
A Grammar Based Ant Programming Algorithm
for Mining Classification Rules
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Abstract—This paper focuses on the application of a new
ACO-based automatic programming algorithm to the classi-
fication task of data mining. This new model, called GBAP
algorithm, is based on a context-free grammar that properly
guides the creation of new valid individuals. Moreover, its most
differentiating factors, such as the use of two complementary
heuristic measures for every transition rule, as well as the way it
assigns a consequent and evaluates the extracted rules, are also
discussed. These features enhance the final rule compilation
from the output classifier. The performance of the proposed
algorithm is evaluated and compared against other top algo-
rithms, and the results obtained over 17 diverse data sets show
that our approach reaches pretty competitive and even better
accuracy values than those resulting from the other algorithms
considered in the experimentation.

I. INTRODUCTION
Data Mining (DM) involves the process of applying spe-

cific algorithms for extracting comprehensible, non-trivial
and useful knowledge from data. The aim of the DM
classification task is, given a set of labeled examples (the
training set), to generate a classifier that takes into account
the hidden relations between the values of the attributes and
the classes, in such a way that this model can be applied
later to novel and uncategorized data to label each instance
with one of the predefined targets.
Ant Colony Optimization (ACO) [1] is a nature-inspired

optimization metaheuristic based on the behavior and organi-
zation of ant colonies in their search for food. Ant algorithms
have been successfully applied to a broad range of domains,
including the extraction of classification rules in DM. For
example, Ant-Miner, originally proposed by Parpinelli et al.
[2], was the first algorithm based on ACO applied to the
classification task. Ant-Miner follows a sequential-covering
approach and has become a top algorithm in this field.
Furthermore, automatic programming is a method that

uses search techniques to build automatically a program that
solves a given problem, without requiring the user to know
the structure of the solution. In fact, the problem is solved by
simply specifying the goals to be reached. Typical examples
of this method are Genetic Programming (GP) [3], [4] and
Ant Programming (AP) [5], which uses ACO as its search
technique. The former has demonstrated that it is capable
to provide good performance for the design of classifiers,
but the latter has never been explored to tackle classification
problems.
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We believe that the development of AP algorithms for
data mining is still an unexplored and promising research
area. Hence, in this work we explore the application of an
AP algorithm for mining classification rules, which takes
advantage of the inherent benefits of both ACO metaheuristic
and automatic programming. In addition, the search process
is guided by a context-free grammar, which also provides
flexibility to apply the developed algorithm to a variety of
problems with minor changes. Our proposal generates a rule-
based classifier, that aims to construct not only accurate but
also comprehensible classifiers. First results comparing with
other well known algorithms are promising and show that our
approach achieves good performance in terms of accuracy.
The remainder of the paper is organized as follows. In

the next section we introduce ACO as the primary technique
of our algorithm, as well as AP. In Section III we describe
the proposed algorithm. Section IV explains the experiments
carried out and the data sets used. In Section V we discuss the
results obtained and, finally, some concluding remarks and
ideas for future research works are outlined in Section VI.

II. RELATED WORK
This section focuses primarily on explaining the func-

tioning of Ant-Miner, which is the most referenced ACO
algorithm employed for classification in data mining, and
which we also use to compare the results of our algorithm.
Likewise this section presents PSO/ACO2, the other field
algorithm employed in the experimentation. Secondly, the
section provides a review of the various AP algorithms
published in the literature so far.

A. Ant Colony Optimization
ACO is a metaheuristic, nature-inspired optimization

placed into Swarm Intelligence [6], which studies the col-
lective behavior of simple agents, e.g., flock of birds, fish
schools, colonies of bacteria or amoeba, or groups of insects
living in colonies, such as bees, wasps or ants. Specifically,
ACO bases the design of intelligent multi-agent systems on
the behavior and organization of ant colonies in their search
for food, where ants communicate between themselves in an
indirect way by means of a chemical substance (pheromone)
that they spread throughout the environment. The higher
the pheromone concentration is in a path, the higher is the
probability that a given ant will follow this path.
ACO algorithms have been successfully employed to ob-

tain approximate solutions to optimization problems. They
also have been carried out on a broad range of applications,
including the classification task. Ant-Miner [2] has become



