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Abstract. This work proposes a Multiobjective Differential Evolution algo-
rithm based on dominance Pareto concept for multiclassification problems us-
ing multilayer perceptron neural network models. The algorithm include a local 
search procedure and optimizes two conflicting objectives of multiclassifiers, a 
high correct classification rate and a high classification rate for each class, of 
which the latter is not usually optimized in classification. Once the Pareto front 
is built, we use two automatic selection methodologies of individuals: the best 
model with respect to accuracy and the best model with respect to sensitivity 
(extremes in the Pareto front). These strategies are applied to solve six classifi-
cation benchmark problems obtained from the UCI repository. The models ob-
tained show a high accuracy and a high classification rate for each class. 

Keywords: Accuracy, Differential Evolution, Local Search, Multiclassification, 
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1   Introduction 

Pattern classification occurs when an object needs to be assigned into a predefined 
class based on a number of observed attributes related to that object. Different meth-
ods for pattern classification [1] are shown in the literature, but in recent years Artifi-
cial Neural Networks (ANNs) have been an important tool for it [2]. 

Training Artificial Neural Networks by Evolutionary Pareto-based algorithms [3] 
is known as Multiobjective Evolutionary Artificial Neural Networks (MOEANNs), 
and  it has been used in recent years to solve classification tasks, having some of its 
main exponents in H. Abbass [4]  and Y. Jin [3].  

In this paper we present a Memetic Pareto Differential Evolution (MPDE) algo-
rithm, which is, a MultiObjective Evolutionary Algorithm (MOEA) [5] based on 
Differential Evolution (DE) [6] and on the Pareto dominance concept for solving 
multiclass classification problems. MPDE is improved with a local search algorithm, 
specifically with the improved Resilient Backpropagation (iRprop+) [7].  
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Many techniques to improve the overall generalization capability for the classifier 
designed have been proposed, but a few maintain the classification capability in all 
classes (correctly classified rate per class), something that, in some datasets, is essen-
tial to ensure the benefits of a classifier against another. The objective pursued when 
using MOEAs in classifications with ANNs is mainly designing classifiers with the 
biggest possible accuracy and with a small structural complexity [3], [8]. Our pro-
posal aims to achieve a high classification rate in the testing dataset with a good  
classification for each class. There are multi-objective works for classification that 
optimize the Accuraccy and the Sensitivity or Specificity, but only work with two 
classes or compare one of the classes with the rest. 

The rest of the paper is organized as follows: in section 2 the accuracy and sensi-
tivity measures are proposed and their properties are briefly discussed. Section 3 pre-
sents a brief overview about DE in Multiobjective Evolutionary Neural Networks. 
Section 4 describes the MPDE algorithm. Section 5 shows the experimental design, 
and finally the conclusions are drawn in Section 6. 

2   Accuracy Versus Sensitivity 

Accuracy cannot capture all the different behavioral aspects found in two different 
classifiers [9] so, in this section, we present two measures to evaluate a classifier:  

• Accuracy 
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about sensitivity, we refer to the minimal sensitivity of all classes. 
 

Assuming that all misclassifications are equally costly and there is no profit for a 
correct classification, we understand that a good classifier should obtain a high accu-
racy level as well as an acceptable level for each class, the two-dimensional measure 
( , )S C  is considered in this work for this reason.  

Let us consider a Q –class classification problem. Let C  and S  be respectively the 

accuracy and the sensitivity associated with a classifier g , then ( ) *1 1S C S p≤ ≤ − − , 

where *p is the minimum of the estimated prior probabilities. Therefore, each classi-
fier will be represented as a point in the triangular region in Fig. 1 part B. Simultane-
ously minimize the ( 1)Q Q − misclassification rates given by the off-diagonal elements 

of the confusion matrix has a main shortcoming, the dimension of the Pareto optimal 
front grows at the rate of the square of the number of classes, making the resolution of 
the problem extremely complex. 

