

V. Wade, H. Ashman, and B. Smyth (Eds.): AH 2006, LNCS 4018, pp. 203 – 212, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Authoring Tool for Building Both Mobile Adaptable
Tests and Web-Based Adaptive

or Classic Tests

Cristóbal Romero1, Sebastián Ventura1, Cesar Hervás1, and Paul De Bra2

1 Córdoba University, Campus Universitario de Rabanales, 14071, Córdoba, Spain
{cromero, sventura, chervas}@uco.es

2 Eindhoven University of Technology (TU/e), PO Box 513, Eindhoven, The Netherlands
debra@win.tue.nl

Abstract. This paper describes Test Editor, an authoring tool for building both
mobile adaptable tests and web-based adaptive or classic tests. This tool facili-
tates the development and maintenance of different types of XML-based multi-
ple-choice tests for using in web-based education systems and wireless devices.
We have integrated Test Editor into the AHA! system, but it can be used in
other web-based systems as well. We have also created several test execution
engines in Java language in order to be executed in different devices such as PC
and mobile phones. In order to test them, we have carried out two experiments
with students to determine the usefulness of adaptive tests and mobile tests.

1 Introduction

Computerized tests or quizzes are among the most widely used and well-developed
tools in web-based education [7]. There are different types of computerized tests,
depending on the type of items or questions (yes/no questions, multiple-choice/single-
answer questions, fill-in questions, etc.) and there are two main types of control algo-
rithms: classic or linear tests and adaptive tests [20]. The main advantage of comput-
erized adaptive tests (CAT) is that each examinee usually receives different questions
and their number is usually smaller than the number of questions needed in a classic
test. Currently, there are several well-known commercial and free tools for developing
adaptive and classic computerized test such as: QuestionMark [14], Webassesor [19],
MicroCAT and FastTEST [2], SIETTE [1], Test++ [5], etc. Most of them are based
on XML to record the information about assessments and some use the IMS Question
and Test Interoperatiblity (QTI) international specification [4]. On the other hand, m-
learning (mobile learning) and u-learning (ubiquitous learning) have started to emerge
as potential educational environments [11]. In fact, there are nowadays several quiz
systems [10] oriented to be used not only for PC users, but also for PDA and mobile
phone users; and there are some interactive tests [12] specifically developed only for
being used in mobiles phones. There are also several commercial tools such as Mobile
EMT-B quiz [13], oriented to PDA devices and others such as Go Test Go’s [9] ori-
ented to be used in Java mobile phones. With the Test Editor described in this paper it
is possible to author once and deliver on both mobile and Web-based platforms.

204 C. Romero et al.

2 Test Editor Author Tool

In order to facilitate computer tests creation and maintenance, we have developed the
Test Editor tool for building computerized tests [16]. Currently, we have integrated it
in the AHA! system [8] because that is a well-known adaptive hypermedia architec-
ture used to build web-based courses, and because it uses the Java and XML lan-
guages. Test Editor is a (signed) Java Applet, just like other AHA! authoring tools:
Form Editor, Concept Editor and Graph Editor.

As the first step for developing a test with Test Editor, the examiner has to create
one or several (XML) items files. An item consists of a single question about a single
concept (from an AHA! application or course), the answers (right and wrong) and
explanations for the wrong answers. Several items/questions about the same concept
can be grouped together into one items file. Figure 1 shows how to add questions to
the items file, one by one. The examiner must also specify some required parameters
(the enunciate flag, and for each answer a flag to indicate whether the answer is cor-
rect) and can add some optional parameters (an illustrative image, explanations and
Item Response Theory (IRT) parameters [20]: item difficulty, discrimination and
guessing). Using the Test Editor items can be added, modified or deleted. They can be
imported/exported to/from other tests systems (currently only AHA! 1.0 and AHA!
3.0). Questions can thus be re-used from other test environments without needing to
enter them again.

Fig. 1. Test Editor: Windows to introduce the obligatory parameters of an item

 An Authoring Tool for Building Both Mobile Adaptable Tests 205

The second step is to build tests out of items. The examiner decides on the test type
(classic test or adaptive test) he wants and whether to use just one or several items
files. If the test evaluates only one concept, we consider it to be an “activity”. If the
test evaluates several concepts, it will be an “exam”, about a chapter or perhaps a
whole course. Next, the examiner can use different methods to select what specific
items from these items files will be used in the test (the selection can be done manu-
ally, randomly or randomly with some restrictions). Then he sets presentation parame-
ters (see Figure 2) about how questions are shown to examinees: the order in which
questions and answers are shown, whether to show or hide explanations of the an-
swers (through the “verbose” flag), the maximum time to respond, whether to show
the correct answer or just a score, etc. In addition to these there are also parameters
about evaluation: to penalize incorrect answers, to penalize unanswered questions and
what percentage of knowledge the final score represents in the associated con-
cept/concepts. If the test is adaptive, the examiner also has to set the adaptive algo-
rithm parameters (questions selection procedure and termination criterion). Each test
is stored in an XML file and that is exactly the same for both versions (PC and mo-
bile). But for the mobile devices it also is necessary to create a .jar and .jad file [21]
that includes both the multiple-choice test code (a Java Midlet test engine) as well as
the questions and parameters (XML file).

