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Abstract. This paper develops a first comparative study of multi-
objective algorithms in Multiple Instance Learning (MIL) applications.
These algorithms use grammar-guided genetic programming, a robust
classification paradigm which is able to generate understandable rules
that are adapted to work with the MIL framework. The algorithms ob-
tained are based on the most widely used and compared multi-objective
evolutionary algorithms. Thus, we design and implement SPG3P-MI
based on the Strength Pareto Evolutionary Algorithm, NSG3P-MI based
on the Non-dominated Sorting Genetic Algorithm and MOGLG3P-MI
based on the Multi-objective genetic local search. These approaches are
tested with different MIL applications and compared to a previous single-
objective grammar-guided genetic programming proposal. The results
demonstrate the excellent performance of multi-objective approaches in
achieving accurate models and their ability to generate comprehensive
rules in the knowledgable discovery process.

1 Introduction

Multiple Instance Learning (MIL) introduced by Dietterich et al. [1] consists
of generating a classifier that will correctly classify unseen patterns. The main
characteristic of this learning is that the patterns are bags of instances where
each bag can contain different numbers of instances. There exists information
about the bags, a bag receives a special label, but the labels of instances are
unknown. According to the standard learning hypothesis proposed by Dietterich
et al. [1] a bag is positive if and only if at least one of its instances is positive and
it is negative if none of its instances produce a positive result. The key challenge
in MIL is to cope with the ambiguity of not knowing which of the instances in a
positive bag are actually the positive examples and which are not. In this sense,
this learning problem can be regarded as a special kind of supervised learning
problem where the labeling information is incomplete. This learning framework
is receiving growing attention in the machine learning community because nu-
merous real-world tasks can be very naturally represented as multiple instance
problems. Among these tasks we can cite text categorization [2], content-based
image retrieval [3], image annotation [4], drug activity prediction [5,6], web index
page recommendation [7], stock selection [5] and computer security [8].
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The problem of evaluating the quality of a classifier, whether in MIL perspec-
tive or in traditional supervised learning, is naturally posed as a multi-objective
problem with several contradictory objectives. If we try to optimize one of them,
the others are reduced. All previously used proposals to solve this problem from
a MIL perspective do not take into account the multi-objective problem and only
obtain one optimal solution combining the different objectives to obtain a high
quality classifier. However, this approach is unsatisfactory due to the nature of
optimality conditions for multiple objectives. It is well-known that in the pres-
ence of multiple and conflicting objectives, the resulting optimization problem
gives rise to a set of optimal solutions, instead of just one optimal solution. Mul-
tiple optimal solutions exist because no single solution can be a substitute for
multiple conflicting objectives and it is shown that algorithms which consider
the set of optimal solutions obtain better general results.

In this paper, a first comparative study of the most widely analyzed, compared
and tested approaches under various problems and criteria which generate Pareto
Optimal Front (POF) is elaborated. We design and implement classic multi-
objective evolutionary algorithms using Grammar Guided Genetic Programming
(G3P) and adapt them to handle multi-instance problems. Our proposals are the
Strength Pareto Grammar-Guided Genetic Programming for MIL (SPG3P-MI)
based on the Strength Pareto Evolutionary Algorithm (SPEA2)[9], the Non-
dominated Sorting Grammar-Guided Genetic Programming for MIL (NSG3P-
MI) based on the Non-dominated Sorting Genetic Algorithm (NSGA2) [10] and
Multi-objective genetic local search with Grammar-Guided Genetic Program-
ming for MIL (MOGLSG3P-MI) based on Multi-objective genetic local search
(MOGLS)[11]. These algorithms represent classification rules in IF-THEN form
which make it possible to determine if a bag is positive or negative and the qual-
ity of each classifier is evaluated according to two conflicting quality indexes,
sensitivity and specificity. Computational experiments show that multi-objective
techniques are robust algorithms which achieve better results than G3P-MI [12]
other previously used technique based on G3P and a single-objective. Moreover,
multi-objective proposals obtain classifiers which contain simple rules which add
comprehensibility and simplicity in the knowledge discovery process.

The paper is organized as follows. In Section 2, a description of the approaches
proposed is presented. In Section 3, experiments are conducted. Finally, conclu-
sions and some possible lines for future research are discussed in Section 4.