The feasible region within the ( , )S C  space is reduced considerably as we approach 
to the ( )1,1 point; not taking the Pareto front obtained by multiobjective techniques a 
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great diversity in terms of number of elements. It should be noted that for a fixed 
value of Accuracy C , a classifier will be better when it corresponds to a point nearer 
to the diagonal of the square. In general, accuracy and sensitivity could be coopera-
tive, but as we approach the ( )1,1 point or optimum, the objectives become competitive 
and an improvement in one objective tends to involve a decrease in the other one, 
which justifies the use of a MOEA. 

3   Differential Evolution in Multiobjective Evolutionary Artificial 
Neural Networks 

A particular and simple yet powerful Evolutionary Algorithm (EA) that has been used 
for multiobjective optimization on ANNs is the Differential Evolution (DE) algorithm 
proposed by Price and Storn [6]. The main idea in DE with respect to EAs is to use 
vector differences in the creation of new candidate solutions [ ]C i  as one of the i ele-
ments in a population of size N . All applications of DE are distinguished by the s 
trategy used to create and insert new individuals in the population and by the self-
adaptation of the parameters of crossover and mutation [10]. 

DE is used in the literature for multiobjective optimization and applications, and to 
a lesser extent, for the design of ANNs in classification. DE works well when the 
objective function has features such as nonlinearity, high dimensionality, the exis-
tence of multiple local optimal, undifferentiated or noise. For these reasons and be-
cause the article by Abbass [4] has been widely cited and used we have done an  
improved version of their algorithm. 

To the best of our knowledge, sensitivity is nowhere used for improving the capa-
bility of generalization, quality and comparison between classifiers. Abbass [4] was 
one of the first authors in apply DE in Multiobjective Problems with ANNs and, in 
several works, he employs DE with/within local search procedures to create new 
individuals and to keep only the nondominated ones as the basis for the next genera-
tion, but the objectives to optimize are the accuracy and the net complexity. Ning [11] 
uses a Modified Differential Evolution algorithm introducing the reorganization of 
Evolution Strategies during the mutation and optimizing the weights of the feed-
forward multilayer neural network, but only uses the mean square error as objective 
function.  

4   The Memetic Pareto Multiobjective Evolutionary Differential 
Evolution Algorithm (MPMEDE) 

4.1   Base Classifier Framework and Objective Functions 

We consider standard feed forward MLP neural networks with one input layer with 
k inputs variables of the problem, one hidden layer with m maximum sigmoidal basis 
functions which depends on the problem, and one linear output layer with J outputs, 
one for each class in the problem. In this way, the functional model considered is the 
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following: 0
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of weights of the l  output node, 1( ,..., )j j Kjw w=w  is the vector of weights of the con-

nections between input layer and the j  hidden node, x is the  input pattern and s the 
sigmoidal basis function. 

We interpret the outputs of neurons on the output layer from a probability point of 
view, which considers the softmax activation function given by the following expres-
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pattern x  belonging to class j. Taking this consideration into account, it can be seen 
that the class predicted by the neuron net corresponds to the neuron on the output 
layer whose output value is the greatest.  

In this multiobjective context we consider two multiobjective functions to maxi-
mize, where the first function is cross-entropy error and is given by the following 

expression for J  classes: ( )
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vantage of using the error function ( )l θ  instead of (1 )C−  is that it is a continuous 
function, then small changes in network parameters produce small changes in the 
fitness function, which allows improve the convergence. Then, the first fitness meas-
ure to maximize is a strictly decreasing transformation of the entropy error ( )l θ  given 

by 1
( )

1 ( )
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l
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+ θ
, where g  is a sigmoidal basis function neural network model repre-

sented by the multivaluated function ( ) ( ) ( )( )1 1, , ,..., ,J Jg g g=x θ x θ x θ . The second objec-

tive to maximize is the sensitivity ( )S g  of the classifier as the minimum value of the 
sensitivities for each class. Both ( )A g and ( )S g fitness functions, are necessary for the 
evaluation of the individuals in Algorithm 1 (see step 3). 