The generated test can be downloaded (the .jar file) into a mobile phone and/or can
be used directly (through a browser) in an AHA! course [8]. When used with AHA! a
test is presented in an Java Applet, with a look and feel that is similar to the Java

Fig. 2. Test Editor: Windows to select the questions presentation parameters

206 C. Romero et al.

Midlet version. The results of tests are logged on the server. After a large number of
examinees performed some tests, examiners can examine statistical information in the
Test Editor (success rate per question, mean times to answer the questions, questions
usage percentage, etc.) and use that information for maintenance/improvements to the
tests. The examiner may decide to modify or delete bad items, add new items, but he
can also modify the test configuration. Test Editor also can do items calibration [3], in
order to transform a classic test into an adaptive one, or to optimize the IRT parameter
of an adaptive test.

3 The Web-Based Adaptive and Classic Tests Engine

Our web-based tests engine is a signed Java Applet that uses Java Servlets to commu-
nicate with AHA! [8]. It can execute both classic and adaptive computerized tests
with multiple-choice items [16]. A conventional (classic) test is a sequence of simple
questions and normally the same questions are shown to all examinees. The algorithm
to control the execution of a classic test is very simple: it shows a sequence of ques-
tions until either there are no more questions or the examinee has used up the maxi-
mum allowed time. On the other hand, a CAT [18] is a computer-based test where the
decision about presenting a question or item and finishing the test is made depending
on the examinee’s performance in previous answers. The general adaptive tests algo-
rithm (see Figure 3) consists of three main procedures: question selection, based on
the most informative item for each student; proficiency estimation of each student;
and checking the finalization criteria (maximum number of questions, maximum
spent time or if the proficiency level has passed a confidence value).

Presentation
of the first

item

Examinee
answer

New
proficiency
estimation

No

End?
Yes

Final
proficiency
estimation

Selection and
presentation of
the next item

Fig. 3. Adaptive tests control algorithm

When a student starts a test (clicking on the test link), the engine connects to the
server in order to obtain all the test information and to check if the student is allowed
to take the test (or repeat it). If the test has “starting information” the engine will show
it, and it will then start to show questions. The student has to select what the hopefully
correct answer is (possibly more than one) and then presses the “Correct The Ques-
tion” button (see Figure 4). This has to happen before the maximum response time has
elapsed. The student can see if the submitted answer was correct or incorrect, if the
author has set the parameter to show this. Finally, after the student replies to the last
question he will see the obtained score and the total time spent.

 An Authoring Tool for Building Both Mobile Adaptable Tests 207

Fig. 4. Web-based tests execution engine interface with a question

4 Mobile Adaptable Tests Engine

Our mobile adaptable tests engine is a Java Midlet [21] with a specific tests interface
designed for small wireless devices. Java Midlets are small applications that can be
executed in the mobile phone. They have important advantages compared to WAP
(Wireless Application Protocol) and browser based applications. For example, they
can be used offline without connection cost, they have a more responsive and interac-
tive interface and they are popular thanks to Java games [12]. Functionally, our mo-
bile engine can read (XML) test files, present questions, check answers and send the
score back to AHA! [8]. The user can download and install the .jar file (generated by
the Test Editor) in the mobile device directly from Internet (by connecting to the .jad
file), or he can download the .jar file to a PC first and then send it to the mobile using
Bluetooth, Infrared, serial bus, etc. After installing, the execution of the test is totally
off-line and it works as shown in Figure 5: the questions are shown on the mobile’s
screen in a linear or random order (depending on the test parameters), the answers
have to be selected by the user with the phone keys and when the test ends the scores
obtained and the used time are shown.

Mobile tests engine has some personalization characteristics for individualised
execution [6]:

− When the user starts the application he/she has to identify himself/herself by intro-
ducing his/her personal login and password (the same as used in AHA!).

208 C. Romero et al.

− When the user finishes the test execution the scores are physically stored in the
mobile memory card by using RMS (Record Management System).