the most referenced ant-based algorithm in this field. It
follows a sequential-covering approach in which, starting
from a training set and an empty set of rules, it finds new
rules to be added to the set of discovered rules. Instances
of the training set covered by each new rule are removed,
reducing the size of the training set. Ant-Miner continues
then discovering new rules either until the training set is
empty or until the number of discovered rules exceeds the
maximum number of rules allowed. The quality of the rules
is computed by the following formula:

fitness =sensitivity · specificity

=
TP

TP + FN
· TN

TN + FP
(1)

where TP , FP , TN and FN stand for true positives, false
positives, true negatives and false negatives, respectively.
Some modifications of Ant-Miner entail the use of differ-

ent mechanisms for pruning, pheromone updating, heuristic
function, or they are designed for including interval rules,
dealing with continuous attributes, extracting fuzzy classi-
fication rules or being applied to multi-label classification.
Furthermore, some extensions propose the hybridization of
ACO with other metaheuristics. Among them, we appreciate
the PSO/ACO2 algorithm developed by Holden et al. [7],
which is a hybrid Particle Swarm Optimization (PSO) - ACO
algorithm for the discovery of classification rules. PSO is
another branch of Swarm Intelligence, that consists in an
optimization technique inspired from the motion of birds in
flocks. PSO/ACO2 algorithm can deal both with numerical
and nominal attributes, and it follows a sequential-covering
approach, as Ant-Miner does. Another difference lies in the
fitness function, which in this case is given by the Laplace-
corrected precision:

fitness =
1 + TP

1 + TP + FP
(2)

B. Ant Programming

AP is an automatic programming method that uses ACO
as the search technique for constructing computer programs.
Hereafter we review the different AP proposals investigated
so far that have been applied to approximation or symbolic
regression problems.
The first work that applied the ants paradigm to the

automatic generation of programs was presented by Roux
and Fonlupt [5]. In fact, their algorithm starts creating a
random population of programs (trees) and storing a table
of pheromones for each node of the tree. Each pheromone
table holds the amount of pheromone associated with all
possible elements (named terminals and functions). Then,
each program is evaluated and the pheromone table is up-
dated by evaporation and reinforcement based on the quality
of solutions. These steps are repeated until some criteria is
satisfied, but notice that new populations of programs are
generated according to the pheromone tables (the higher the
rate is, the higher is the probability to be chosen). This

approach was used to solve symbolic regression problems
and a multiplexer problem with relative success.
Boryczka and Czech [8] also applied AP for solving

symbolic regression problems, calling their method Ant
Colony Programming (ACP). They proposed two different
versions of ACP, known as expression approach and program
approach. In the expression approach the system generates
arithmetic expressions in prefix notation from the path fol-
lowed by the ant in a graph. This graph is defined as
G = (N,E) whereN is the set of nodes, which can represent
either a variable or an operator, and E is the set of edges,
each one with a pheromone value associated. Green et al. [9]
also presented an AP technique similar to the ACP expression
approach. In turn, in the program or instruction approach the
nodes in the graph represent assignment instructions, and
the solution consists of a sequence of assignments which
evaluates the function.
In [10], Boryczka extended the previous works in ACP

with the aim of reducing the computational time neccessary
for the evaluation of transition rules.
Another attempt to evolve programs using the ACO algo-

rithm was AntTAG [11]. It was proposed by Abbass et al. as
a method of automatic programming employing ACO as its
search strategy and a Tree-Adjunct Grammar (TAG) to build
programs. The authors tested its performance on symbolic
regression problems and achieved better performance than
Grammar Guided Genetic Programming and Tree Adjunct
Grammar Guided Genetic Programming.
Keber and Schuster published another grammar-based

work called Generalized Ant Programming (GAP) [12],
which uses a context-free grammar instead of TAG. Salehi-
Abari and White [13] worked on GAP, proposing a vari-
ation of the algorithm called Enhanced Generalized Ant
Programming (EGAP). More specifically, it introduces a new
pheromone placement method that tends to put in a derivation
step an amount of pheromone proportional to the depth of
the path; and it also employs a specific heuristic function to
control the path termination.
More recently, Shirakawa et al. [14] proposed Dynamic

Ant Programming (DAP). Its main difference with respect to
ACP lies in the use of a dynamically changing pheromone
table and a variable number of nodes, which lead to a more
compact space of states. The authors only compared the
performance of DAP against GP using symbolic regression
problems.