4.2   MPDE Algorithm 

In Algorithm 1 we describe our Memetic Pareto Differential Evolution (MPDE) algo-
rithm. The approach evolves architectures and connection weights simultaneously, 
each individual being a fully specified ANN. The ANNs are represented using an 
object-oriented approach and the algorithm deals directly with the ANN phenotype. 
The fundamental characteristics are the following: 

• The maximum number of non-dominated solutions in each generation was set 
to ( / 2)populationSize . If it is exceeded, a nearest neighbor distance function [12] is 

adopted by preventing a agglomerative structure of the Pareto front (step 9-13). 
• Crossover operator is proposed from step 17, where three parents have been previ-

ously selected randomly; being the child a perturbation of the main parent. First, 
with some probability 

c
P for each hidden neuron, h , if the probability is met, the  
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Algorithm 1. Memetic Multiobjective Differential Evolution (MPDE) 
1: Create a random initial population of potential solutions. 
2: Repeat 
3:         Evaluate the individuals in the population and label those who are non-dominated. 
4:         If  the number of non-dominated individuals is less than 3 then 
5:                   Repeat 
6:                                 Find a non-dominated solution among those who are not labeled. 
7:                                 Label the solution as non-dominated. 
8:                   Until the number of non-dominated individuals is greater than or equal to 3. 
9:         Else If  number of non–dominated solutions is greater than ( / 2)populationSize then 
10:                  Repeat 
11:                               Calculate the distance of each individual with its nearest neighbor. 
12:                               Delete the individual with smaller distance. 
13:                  Until the number of non-dominated individuals is equal to ( / 2)populationSize . 
14:      Delete all dominated solutions from the population. 
15:      Repeat 
16:                  Select at random an individual as the main parent 1a  and two individuals, 2a , 3a as  
                       supporting parents. 
17:                  Crossover: with a crossover probability Pc for each hidden neuron, do 

18:                                                  
( )( )( )1 2 31 0,1 0.5
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h
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19:                                                  ( )( )1 2 30,1child

ih ih ih ih
w w N w wa a a¬ + -  

20:                   otherwise 

21:                                                    1child

ih ih
w wa¬  

22:                                                    1child

h h

ar r¬  

23:                   and with crossover probability Pc for each output  neuron, do 

24:                                                    ( )( )1 2 30,1child

ho ho ho ho
w w N w wa a a¬ + -  

25:                   otherwise 

26:                                                   1child

ho ho
w wa¬  

27:                  If the child is equal to the main parent then 

28:                               A random link is perturbed by adding a Gaussian distribution ( )0,1N . 

29:                  Mutation: with a mutation probability Pm for each neuron do 

30:                                                    
1 0

0

child
child h
h

if

otherwise

r
r
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31:                 A child has been created. Store the best child so far. NumCreated NumCreated 1¬ +  
32:                 If the candidate dominates the parent then 
33:                               Apply iRprop+ local search to the child. 
34:                               Add the candidate to the population. 
35:                 Else If  there is no dominance relation between main parent and child then 
                                    Add the candidate to the population. 
36:                 Else If NumCreated 100=  (here the main parent dominates to the child) then    
37:                               Add the best of these 100 children to the population. 
38:                               NumCreated 0¬  
39:                 Else     The candidate is discarded and to go to step 15 (No child is added). 
40:      Until the population size is N. 
41: Until termination conditions are satisfied, go to 2 above. 
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neuron selected in the child will be maintained ( 1r = ) or deleted ( 0r = ), depend-
ing of the value of the expression that is shown in step 18. In the first case the 
weight 

ih
w between the i-th input variable and the h-th hidden node will be modi-

fied by the expression proposed in step 19. If the crossover probability is not met 
then the structure of the main parent is inherited by the child (steps 21-22). Third, a 
similar weight modification is reached with a 

c
P probability for each output neu-

ron, o , in the output layer (steps 23-26).  
• Mutation operator consists on adding or deleting neurons in the hidden layer de-

pending on a 
m

P  probability for each them. Taking into account the maximum 
number of hidden neurons that may exist in an individual in a specific problem, the 
probability will be used as many times as number of neuron has the classifier. If 
the neuron exists, is deleted, but if it does not exist, then it is created and the 
weights are established randomly, see step 29.  

