... ,cfml, .. "Ca%)l’ . .70(‘;71)7%).

an incest prevention mechanism and a restarting process to

provoke diversity in the population, instead of the well known « Local Tuning of the Rules: Joint of the lateral'{) and

mutation operator. amplitude C'#) rule parameters. Let us condider that the
This incest prevention mechanism will be considered in FRBS hasM rules, (R1,R2,..., RM), with n system

order to apply the crossover operator, i.e., two parents are variables ¢ — 1 input variables and output variable).

crossed if their hamming distance divided by 2 is over a prede- Then, the chromosome structure is,

termined thresholdL.r. Since, we will consider a real coding

scheme, we have to transform each gene considering a Gray Cr=(C*+ CA)7
Code with a fixed number of bits per genBII'SGENE)
determined by the system expert. In this way, the threshold CL=(chy,....cl ek, ek ),
value is initialized as: CA = (011417 . ,C’fml, . _,cékm, . ,70&71)mn).
Lt = (#Genes x BITSGENE) /4.0, To make use of the available information, the initial FRBS

i i obtained from automatic fuzzy rule learning methods is in-
where #Genes is the number of genes in the chromoSom&,qed in the population as an initial solution. To do so, the

Following the original CHC schemd,r is decremented Dy jnitia| pool is obtained with the first individual having all genes
one when there is no new individuals in the population it value ‘0.0’ (no displacement or amplitude variation), and

one generation. In order to make this procedure independgff remaining individuals generated at random in [-0.5, 0.5).
of #Genes and BITSGENE, in our case,Lr will be

decremented by @% of its initial value (beingy determined C. Chromosome Evaluation
by the user, usually 10%). The algorithm restarts wihegnis
below zero.

A scheme of this algorithm is shown in Figure 4.

To evaluate a determined chromosome we will use the well-
known Mean Square Error (MSE):

N
1 l 12
Initialize population Crossover of Evaluation of the MSE = 9 N (F(z") —y')7,
and THRESHOLD M parents New individuals =1
l with N being the data set siz€(z!) being the output obtained
Selection of the from the FRBS decoded from the said chromosome when the
best M individuals . . . .
no l I-th example is considered and being the known desired
Restart th lati output.
estart the population < N If NO new individuals,
and THRESHOLD THRESHOLD <0.0 = 1o crement THRESHOLD .
1 Jos D. Genetic Operators

_ The genetic operators considered in CHC are crossover and
Fig. 4. Scheme of CHC restarting approach (no mutation is considered). A description
of these operators is presented in the following:
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TABLE |
RESULTSOBTAINED BY THE STUDIED METHODS

Methods #R  MSEtrq Otra tteSt  MSEtest  Otest  t-test
WM 65 57605 2841 + 57934 4733 +
WM+ T 65 18602 1211 + 22666 3386 +
WM + PAL 65 10545 279 + 13973 1688 +
WM + GL 65 23064 1479 + 25654 2611 +
WM + LL 65 3664 390 + 5858 1798 +
WM + GLA | 65 17950 1889 + 21212 2686 +
WM + LLA 65 2747 282 * 4540 788 *

1) Crossover Operator:The crossover operator is basednethod (parameters, domains and linguistic edges) in this
on the the concept of environments. These kinds of operatstady.
show a good behavior as said in [13]. Particularly, we considerThe initial linguistic partitions to obtain the initial RB are
the PBLX operator (an operator based on the BiX-This comprised byfive linguistic termswith triangular-shaped fuzzy
operator presents a good cooperation when it is introduceets giving meaning to them (number of labels by which
within models forcing the convergence by pressure on tligey presented the best behavior). With respect to the fuzzy
offspring (as the case of CHC). reasoning method used, we have selectedrtimmum t-norm

2) Reinicializacdn: To get away from local optima, this playing the role of the implication and conjunctive operators,
algorithm uses a restart approach [12]. In this case, the bastl thecenter of gravity weighted by the matchisgategy
chromosome is maintained and the remaining are generaseting as the defuzzification operator.
at random by adding to each gene of the best chromosome &inally, the following values have been considered for the
random number generated within the variation interval [-0.12parameters of each method: 50 individuals, 50,000 evaluations
0.125). If the resulting value is minor (major) that®).5 (0.5) and ¢=0.1 (0.2 as mutation probability per chromosome, 0.6
it is replaced by the extreme valued.5 (0.5). It follows the as crossover probability and 0.35 for the factoin the max-
principles of CHC [12], performing the restart procedure whemin-arithmetical crossover operator for T and PAL).

the threshold valud r is lower than zero. o ) ) )
A. Problem Description: Estimating the Maintenance Costs of