III. THE GBAP ALGORITHM
In this section we introduce the Grammar Based Ant

Programming (GBAP) algorithm.
Roughly speaking, GBAP follows a grammar guided auto-

matic programming perspective. In this kind of systems there
is a grammar that restricts the space of states and ensures that
any solution found is syntactically valid. In fact, any state and
each feasible solution –which corresponds to leaf states– in
the environment can be reached from the initial state of the
grammar in a sequence of steps by applying the production
rules available.



The goal of GBAP is to obtain a classifier for a given
data set, instead of a generic solution that could be applied
to other data sets. This classifier takes the form of a decision
list where discovered rules are sorted in descending order by
fitness and the bottom rule added to the classifier, which
corresponds to the majority class in the data set, acts as
default rule. Notice that GBAP was originally designed for
the DM classification task. However, it can be modified
and adapted to any other problem that can be solved using
automatic programming, by simply reconfiguring the way the
algorithm evaluates the individuals and designing a suitable
grammar for the problem to be solved.
As can be seen in the following sections, the GBAP algo-

rithm can not be fitted into a typical ACO system. The closest
algorithm may be the Max-Min Ant System (MMAS) [15],
with which GBAP shares the idea of pheromone bounds and
also initializes pheromone trails to the maximum value, as
MMAS does; however, instead of updating the trails just with
the best ant, in GBAP all the current generation ants whose
fitness is over an established threshold reinforce the trails.
Next we present a description of the main characteristics

of GBAP algorithm and a detailed pseudocode.

A. Environment and individual representation
GBAP prescribes a context-free grammar for representing

individuals expressed in Backus-Naur Form (BNF) notation,
and defined by G = (V,Σ, R, S), as shown in Figure 1. Any
production rule consists of a left hand side (LHS) and a right
hand side (RHS). The LHS always refers to a non-terminal
symbol that might be replaced by the RHS of the rule
(composed of a combination of terminal and non-terminal
symbols). Production rules are expressed in prefix notation
and should be always derived from the left. It implies that
each transition from a state i to another state j is triggered
after applying a production rule to the first non-terminal
symbol of the state i. This design decision was taken because
of performance reasons, in order to expedite the calculations
neccessary to compute the rule fitness.

V = {<EXP>, <COND>}
Σ = {AND, =, !=, attr1, attr2, ..., attrn,

value11, value12, ..., value1m,
value21, value22, ..., value2m,

..., valuen1, valuen2, ..., valuenm}
R = {<S> := <EXP>,

<EXP> := AND <EXP> <COND> |
<COND>

<COND> := all possible valid
combinations of the ternary
operator-attribute-value}

S = {<S>}

Fig. 1. Context-free grammar used in GBAP

Notice that grammar guided systems use the terminal and
non-terminal nomenclature, but it refers to the symbols of the
grammar, rather than to the leaf nodes and function/internal
nodes of an individual tree representation, respectively.

The first aspect in the design of an ACO-based algorithm
is the specification of an environment where ants cooperate
with each other. In GBAP the environment is defined as
the search space comprising all the possible expressions or
programs that can be derived from the grammar. Then, the
environment adopts the form of a derivation tree, as shown
in Figure 2 at a depth of 4 derivations.
The initial state of the environment simply corresponds

to the starting symbol of the grammar. From this, each ant
tries to build a feasible solution to the problem. Any solution
found takes the form of a path over the derivation tree, as
shown in the sample coloured path in Figure 2. This path
consists of a sequence of states, where each derivation step
is given by applying one of the available production rules
at that point. The last state of the path is a final state or
solution (a state that only contains terminal symbols, whereas
the intermediate states of the path consist of a combination
of terminal and non-terminal symbols, with at least one
non-terminal symbol). Each ant stores the path explored,
but observe that only the last state represents the evaluable
expression of the solution encoded.

<S>

<EXP>

AND <EXP> <COND> <COND>

= attr1 
value1

!= attrn 
valuem

AND <COND> <COND>AND <EXP>
<COND> <COND>

AND <EXP> 
<COND>

<COND> <COND>

AND <COND> 
<COND> <COND>

AND 
= attr1 value1 

<COND>

AND 
!= attrn valuem 

<COND>

. . .