2 Using Multi-objective G3P for Classification Rule
Generation

In our approach, we use an extension of traditional GP systems, called grammar-
guided genetic programming (G3P) [13]. G3P facilitates the efficient automatic
discovery of empirical laws providing a more systematic way to handle typing
using a context-free grammar which establishes a formal definition of the syn-
tactical restrictions. The motivation to include this paradigm is that it retains
a significant position due to its flexible variable length solution representation
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and the low error rates that achieves both in obtaining classification rules, and
in other tasks related to prediction, such as feature selection and the generation
of discriminant functions. On the other hand, the main motivation to include
multi-objective strategies in our proposals is due to the measurements to eval-
uate a classifier are conflictive, so if the value of any of them is maximized, the
value of the others can be significantly reduced. Thus, it is very interesting to
obtain the POF and introduce preference information to analyze which of them
could be the best to classify new examples.

Multi-objective techniques for evolutionary computation have been widely
used on classification topics where significant advances in results have been
achieved [14]. If we evaluate its use in Genetic Programming (GP), we can find
that it provides better solutions than those obtained using standard GP and
lower computational cost [15,16].

In this section we specify different aspects which have been taken into account
in the design of the these proposals, such as individual representation, genetic
operators and fitness function. The main evolutionary process is not described
because it is based on the well-known SPEA2 [9], NSGA2 [10] and MOGLS [11].

2.1 Individual Representation

In our systems, as G3P-MI [12], individuals express the information in the form of
IF-THEN classification rules. These rules determine if a bag should be considered
positive (that is, if it is a pattern of the concept we want to represent) or negative
(if it is not).

If (condB(bag)) then
the bag is an instance of the concept.

Else
the bag is an instance of the concept.

End-If

where condB is a condition that is applied to the bag. Following the Dietterich
hypothesis, condB can be expressed as:

condB(bag) =
∨

∀instance∈bag

condI(instance) (1)

where ∨ is the disjunction operator, and condI is a condition that is applied over
every instance contained in a given bag. Figure 1 shows the grammar used to
represent the condition of the rules.

2.2 Genetic Operators

The process of generating new individuals in a given generation of the evolution-
ary algorithm is carried out by two operators, crossover and mutator. Depending
on the philosophy of the algorithm one or both will be used. In this section, we
briefly describe their functioning.
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〈S〉→〈condI〉
〈condI〉→〈cmp〉| OR 〈cmp〉 〈condI〉| AND 〈cmp〉 〈condI〉
〈cmp〉→ 〈op-num〉 〈variable〉 〈value〉| 〈op-cat〉 〈variable〉
〈op-cat〉 → EQ | NOT EQ
〈op-num〉→ GT | GE | LT | LE
〈term-name〉 → Any valid term in dataset
〈term-freq〉 → Any integer value

Fig. 1. Grammar used for representing individuals’ genotypes

Crossover Operator. This operator chooses a non-terminal symbol randomly
with uniform probability from among the available non-terminal symbols in the
grammar and two sub-trees (one from each parent) whose roots are equal or
compatible to the symbol selected are swapped. To reduce bloating, if any of the
two offspring is too large, they will be replaced by one of their parents.

Mutation Operator. This operator selects with uniform probability the node
in the tree where the mutation is to take place. The grammar is used to derive
a new subtree which replaces the subtree underneath that node. If the new
offspring is too large, it will be eliminated to avoid having invalid individuals.

2.3 Fitness Function

The fitness function is a measure of the effectiveness of the classifier. There are
several measures to evaluate different components of the classifier and determine
the quality of each rule. We consider two widely accepted parameters for char-
acterizing models in classification problems: sensitivity (Se) and specificity (Sp).
Sensitivity is the proportion of cases correctly identified as meeting a certain
condition and specificity is the proportion of cases correctly identified as not
meeting a certain condition. Both are specified as follows:

sensitivity =
tp

tp + fn
,

{
tp number of positive bags correctly identified.

fn number of negative bags not correctly identified.

specificity =
tn

tn + fp
,

{
tn number of negative bags correctly identified.

fp number of positive bags not correctly identified.

We look for rules that maximize both Sensitivity and Specificity at the
same time. Nevertheless, there exists a well-known trade-off between these two
parameters because they evaluate different and conflicting characteristics in the
classification process. Sensitivity alone does not tell us how well the test predicts
other classes (that is, the negative cases) and specificity alone does not clarify
how well the test recognizes positive cases. It is necessary to optimize both the
sensitivity of the test to the class and its specificity to the other class to obtain
a high quality classifier.
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3 Experimental and Results

A brief description of the application domains used for comparing along with a
description of the experimental methodology are presented in the next section.
Then, the results and a discussion about the experimentation are detailed.