IV. EXPERIMENTS AND ANALYSIS OF RESULTS Medium Voltage Lines
To evaluate the goodness of the two proposed approachesyy,is nroplem consist of relating th@aintenance costs of
local and global tuning, several experiments have been carrjad 4 voltage linavith the following four variablessum of
out considering a real-world problem [14]. This prObIer@he lengths of all streets in the towtotal area of the town
handles four input variables and therefore, it involeelarge rea that is occupied by buildingand energy supply to the
search spaceA short description of this problem can be fountiwn We will deal with estimations of minimum maintenance

in the following subsection. costs based on a model of the optimal electrical network for a
TABLE I town in a sample of 1,059 towns. A wider description of this
STUDIED METHODS problem can be found in [14].
To develop the different experiments in this contribution,
Flesf]- m;lhods ggshcripgon e — we consider &-folder cross-validation modgl.e., 5 random
-hocData-Driven Metho e : 0 H .
[el | T Classical Genetic Tuning partitions of data yw.th a 20%, and the. combination of 4 of
[17] | PAL Tuning of Parameters, Domains them (80%) as training and the remaining one as test. In this
0 | eL g?dbL?CLal Linlggstilc Modifiers way, 5 partitions considering an 80% (847) in training and a
obal Lateral Tuning 0 - . .
] | Local Lateral Tuning 20% (212) in test are considered for the experiments.
— | GLA Global Lateral and Amplitude Tuning .
— | LLA Local Lateral and Amplitude Tuning B. Results and Analysis

For each one of the 5 data partitions, the tuning methods

Table Il presents a brief description of the studied methodsas been run 6 times, showing for each problem the averaged
The WM method is considered to obtain the initial RB to beesults of a total of 30 runs. Moreovert-gest(with 95 percent
tuned. The tuning methods are applied once this initial RB hegnfidence) was applied to the best averaged result in training
been obtained. T is a classical membership function parametertest by comparing one by one this result to the averaged
tuning algorithm. The PAL method has been compared witksults of the remaining methods.
tuning methods of the parameters, domain, linguistic modifiersThe results obtained by the analyzed methods are shown in
and with any combination of any two of them obtaining th@able |, where# R stands for the number of rules, MGE
best results [17]. For this reason, we only consider the PAInd MSE,, respectively for the averaged error obtained over
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#R: 65 MSE-tra: 19636.934 MSE-tst: 22378.074

11,-0.5,-0.5 12,-0.3,0.5 13,-0.2,0.5 14,0.0,0.5 15,-0.2,-0.1
X1 x1 X2 X3 X4 Y
1,050,050 11,0.06-0.27 H,020-025 [,0.34:012 H,0.5
1,050,050 11,0.06-0.27 I1,0.200.25 I2,0.12,-0.00  I2,0.13
1,-0.50,-0.50 12,025,050 [,0.20,0.25 I1,0.34-012 I1,0.15
Er T w» T o T w T & 1,-0.50,-0.50 12,0.25,0.50 [1,0.200.25 I2,0.12,-0.09  12,0.13
M,-0.50-0.50 12,0.25,050 12,0.06-042 I,0.34:012 I1,0.15
11,-0.1,-0.3 12,0.2,0.5 13,-0.1,-0.4 14,0.4,-0.5 15,-0.5,0.5

11,-0.50,-0.50 12,0.25,0.50 12,0.06,-0.42 12,0.12,-0.09  12,0.13
X2 12,-0.27,0.46  11,-0.06,-0.27 11,0.20,-0.25 11,0.34,-0.12  11,0.15
12,-0.27,0.46  11,-0.06,-0.27 11,0.20,-0.25 2,0.12,-0.09  12,0.13
12,-0.27,0.46  11,-0.06,-0.27 12,0.06,-0.42 [1,0.34,-0.12 11,0.15
12,-0.27,0.46  11,-0.06,-0.27 12,0.06,-0.42 12,0.12,-0.09  12,0.13
12,-0.27,0.46  12,0.25,0.50 11,0.20,-0.25 11,0.34,-0.12  11,0.15
12,-0.27,0.46  12,0.25,0.50 11,0.20,-0.25 [2,0.12,-0.09  12,0.13
12,-0.27,0.46  12,0.25,0.50 12,0.06,-0.42 11,0.34,-0.12  12,0.13
X3 12,-0.27,0.46 12,0.25,0.50 12,0.06,-0.42 12,0.12,-0.09  12,0.13
12,-0.27,0.46  13,-0.06,-0.39  12,0.06,-0.42 11,0.34,-0.12  12,0.13
12,-0.27,0.46  13,-0.06,-0.39  12,0.06,-0.42 12,0.12,-0.09  12,0.13