. . .

d = 1

d = 2

d = 3

d = 4

Fig. 2. Representation of the space of states with a sample coloured path

An important characteristic of GBAP is the incremental
generation of the environment. In fact, depending on both the
problem addressed and the number of derivations permitted
from the grammar, it may be unfeasible to keep in memory
the whole space of states. We therefore follow an incremental
build approach in which once each ant is created and has
found a solution, its visited states are stored in a data
structure. This requires the ant to have an internal memory to
store the path, which is one of the properties of an artificial
ant [16]. For this reason, the initial space of states is empty
and all the possible transitions have the same amount of
pheromones.
GBAP follows the ant=rule (i.e., individual=rule) ap-

proach [17]. Once the ant is created, it just represents the
antecedent of the new rule. In Section III-E we will analyze
how the consequent is properly assigned to the rule.

B. Heuristic measures
Another important characteristic of the algorithm proposed

is that it considers two complementary heuristic measures. A



first one is the cardinality of the production rules (Pcard).
Due to the shape of the space of states, it could lead
to premature convergence in few generations, because of
the reinforcement of the pheromone amount in the early
transitions. Thus, we consider here a new heuristic measure
that guides the ants to follow those transitions that lead to
a greater number of solutions. This measure increases the
probability of choosing this kind of transitions, and it is
based on the cardinality measure proposed in [18]. When
initializing the grammar in the algorithm, a cardinality table
for the maximum number of derivations allowed is computed
per each production rule. Given a state i and all its possible
subsequent states the value of this heuristic, for each possible
transition, is defined as the ratio between the number of
solutions that can be successfully reached, if the ant goes to
the destination state applying this transition, and the number
of all possible solutions that can be reached from the source
state. Notice that this heuristic measure is only taken into
account for intermediate transitions.
A second measure is the information gain (G(Ai)), similar

to the one used by the Ant-Miner algorithm. It is only used
in transitions involving the application of production rules
that imply the selection of attributes of the problem domain
(i.e., < COND >:= operator − attribute− value).
The use of both heuristic measures affects the creation

process of new ants when they move to the next state of
their path. The transition rule will assign a probability to each
available next state. In case of derivations that are not able to
reach any final state in a number of steps less than or equal to
the maximum number of derivations remaining, a probability
equal to zero will be assigned and, in consequence, the ant
will not select such a movement.

C. Transition rule
ACO metaheuristic follows a constructive method, i.e.,

every solution is built according to a sequence of transitions
guided by some information. The information that bias each
step is considered in the transition rule, which defines the
probability that a given ant moves from a state i to another
valid state j:

Pij =
ηαij · τ

β
ij

Σj
i=0η

α
ij · τ

β
ij

(3)

where α is the heuristic exponent, β is the pheromones
exponent and η is computed as G(Ai) + Pcard, having at
least one of the two components equal to zero.

D. Pheromone updating
Regarding the pheromone update, if the quality of an ant

is greater than a threshold value, then a delayed pheromone
update over the path of this ant takes place. The threshold
value has been fixed to 0.5 with the aim that bad solutions
will never influence the environment. All transitions in the
path get an equal amount of pheromone, and this reinforce-
ment is based on the quality of the solution encoded by the
ant:

τij(t+ 1) = τij(1− ρ) + τij ·Q · fitness (4)

where τij represents the amount of pheromones in the
transition from the state i to the state j; ρ the evaporation
rate; and Q is the parameter that permits to vary the influence
of the reinforcement.
Once the pheromone trails in the environment have been

reinforced and evaporated, a normalization process takes
place. This process limits the pheromone levels in each
transition, requiring that the amount of pheromone is in
the range [minimum pheromone rate, maximum pheromone
rate].

E. Fitness function
The fitness function that GBAP uses in the training stage

for measuring the quality of the ants is the Laplace accuracy
[19], which is defined as:

fitness =
1 + TP

k + TP + FP
(5)

where TP and FP represent true positives and false posi-
tives, respectively, and k refers to the number of classes in
the data set.
Concerning the assignment of the consequent, GBAP

follows a niching approach analogous to that employed in
[20], whose purpose is to evolve different multiple rules for
predicting each class in the data set while preserving the
diversity. Depending on each data set and in the distribution
of the instances by class, it is often not possible for a rule to
cover all instances of a class and, therefore, it is necessary
to discover additional rules for predicting this class. The
niching algorithm takes care of it but it does not overlap
with instances of another class. In addition, it is appropriate
when removing redundant rules.
In the niching algorithm developed every instance in a

data set is called a token, for which all ants in the colony
will compete to capture. First of all GBAP computes an
array of k fitness values per individual, one for each class
(assuming that the respective class is assigned as consequent
to the individual). Then, the following steps are repeated for
each class: (a) the ants are sorted by their respectively class
fitness in descending order; and (b) each ant tries to take as
many tokens as it covers in case of tokens that belong to the
computing class and also if the token has not been seized
by other ant previously. Finally, the ant’s adjusted fitness for
this class is computed as:

adjustedF itness =fitness · #capturedTokens

#classT okens
(6)