− If the user executes an exam, then the elapsed time in each question is shown.
− The user can send the obtained score to AHA! (in order to update his/her AHA!

profile) through a GPRS (General Packet Radio Service) connection.
− Activities can be repeated several times by the same users, but exams cannot. The

user cannot easily hack the downloaded .jar exam (for example, he can try to do it
by uninstalling and installing the application again) because when an exam starts
the application connects to AHA! in order to check that the user has never taken
that exam before.

Fig. 5. Mobile tests execution interface with a question and the final score

Mobile tests engine also has some adaptable characteristics in the interface. The
difference between adaptive and adaptable refers to the extent to which users can
exert influence on the individualization process of a system [17]. Adaptable systems
are customized by the users themselves. In our mobile tests application, the user can
select the following preferences from the main menu (see Figure 6 at the left):

− The user can choose between different font types (see Figure 6 in the middle) and
sizes, in order to improve the readability of the text of the questions.

− The user can choose to show questions and answers together on the same screen
(see Figure 6 at the right) if he/she prefers to scroll, or to show them on two differ-
ent screens (see Figure 5 at the left and in the middle) if he/she prefers to see the
question on one screen and the answers on another.

− The user can choose to show the associated images that some questions have, if
he/she has a screen big enough to show them, or not to show them if he/she has a
small screen.

 An Authoring Tool for Building Both Mobile Adaptable Tests 209

Fig. 6. Mobile tests main menu interface and preferences

5 Experimental Results

We have carried out two experiments to determine the usability of both adaptive tests
(a calibrated version versus a non-calibrated version) and mobile tests (a PC version
versus a Mobile version), using two different tests about the Java and CLIPS lan-
guages respectively.

In the Java Language test we compare the results students obtain when they use the
same PC test but with adaptively calibrated items and with non-calibrated items. Each
test has been carried out by a different group of 60 computer science engineering
students at the Cordoba University, with a similar age, knowledge and experience.
Both tests consisted of the same 27 items with 4 possible answers on which one an-
swer was correct, and the same finalization conditions (if the standard error became
lower than 0.33 or if all 27 questions were presented). The difference is that initially
the IRT two-parameters (difficulty and discrimination) of the non-calibrated items are
set manually by experts in Java, and after one group of students executes the test then
the IRT two-parameters are calibrated using the maximum likelihood estimation esti-
mator [3] to be used with the other group of students.

Table 1. Students tests execution results: adaptive non-calibrated versus calibrated test

 Time taken Number
of Items

Proficiency
estimation

Standard
error

Non-Calibrated Test 434.6±88.8 26.9±1.6 -1.3±0.3 0.6±0.1
Calibrated Test 182.4±81.2 11.5±2.6 -2.2±0.3 0.4±0.1

210 C. Romero et al.

In the Table 1, we show the mean value and the confidence interval (95%) of the
time taken (in seconds) to complete the test, the number of items attempted, the profi-
ciency estimated and the standard error. We can see in the first table row, there was a
reduction in the total number of questions used in the calibrated version versus the
non-calibrated version. Secondly, we can see a reduction of the time needed to com-
plete the test in the calibrated version precisely due to the reduction of questions.
Finally, the estimated proficiency obtained in the calibrated version is lower than the
non-calibrated version but the standard error is higher. It shows that the precision
obtained in the calibrated version is higher, and the student’s estimated proficiency is
more accurate, as was expected.

On other hand, in the CLIPS Language test we compare the results students obtain
when they execute the same test but on the PC or by the mobile phone. Each test has
been carried out by a different group of 80 and 20 computer science engineering stu-
dents (with Java mobile) at the Cordoba University, all with similar age, knowledge
and experience. Both tests consist of the same 40 items with 3 possible answers of
which one was correct. The questions were shown in random order.

Table 2. Students tests execution results: web-based classic test versus mobile test

 Time taken Number of
correct items

Number of
incorrect items

Number of items
without answer

PC Test 1157.8±75.2 19.8±0.8 6.3±0.6 3.8±0.5
Mobile Test 635.1±58.7 20±1.5 5.4±1.2 4.8±1.1

In the Table 2, we show the mean value and the confidence interval (95%) of the
time taken (in seconds) to complete test, the number of correct items, number of in-
correct items and the number of items without answer. We can see that the execution
of the mobile test is much quicker than the PC test: students with the mobile test used
only about half of the time that students with a PC needed. This can be because the
user interface and input methods of this technology are simple and efficient (some
examples are Java games and SMS applications) and so, the students show a great
proficiency in using them (fast browsing through mobile interfaces). And the final
scores were very similar in both versions with only small differences.

Finally, we have also carried out a survey among all the students of the CLIPS test
in order to learn what their opinions are about the two versions of the test. The ques-
tionnaire had five questions (1.How much do you prefer it?, 2.How useful is it?, 3.How
easy to use is it?, 4.How much do you like the user interface? and 5.How much do you
like the data entry method?) that students have to answer with a range between 1 (a
little) and 5 (much) for each version, and they can also write some comments.