• Local search, steps 32-34, has been carried out based in the adaptation of a version 
of the Resilient Backpropagation (Rprop), the improved Rprop or iRprop+ [7]. 
The adaptation is made using a backtracking strategy to the softmax activation 
function and to the cross-entropy error function, modifying the gradient vector. 
The local search is applied only to the child that dominates to the main parent, after 
the crossover and mutation have been applied, decreasing in this way the computa-
tional cost. Other works perform this operation for each child created before check-
ing if the child dominates or not to the main parent. 

• There are significant differences with the Abbass’ algorithm proposed in [4]. First, 
in the crossover we used a 

c
P probability for each neuron and not for each layer as 

Abbass does, being our algorithm less aggressive with the changes in the ANNs. 
The mutator probability also is used in independent way for each neuron and not 
for the hidden layer; because we believe that the changes proposed by Abbass pro-
duce such drastic changes in the ANNs, in which their generalization capability 
can be reduced significantly. Third, the way in which individuals are added to the 
population, Abbass adds to the population only those children who dominate the 
main parent and this decision may leave the algorithm running between the steps 
15-40 for a long time, because when the number of generations increase is more 
difficult to improve the main parent. In our case, the way individuals are added in 
steps 31-39 is more relaxed, so children that dominates or not to the main parent 
can be added. In this way the computational time is reduced. 

5   Experiments 

For the experimental design we consider 6 datasets taken from the UCI repository 
[16], Autos, Balance, Breast-Cancer, Newthyroid, Pima and HeartStatlog, with 6, 3, 
2, 3, 2 and 2 classes respectively. The design was conducted using a stratified holdout 
procedure with 30 runs, where 75% of the patterns were randomly selected for the 
training set and the remaining 25% for the test set. The population size is established 
to 100

p
N = . The crossover probability is established to 0.8 and the mutation  
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probability to 0.1. For iRprop+ the adopted parameters are 0.5h- = , 1.2h+ = , 

0
0.0125D =  (the initial value of the

ij
D ), 

max
50D =  , 

min
0D = and 5Epochs = . 

Once the Pareto front is built in each run we use two automatic selection method-
ologies of individuals: First, the extreme values in training are chosen, that is, the best 
individual on Entropy, EI, and the best individual on Sensitivity, SI (see Fig 1 A). 
Once this is done, we get the values of Accuracy C  and Sensitivity S  in testing of 
EI, _ _( , )testing EI testing EI testingEI C S=  and SI, _ _( , )testing SI testing SI testingSI C S= . This is repeated for 

each run and the average and standard deviation from the EI and SI individuals are 
estimated obtaining _ _( , )testing EI testing EI testingEI C S=  and _ _( , )testing SI testing SI testingSI C S= . There-

fore, the first expression testingEI  is the average obtained taking into account the En-
tropy as primary objective when we choose an individual from the first Pareto front, 

and the second testingSI  taking into account the Sensitivity, getting two automatic 
methodologies called MPDE-E and MPDE-S respectively.   

We compare our algorithm with a modified and memetic version of NSGA2 (for 
details see [13]), which we also have used for designing ANNs models in the same 
framework shown in this work, using iRprop+ and a mutation operator, although 
other implementations can be found in the framework Paradiseo-MOEO [14] .  Also, 
we compare with the SVM methodology from the SMO algorithm with the defaults 
values that provides Weka [15]. 