Once the k adjusted fitnesses have been calculated, the
consequent assigned to each ant corresponds to the one that
reports the best adjusted fitness. To conclude, individuals that
have an adjusted fitness greater than zero –and consequently
cover at least one instance of the training set– are added to
the classifier.



Algorithm 1 High level pseudocode of GBAP
Require: numberOfGenerations, numberOfAnts
1: Initialize grammar and space of states
2: Create the classifier
3: for i = 0 to i = numberOfGenerations do
4: Create list ants← {}
5: for j = 0 to j = numberOfAnts do
6: ant ← Create new ant
7: Store ant’s path states in the space of states
8: Evaluate ant, computing its fitness for each available class in the data set
9: Add ant to the list ants
10: end for
11: Do niching algorithm, assigning the consequent to the ants and establishing the classifier rules
12: for each ant in ants do
13: if fitness > threshold then
14: Update pheromone rate in the path followed by ant proportionally to its fitness
15: end if
16: end for
17: Evaporate the pheromone rate along the whole space of states
18: Normalize values of pheromones
19: end for
20: Establish the default rule in the classifier
21: predictiveAccuracy ← Compute the predictive accuracy obtained by the classifier when running over the test set
22: return predictiveAccuracy

F. Algorithm

GBAP algorithm is detailed in Algorithm 1. First, it
starts up the grammar, creating a cardinality table for each
production rule, and then it initializes the space of states with
the initial state –which corresponds to the starting symbol of
the grammar–. It also creates an empty classifier that will
contain the ants that will remain after the competition that
takes place in the niching algorithm in each generation.
In each generation, the algorithm initializes a new empty

list of ants. Then it fills this list creating the number of ants
specified as parameter, guiding the grammar this creation
process. After creating every ant, the space of states is
updated storing the states contained in the ant’s path. The
algorithm also computes k fitness per ant, where k is the
number of available classes in the data set. Notice that at
this point the ants only represent antecedents of rules.
Once all the ants have been created, these ants along with

the ants of the classifier compete in the niching algorithm
for seize as many instances of the data set as they can, as
explained in Section III-E. The winners are assigned as rules
to the classifier, replacing the previous ones.
Then, each ant created in this generation of the algorithm

reinforces the amount of pheromones of its path’s transitions
only if its fitness is greater than the threshold value. To
complete the generation, an evaporation and a normalization
of pheromone values takes place.
After finishing all the generations, the default rule is added

to the classifier and it is applied to the test set, computing
the predictive accuracy.

IV. EXPERIMENTAL SECTION
This section firstly describes the data sets used for the ex-

perimentation, as well as the preprocessing steps performed.
It also explains the cross validation procedure carried out,
and it specifies the algorithms used in the comparison and
the parameters set up.

A. Data sets and preprocessing
In order to evaluate the performance of the proposed algo-

rithm, GBAP was applied to several data sets, both artificial
and real-world, selected from the well-known University
of California at Irvine (UCI1) machine learning repository.
Notice that this selection consists of a wide range of di-
mensionality data sets (varied number of instances, attributes
and classes), and also considers the presence or absence of
missing values in them. All these particular characteristics
of each data set can be seen in detail in Table I.
Two preprocessing actions were performed using the

Weka2 Machine Learning library. One action involved the
replacement of missing values (in such data sets comprising
them) with the mode (for nominal attributes) or the arithmetic
mean (for numerical attributes). On the other hand, to deal
only with categorical attributes, the other action performed
entailed discretizing data sets with numerical attributes [21],
applying the Weka implementation of the Fayyad and Irani
discretization algorithm [22].