11,0.2,-0.2 12,0.1,-0.4 13,-0.1,-0.5 14,0.0,-0.5 15,-0.5,-0.3

L A e 12,-0.27,0.46  13,-0.06,0.39  13,-0.09,-0.50 11,0.34,-0.12  13,0.02
12,-0.27,0.46  13,:0.06,0.39 13,:0.09,-0.50 12,0.12,-0.09  13,0.02

10501 20101 10202 0105 15.02.03 13,-0.15,0.50 12,0.25,0.50 1,0.20,0.25 11,0.34,-012 I1,0.15
13,-0.15,0.50 12,0.25,0.50 1,0.20,0.25 12,0.12,-0.09  12,0.13

X4 13,-0.15,0.50 12,0.25,0.50 11,0.20,0.25 13,-0.15,0.16  12,0.13

13,-0.15,0.50 12, 0.25,0.50 12,0.06,-0.42 1, 0.34,-0.12 12,0.13
13,-0.15,0.50 12, 0.25,0.50 12,0.06,-0.42 12, 0.12,-0.09 12,0.13

[ [l I 12 I 13 I 1@ I 5 | 13,-0.15,0.50 12,0.25,0.50 12, 0.06,-0.42 13,-0.15,0.16 13, 0.02
13,-0.15,0.50 13,-0.06,-0.39 12, 0.06,-0.42 |1, 0.34,-0.12 12,0.13
11,0.1,0.0 12,0.1,0.0 13,0.0,0.0 14,0.1,00 15,0.3,00 13,-0.15,0.50 13,-0.06,-0.39 12, 0.06,-0.42 12, 0.12,-0.09 13, 0.02

13,-0.15,0.50  13,-0.06,-0.39 12, 0.06,-0.42  13,-0.15,0.16 13, 0.02

Y 13,-0.15,0.50  13,-0.06,-0.39  13,-0.09,-0.50 12, 0.12,-0.09  13,0.02
13,-0.15,0.50  13,-0.06,-0.39  13,-0.09,-0.50  13,-0.15,0.16  13,0.02
13,-0.15,0.50 14,0.37,-0.50  13,-0.09,-0.50 12,0.12,-0.09  13,0.02

] [ T ®8 T uw T & 1 13,-0.15,0.50 14,0.37,-0.50  13,-0.09,-0.50  13,-0.15,0.16  13,0.02

13,-0.15,0.50 14, 0.37,-0.50  14,0.00,-0.45  12,0.12,-0.09  13,0.02

Fig. 5. Initial and tuned DB of a model obtained with WM+GLA (global 13,-0.15,0.50 14,0.37,-0.50 14,0.00,-0.45 13,-0.15,0.16  14,0.08
approach) 14,0.04,0.50 12,0.25,0.50 12,0.06,-0.42 11,0.34,-0.12  12,0.13

14,0.04,0.50 12,0.25,0.50 12,0.06,-0.42 12, 0.12,-0.09 12,0.13
14,0.04,0.50 12,0.25,0.50 12,0.06,-0.42 13,-0.15,0.16 13, 0.02

.. .. 14, 0.04, 0.50 12, 0.25, 0.50 12, 0.06,-0.42 14, 0.10,-0.50 13, 0.02
the training and test datas for the standard deviation and 14,004,050 13006039 12,006-042 ,034-012 12,013

t-testrepresents the following information: 14,0.04,050 13,-0.06,-0.39 12,0.06,0.42 12,0.12,:0.09  13,0.02
14,004,050 13,-0.06:0.39 12,0.06,:0.42 13,-0.150.16  13,0.02

* Denotes the best averaged result 14,0.04,050 13,-0.06,-0.39 12,0.06,0.42 14,0.10,-050  13,0.02

+ Denotes a significant worst behavior than the best 14,0.04,050 13,-0.06,0.39 13,-0.09,0.50 12,0.12-0.09  I3,0.02

14,0.04,0.50 13,-0.06,-0.39 13,-0.09,-0.50 13,-0.15,0.16 14, 0.08
Analyzing the results presented in Table | we can point out 14,004,050 13,-0.06-0.39 13,-0.09,0.50 14,0.10-050  14,0.08

: : . 14,0.04,0.50 14,0.37,-0.50 13,-0.09,-0.50 11, 0.34,-0.12 13, 0.02
the fO”OWIng conclusions: 14,0.04,0.50 14,0.37,-0.50 13,-0.09,-0.50 12, 0.12,-0.09 13, 0.02

« The lateral and amplitude tuning methods show an im- 14,0.04,050 14,037,050 13,:0.09,-0.50 13,-0.15,0.16  14,0.08
portant redUCtion Of the MSE reSpect to the classical 14, 0.04, 0.50 14,0.37,-0.50 13,-0.09,-0.50 14, 0.10,-0.50 14, 0.08