3.1 Problem Domains Used and Experimental Setting

The datasets used in the experiments represent two well-known applications in
MIL, drug activity prediction which consists of determining whether a drug
molecule will bind strongly to a target protein [1] and content-based image retrieval
which consists of identifying the intended target object(s) in images [2] Detailed
information about these datasets is summarized in Table 1. All datasets are parti-
tioned using 10-fold stratified cross validation [17] on all data sets. Folds are con-
structed on bags, so that every instance in a given bag appears in the same fold.
The partitions of each data set are available at http:www.uco.es/grupos/ ayrna/mil.

Table 1. General Information about Data Sets

Dataset Bags Attributes Instances Average
Positive Negative Total Bag Size

Musk1 47 45 92 166 476 5.17

Musk2 39 63 102 166 6598 64.69

Mutagenesis-Atoms 125 63 188 10 1618 8.61

Mutagenesis-Bonds 125 63 188 16 3995 21.25

Mutagenesis-Chains 125 63 188 24 5349 28.45

Elephant 100 100 200 230 1391 6.96

Tiger 100 100 200 230 1220 6.10

Fox 100 100 200 230 1320 6.60

The algorithms designed have been implemented in the JCLEC software [18].
All experiments are repeated with 10 different seeds and the average results are
reported in the results table in the next section.

3.2 Comparison of Multi-objective Strategies

In this section, we compare the different multi-objective techniques implemented,
MOGLSG3P-MI, NSG3P-MI and SPG3P-MI. In a first section a quantitative
comparison of the performance of different multi-objective algorithms is carried
out. Then, the different multi-objective techniques are compared with the ac-
curacy, sensitivity and specificity results of G3P-MI, a previous single-objective
G3P algorithm [12].

Analysis of the quality of Multi-Objective strategies. The outcome in the
multi-objective algorithms used is an approximation of the Pareto-optimal front
(POF). An analysis of the quality of these approximation sets is evaluated to
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compare the different multi-objective techniques. Many performance measures
which evaluate different characteristics have been proposed. Some of the most
popular performance measurements as spacing, hypervolume and coverage of
sets [19] are analyzed in this work and their average results on the different data
sets studied are shown in Table 2. The spacing [19] metric describes the spread of
non-dominated set. According to the results showed the non-dominated front of
NSG3P-MI has all solutions more equally spaced than the other algorithms. The
hypervolume indicator [19] is defined as the area of coverage of non-dominated
set with respect to the objective space. The results show that the non-dominated
solutions of NSG3P-MI cover more area than the other techniques. Finally, cov-
erage of two sets [19] is evaluated. This metric can be termed relative coverage
comparison of two sets. The results show that NSG3P-MI obtains the highest
values when it is compared with the other techniques, then by definition the
outcomes of NSG3P-MI dominate the outcomes of the other algorithms. Taking
into account all the results obtained in the different metrics, NSG3P-MI achieves
a better approximation of POF than the other techniques.

Table 2. Analysis of quality of POFs considering average values for all data sets studied

Algorithm Hypervolume (HV) Spacing (S) Two set Coverage (CS)

MOGLSG3P-MI 0.844516 0.016428
CS(MOGLSG3P-MI,NSG3P-MI) 0.357052

CS(MOGLSG3P-MI,SPG3P-MI) 0.430090

NSG3P-MI 0.890730 0.007682
CS(NSG3P-MI,MOGLSG3P-MI) 0.722344

CS(NSG3P-MI,SPG3P-MI) 0.776600

SPG3P-MI 0.872553 0.012290
CS(SPG3P-MI,MOGLSG3P-MI) 0.508293

CS(SPG3P-MI,NSG3P-MI) 0.235222

Comparison Multi-Objective strategies with a Single-Objective previ-
ous version. We compare the results of accuracy, sensitivity and specificity of
different multi-objective techniques implemented with the results of a previous
single-objective G3P algorithm [12]. The average results of accuracy, sensitivity
and specificity for each data set are reported in Table 3. The Friedman test [20] is
used to compare the different algorithms. The Friedman test is a nonparametric
test that compares the average ranks of the algorithms. These ranks let us know
which algorithm obtains the best results considering all data sets. In this way,
the algorithm with the value closest to 1 indicates the best algorithm in most
data sets. The ranking values for each measurement are also shown in Table 3.