1All data sets can be reached from the UCI website at http://
archive.ics.uci.edu/ml/datasets.html

2The Weka library is publicly available at http://www.cs.
waikato.ac.nz/ml/index.html



TABLE I
DATA SETS DESCRIPTION

DATASET MISSING VALUES INSTANCES ATTRIBUTES CLASSES
Continuous Binary Nominal

Hepatitis yes 155 6 13 0 2
Sonar no 208 60 0 0 2
Breast-c yes 286 0 3 6 2
Heart-c yes 303 6 3 4 2
Ionosphere no 351 33 1 0 2
Horse-c yes 368 7 2 13 2
Breast-w yes 699 9 0 0 2
Diabetes no 768 0 8 0 2
Credit-g no 1000 6 3 11 2
Mushroom yes 8124 0 0 22 2
Iris no 150 4 0 0 3
Wine no 178 13 0 0 3
Balance-scale no 625 4 0 0 3
Lymphography no 148 3 9 6 4
Glass no 214 9 0 0 6
Zoo no 101 1 15 0 7
Primary-tumor yes 339 0 14 3 21

B. Cross validation

In order to evaluate GBAP algorithm and to compare it
with others, we applied a stratified 10-fold cross-validation,
i.e., we randomly splitted each data set into 10 mutually
exclusive partitions, P1,...,Pk, in such a way that each par-
tition contained approximately the same number of patterns
and the same proportion of classes than the original data set.
Then, 10 different experiments were executed using

⋃
j !=i Pj

as the training set at the ith-experiment and Pi as the test
set. Hence, the prediction performance of a given data set
with N instances is considered as the average accuracy over
these 10 folds, described as

predictiveAccuracy =
Σ10

i=1(Ci)

N
· 100 (7)

where Ci is the number of correctly classified instances when
using de partition Pi as the test set.
In addition, in case of stochastic algorithms, we calculate

the average accuracy and standard deviation of the 10 ex-
ecutions of each fold for the sake of reducing bias in the
evaluation of the performance.

C. Algorithms and parameters

The rule induction algorithms considered for the ex-
perimentation are: Ant-Miner, PSO/ACO2, JRIP [21] and
PART [21]. The first two algorithms were discussed in
section II-A, since they are ACO based algorithms. JRIP is
the Weka’s implementation of Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) algorithm, which is a
rule induction algorithm. On the other hand, PART is based
on the J48 Weka’s algorithm –an improvement of C4.5– to
generate decision trees from which rules are extracted.

These algorithms were executed with their default param-
eters, whereas GBAP’s configuration parameters were set to:
number of ants = 20, number of generations = 100, max
number of derivations = 15, initial pheromone rate = 1.0,
minimum pheromone rate = 0.1, maximum pheromone rate
= 1.0, evaporation rate = 0.05, Q = 1.0, alpha = 0.4, and
betha = 1.0.

V. RESULTS

Experiments compare the performance of our proposal
with respect to other classification algorithms. This section
interprets the results obtained.
The evaluation criteria for the comparison is the predictive

accuracy. Table II shows average values for predictive accu-
racy with standard deviation. The results of the algorithm
that yield the maximum average classification rate of each
data set are highlighted in bold typeface. Analyzing the table,
it is possible to realize that GBAP algorithm is competitive
with respect to all the others considered, and also that it
obtains the best results for the 52.9% of the data sets used
in the experimentation. In the other data sets in which GBAP
does not reach the best results, its classification results are
competitive, being either the second or the third in rank,
except for one data set in which it ranks fourth. Finally,
regarding the standard deviation values of all algorithms per
data set, we can also observe that GBAP globally yields
middle values in terms of stability, and that in 6 of the data
sets it has the stablest values.
To compare the results obtained and to analyze if there are

significant differences between the classifiers, we perform
the Friedman test. The Friedman test compares the average
ranks of k algorithms over N datasets. Average rankings of
all the algorithms considered are summarized in Table III,