. 14, 0.04, 0.50 14, 0.37,-0.50 14,0.00,-0.45 12, 0.12,-0.09 14, 0.08

methods (specially the WM+LLA method) and reason- i o0s,050 1,037,050 14,000045 13015016 14,008
able improvements respect to the lateral tuning. 14,004,050 14,0.37,-0.50 14,0.00-0.45 14,0.10-0.50  15,-0.26

. The best r‘esults are obtalned by the |Oca| approach’ 14, 0.04, 0.50 15,-0.50, 0.50 14,0.00,-0.45 12, 0.12,-0.09 13, 0.02
t- d relationShi between the SearCh S aCel4,0.04, 0.50 15,-0.50,0.50  14,0.00,-0.45 13,-0.15, 0.16 14, 0.08

presen Ing a gOO p X . p 14, 0.04, 0.50 15,-0.50, 0.50 14,0.00,-0.45 14, 0.10,-0.50 15,-0.26
complexity and the results obtained, and getting a good 14,0.04,0.50 15,-050,050 15,-0.50,-0.29 12,0.12,:0.09  15,-0.26
trade-off between accuracy and local interpretability. Fur- 14,0.04,050  15,-0.50,0.50 15,:0.50,-0.20  13,-0.15,0.16  15,0.26
H . s 15,-0.23,-0.11 12, 0.25, 0.50 12, 0.06,-0.42 12, 0.12,-0.09 12,0.13

thermore, smce_ t_he lateral and amplitude _varlatlons_are 5023011 12,025 050 I2.006.042 14010050 13002
related to the original global labels, a global interpretation 5023011 12,025 050 12,006-042 15023027 14,0.08
could be done in these terms. 15,-0.23,-0.11  12,0.25,0.50  13,-0.09,-0.50 12,0.12,-0.09  I3,0.02

. The WM+GLA methOd Obtains better reSUltS than the 15,-0.23,-0.11 12, 0.25, 0.50 13,-0.09,-0.50 14, 0.10,-0.50 13, 0.02
. . . . 15,-0.23,-0.11 12, 0.25, 0.50 13,-0.09,-0.50 15,-0.23,-0.27 14, 0.08
classical tuning, which does not achieve the WM+GL 5 923.041 14,037-050 13,009-0.50 12,012,009 13,002
method. 15,-0.23,-0.11 14,0.37,-0.50 13,-0.09,-0.50 14,0.10,-0.50 14,0.08

. The WM+LLA method reduces the typical deViatiOﬂ in 15,-0.23,-0.11 14,0.37,-0.50 13,-0.09,-0.50 15,-0.23,-0.27 15,-0.26
both, training and test. It seems to show the robustness

of this method.

Figures 5 and 6 respectively depicts the evolved fuzzy
linguistic partitions and the RB obtained by the WM+GLA

Fig. 6. RB of a model obtained with WM+GLA
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from one of the 30 runs performed. [13] F. Herrera, M. Lozano, and A. M. &Bchez, “A taxonomy for the
crossover operator for real-coded genetic algorithms: An experimental
V. CONCLUSIONES study,” International Journal of Intelligent Systemgol. 18, pp. 309—
’ 338, 2003.

In this Work, we extend the lateral tuning of membershiﬁﬂ O. Cordn, F. Herrera, and L. &chez, “Solving electrical distribution

. . . problems using hybrid evolutionary data analysis techniquigyilied
functions proposing a new post-processing method for the |, qjigence vol. 10, pp. 5-24, 1999.

lateral and amplitude tuning of membership functions. Thiss] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning
approach proposes a new representation model which extend from examples,'|[EEE Trans. Syst., Man, Cyberncol. 22, no. 6, pp.

. . . . 1414-1427, 1992.
the linguistic 2-tuples representation model with a parameﬁ:g] O. Cordbn and F. Herrera, “A three-stage evolutionary process for

(3 to tune the amplitude of the support of the labels. learning descriptive and approximate fuzzy logic controller knowledge
The Iinguistic 3-tuples based rule representation together bases from exampledfiternational Journal of Approximate Reasonjng

. . . . . vol. 17, no. 4, pp. 369-407, 1997.
with the proposed evolutionary tuning algorithm, provide, 7] J. Casillas, O. Coiah, M. J. del Jeiss, and F. Herrera, “Genetic tuning of

a good mechanism to obtain accurate models, although it fuzzy rule deep structures preserving interpretability and its interaction
involves a slight lost of interpretability, specially in the local ~ With fuzzy rule set reductionJEEE Trans. Fuzzy Systol. 13, no. 1,
approach. However, in most of the cases only small variations pp. 13-29, 2005.
have been performed on the original membership functions,
preserving the interpretability to a reasonable level.
The use of rule selection methods to reduce the number of
rules together with the lateral and amplitude tuning is a good
further work to obtain more compact models with a similar
accuracy.
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