The Friedman test results are shown in Table 4. This test indicates that these
are significantly differences both in accuracy and specificity measurements and
there is no significant difference for sensitivity measurement. A post-hoc test
was used, the Bonferroni-Dunn test [20], to find significant differences occurring
between algorithms. Figure 2(a) shows the application of this test on accuracy.
This graph represents a bar chart, whose values are proportional to the mean
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Table 3. Experimental Results

Algorithm MOGLSG3P-MI NSG3P-MI SPG3P-MI G3P-MI

Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp

Elephant 0.8900 0.8700 0.9100 0.9400 0.9400 0.9400 0.9250 0.9400 0.9100 0.8800 0.9300 0.8300

Tiger 0.8850 0.9400 0.8300 0.9350 0.9200 0.9500 0.9200 0.9200 0.9200 0.8700 0.9400 0.8000

Fox 0.7600 0.7800 0.7400 0.7800 0.8600 0.7000 0.8350 0.8900 0.7800 0.7050 0.7900 0.6200

MutAtoms 0.8421 0.9385 0.6333 0.9158 0.9462 0.8500 0.8790 0.9308 0.7667 0.8526 0.8462 0.8167

MutBonds 0.8421 0.9077 0.7000 0.8737 0.9231 0.7667 0.8684 0.9308 0.7333 0.8210 0.8462 0.7833

MutChains 0.8737 0.9462 0.7167 0.9211 0.9462 0.8667 0.9053 0.9000 0.9167 0.8105 0.9231 0.7333

Musk1 0.9778 0.9600 1.0000 1.0000 1.0000 1.0000 0.9667 0.9800 0.9500 0.9445 1.0000 0.9000

Musk2 0.9400 0.9500 0.9333 0.9301 0.9607 0.9095 0.9400 0.9750 0.9167 0.8800 1.0000 0.9000

RANKING 2.8125 3.0000 2.7500 1.3750 2.0000 1.8125 1.9375 2.3750 2.1875 3.8750 2.6250 3.2500

Table 4. Results of the Friedman Test (p=0.1)

Valor Friedman Valor χ2(1 − α = 0.1) Conclusion

Acc 17.1375 4.642 Reject null hypothesis
Se 2.5500 4.642 Accept null hypothesis
Sp 5.7375 4.642 Reject null hypothesis

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

NSG3P-MI SPG3P-MI MOGLSG3P-MI G3P-MI

Threshold 

Accuracy

 

(a) Bonferroni-Dunn for Accuracy
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(b) Bonferroni-Dunn for Specificity

Fig. 2. Bonferroni Dunn Test (p < 0.1)

rank obtained from each algorithm. This test sets a Threshold (represented with
one of the grated bars); those values that exceed this bar are algorithms with
significantly worse results than the control algorithm (associated in this case
with NSG3P-MI because it is the lowest rank value). The threshold in this case
is fitted to 2.7486 (with, 1−α = 0.1). Observing this figure, the algorithms that
exceed the threshold determined by Bonferroni are MOG3P-MI and G3P-MI,
therefore they could be considered worse proposals.

With respect to the specificity measurement, Figure 2(b) shows the appli-
cation of Bonferroni-Dunn post-hoc test on it. The threshold in this case is
3.1861 (with, 1 − α = 0.1). Observing this figure, the algorithm that exceeds
the threshold determined by Bonferroni is G3P-MI, again NSG3P-MI is the best
proposal.
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We can conclude that statistically there are hardly any differences between
multi-objective proposals, except for the accuracy values of the MOGLS
algorithm. On the other hand, the differences are more noticeable for the single-
objective G3P algorithm that obtains worse results than the rest of the tech-
niques for all measurements and for accuracy and specificity obtains significant
differences statistically. Moreover, a better trade-off between the different mea-
surements can be seen in the multi-objective techniques.

4 Conclusions and Future Works

This paper has done a first comparative study of multi-objective evolutionary
algorithms on MIL. To do so, the renowned algorithms, SPEA2, NSGA2 and
MOGLS have been adapted to work with a G3P paradigm and to handle a
MIL scenario. The comparison between the different multi-objective techniques
and a previous single-objective G3P algorithm (G3P-MI) has shown that all
multi-objective proposals obtain more accurate models. The Friedman test de-
termine that NSG3P-MI is the best proposal with respect to the rest of the
algorithms for all measurements considered. Statistically, it can be concluded
that there are significant differences between the algorithms with respect to ac-
curacy and specificity values. For these values, a post-test is carried out and this
the Bonferroni-Dunn test concludes that G3P-MI is considered to be statistically
worse algorithm for both measurements.

This is only a preliminary study and there are still some forthcoming con-
siderations. Thus, it would be interesting to make a more detailed study which
evaluate the performance of multi-objectives proposals. Moreover, it would be
interesting to do a thorough investigation involving the most representative MIL
algorithm in the rest of paradigms used in MIL.
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