TABLE II
PREDICTIVE ACCURACY(%) COMPARATIVE RESULTS

DATASET GBAP ANT-MINER PSO/ACO2 JRIP PART
Hepatitis 82.17± 12.04 83.34± 10.19 84.59± 9.33 81.54± 12.05 84.64 ± 7.66
Sonar 81.98 ± 7.44 76.07± 5.91 78.49± 8.05 80.33± 6.61 77.84± 8.10
Breast-c 71.40± 7.86 72.67 ± 7.75 68.63± 6.87 72.00± 6.41 68.48± 7.90
Heart-c 82.84 ± 5.24 76.38± 5.97 82.25± 5.36 82.20± 5.36 80.13± 6.39
Ionosphere 93.02 ± 4.07 84.03± 6.32 89.97± 4.99 91.70± 5.14 88.93± 4.02
Horse-c 82.97± 6.34 82.51± 5.69 82.06± 4.93 83.72 ± 6.35 81.50± 3.72
Breast-w 96.50 ± 1.68 94.23± 2.07 95.86± 1.91 95.71± 1.81 95.71± 1.82
Diabetes 75.80 ± 4.12 73.00± 4.33 74.16± 4.47 75.56± 2.34 75.66± 2.52
Credit-g 70.79± 4.27 69.63± 4.21 70.36± 3.55 70.70± 3.26 72.70 ± 3.26
Mushroom 98.26± 0.76 98.03± 0.93 99.90± 0.11 99.99± 0.04 100.00 ± 0.00
Iris 96.67 ± 3.72 95.33± 5.34 95.33± 6.70 96.00± 5.33 95.33± 6.70
Wine 97.01 ± 4.37 92.27± 4.92 90.20± 2.86 95.61± 5.37 95.03± 3.89
Balance-scale 75.49± 4.97 68.05± 5.32 77.14 ± 4.93 73.42± 5.66 76.50± 3.51
Lymphography 81.00 ± 10.35 73.83± 11.62 76.59± 12.2 78.84± 11.49 78.43± 14.3
Glass 69.13± 8.66 66.12± 9.61 71.16± 10.54 69.00± 8.70 73.91 ± 8.43
Zoo 95.60 ± 4.21 94.54± 6.45 92.32± 7.19 86.85± 7.25 94.84± 9.02
Primary 37.91± 6.55 33.57± 5.30 37.19± 5.88 38.11± 3.75 38.36 ± 5.09

where one can observe that the computed control algorithm
(the algorithm with the lowest ranking) is our proposal. The
Friedman statistic of average rankings distributed according
to the F-distribution with k− 1 and (k− 1)(N − 1) degrees
of freedom is 6.7391, which does not belong to the critical
interval C0 = [0, (FF )0.1,4,64 = 2.0348]. Thus, we reject
the null-hypothesis that all algorithms perform equally well
when α = 0.1.

TABLE III
AVERAGE RANKINGS OF THE ALGORITHMS

ALGORITHM RANKING
GBAP 1.9412

Ant-Miner 4.2941
PSO/ACO2 3.2353
JRIP 2.7941
PART 2.7353

Due to the rejection of the null-hypothesis by the Fried-
man test, we proceed with a post-hoc test to reveal the
performance difference. Since all classifiers are compared
with respect to a control classifier, i.e. GBAP, we apply
the Bonferroni-Dunn test [23]. Its results indicate that, at
a significance level of α = 0.1 (i.e., with a probability
of 90%) there are significant differences, being the perfor-
mance of GBAP statistically better than those of Ant-Miner
and ACO/PSO2 algorithms. These results are captured in
Figure 3, where one can also realize that GBAP achieves
competitive or even better accuracy results than PART and
JRIP.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a novel automatic programming
algorithm based on ACO and restricted by a context-free
grammar for mining classification rules from diverse data

Fig. 3. Comparison of GBAP against the other classifiers with the
Bonferroni-Dunn test. All classifiers with ranks outside the marked interval
are significative different from the control (p < 0.10)

sets. This proposal is supported by a two-sided heuristic
function that guides the search process of the valid solutions,
as well as the chance of modifying the complexity of rules
mined by simply varying the number of derivations allowed
for the grammar.
Moreover, in this work we have compared the performance

of GBAP against two state-of-the-art algorithms (Ant-Miner
and PSO/ACO2) and other two industry standard classifiers
(JRIP and PART) over 17 different data sets. The results ob-
tained demonstrate that GBAP is statistically more accurate
than Ant-Miner and PSO/ACO2 with a significance level of
90%, and that GBAP is also competitive with JRIP and PART
in terms of accuracy.
As future work we plan to apply other problem-dependent

heuristic measures. We will also explore some new function-
ality to deal with continuous attributes and we will adapt the
current version of GBAP to the multi-objective approach.
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