In Table 1 we present the values of the average and the standard deviation for C  
and S  obtained for the best models in each run over the testing set. We can observe 
that in Balance and Breast-Cancer, MPDE-S obtains the best values in S , and very 
close to those modified NSGA2 in C . In Autos, the best result in C is obtained by 
MPDE-E but the best value in S is achieved by MNSGA2-S.  In Newthyroid MPDE 
obtains the best values in S and C , and in Pima and HeartStatlog, MPDE-S obtains 
the best values in S and very similar to those obtain by MNSGA2-E in C . 

Table 1. Statistical results for MPDE and the modified NSGA2 version, MNSGA2, in testing. 
In bold the best result and in Italic the second best result. 

Dataset Algorithm C(%) S(%) Dataset Algorithm C(%) S(%) 
MPDE-E 68.79±5.59 28.75±21.40 MPDE-E 91.43±1.01 54.36±26.25 
MNSGA2-E 66.67±4.07 39.64±14.92 MNSGA2-E 94.01±1.52 42.66±17.00 
MPDE-S 64.15±5.63 12.26±20.54 MPDE-S 91.41±1.53 87.42±4.32 
MNSGA2-S 66.04±4.78 42.28±10.98 MNSGA2-S 92.47±2.16 83.72±8.19 

Autos 

SVM 67.92 0.00 

Balance 

SVM 88.46 0.00 
MPDE-E 67.27±2.71 38.09±11.59 MPDE-E 96.66±2.02 81.42±10.74 
MNSGA2-E 69.34±2.30 28.88±9.09 MNSGA2-E 95.12±2.30 74.81±10.07 
MPDE-S 65.39±3.40 57.04±7.01 MPDE-S 96.66±1.84 81.64±9.76 
MNSGA2-S 63.99±3.10 53.08±6.57 MNSGA2-S 95.55±2.15 75.07±10.66 

BreastC 

SVM 64.79 23.81 

Newthy 

SVM 88.89 55.56 
MPDE-E 78.59±1.59 61.94±4.10 MPDE-E 76.17±1.41 61.11±2.20 
MNSGA2-E 78.99±1.80 60.44±2.59 MNSGA2-E 78.28±1.75 61.88±2.08 
MPDE-S 77.11±2.20 73.12±2.98 MPDE-S 76.27±1.57 63.66±2.37 
MNSGA2-S 76.96±2.08 72.68±3.06 MNSGA2-S 77.5±1.73 62.66±2.38 

Pima 

SVM 78.13 50.75 

HeartStlg 

SVM 76.47 60.00 
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In Fig. 1 we can see the results obtained by MPDE for Balance dataset in the 
( , )S C space in one specific run, which presents the best individual on Entropy in 

training. Observe (Fig 1. A) that the ( , )S C values do not form Pareto fronts in testing 

(Fig 1. B), and the individuals which in the training graphics were in the first Pareto 
front, can now be located within the ( , )S C space in a worst region, since there is no 

direct relation between training Entropy and testing Accuracy C . 

EI

 

Fig. 1. A) Pareto front in training. B) Feasible region in the (S,C) space for testing. 

6   Conclusions 

The methodology uses a MOEA which tries to boost Accuracy and Sensitivity as 
conflicting objectives. A memetic version of DE with the iRprop+ algorithm as local 
optimizer, designs the ANNs architecture finding the adequate number of neurons in 
the hidden layer and the optimal number of connections along with the corresponding 
weights. The features of the Pareto optimal front allowed us to consider two auto-
matic selection methodologies of individuals: the best model in accuracy and the best 
model in sensitivity (extremes in the Pareto front). Through optimizing both meas-
ures, as is shown in the results, it is possible to obtain classifiers that combine a high 
classification level with a very good classification rate for each class. In our opinion, 
the perspective and the memetic DE approach reveal a new point of view for dealing 
with multi-classification problems. 
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