Table 3. Student’s opinion questionnaire: web-based classic versus mobile test

 More
preferable

More use-
ful

More easy
to use

Best user
Interface

Best data
entry method

PC Test 3.57±0.34 3.78±0.55 4.78±0.18 4.05±0.23 4.36±0.37
Mobile Test 3.89±0.39 4.26±0.36 4.47±0.31 3.68±0.33 4.01±0.39

 An Authoring Tool for Building Both Mobile Adaptable Tests 211

In the Table 3, we show the mean value and the confidence interval (95%) of the
rating for preference, usefulness and ease of use of the test, and the rate of acceptance
of the user’s interface and the data entry method. We can see that the mobile test is
more preferable and useful than the PC test, although the PC test is easier to use and it
has a better user interface and data entry method. This can be because students are
still more familiar with PC interfaces and their data entry methods for this type of
applications. But, in general, students liked the experience to use a mobile application
to execute tests that can evaluate their knowledge in a specific area. About the com-
ments, students think that the main weaknesses of mobile phones are:

− Small screen size. In general, all students would prefer to be able to see questions,
question and answer on the same screen and without needing to scroll although
they are long, as they are written with the size of a PC screen in mind.

− Very expensive. Almost all the students think that Java mobile phones are very
expensive at the moment, and it is necessary that they become cheaper in order for
most of the students to be able to afford them. Once affordable the mobile tests and
other m-learning tools will become really useful and usable in real life.

− Difficult input method. Some students with big fingers had some problems to press
the correct button each time and they would like that mobile could have bigger but-
tons or some other alternative input method.

6 Conclusions and Future Work

In this paper we have described Test Editor, an authoring tool for building computer-
ized tests. The main advantages of Test Editor in relation to other test tools are:
modular (concepts, items and tests are clearly separated), easy to use (it has a friendly
Java Swing graphical user interface); it facilitates the maintenance (it has statistical
information and item calibration based on examinees’ usage information), standard
format (it uses XML files) and multi-device execution (it has several Java engines for
executing tests on a PC and on wireless devices). We have resolved the problem of
authoring once for delivery on two very different platforms using XML for storing
test information and Java for developing the different test execution engines. Al-
though we have integrated it within the AHA! system [8], it can be also used in other
web-based educational systems that support the Java and XML languages. After the
experimentation, the first impression is that students are generally highly motivated to
use mobile technologies for testing and it can be possible and useful to use mobile
devices for testing despite some limited possibilities of J2ME (Java 2 Micro Edition)
such as small screen size, limited application size and no support for floating point
numbers. But we have developed a user interface with preferences; we have tried to
reduce the number of lines of code and we have used a Java floating point emulation
library for J2ME [15].

Currently we are working on extending the interoperability with other tests for-
mats. We want to allow import/export questions and tests to/from others computer-
ized tests systems and standards such as IMS QTI [4], QuestionMark [14], SIETTE
[1], etc. In the future, we want to add more adaptable characteristics and to develop an
adaptive tests control algorithm for the test mobile engine.

212 C. Romero et al.

Acknowledgments

The authors1 gratefully acknowledge the financial support provided by the Spanish
department of Research under TIN2005-08386-C05-02 Project.

References

1. Arroyo, I., Conejo, R., Guzman, E., Wolf, B.P.: An Adaptive Web-based Component for
Cognitive Ability Estimation. Proc. of Artificial Intelligence in Education. Amster-
dam:IOS (2001) 456-466

2. Assessment Systems Corporation: Microcat and Fasttest, http://www.assessment.com
(2006)

3. Backer, F.: Item Response Theory, Parameter Estimation Techniques. Marcel Dekker
(1992)

4. Bacon, D.: IMS Question and Test Interoperability. MSOR Connections, 3:3 (2003) 44-45
5. Barra, M., Palmieri, G., Napolitano, S., Scarano, V., Zitarosa, L.: Adaptive Testing by

Test++. Proc. of the International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, Trento, Italy, (2000) 264-267

6. Bull, S., Reid, E.: Individualised revision material for use on a handheld computer. Proc.
of the International Conference on MLEARN, UK (2003) 35-42

7. Brusilovsky, P., Miller P.: Web-based Testing for Distance Education. Proc. of the World
Conference of WWW and Internet, Hawaii, USA, (1998) 149-154

8. De Bra, P., Aerts, A.. Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits, D., Stash,
N.: AHA! The Adaptive Hypermedia Architecture. Proc. of the ACM Hypertext Confer-
ence, Nottingham, UK, (2003) 81-84

9. Go test go: http://www.gotestgo.com (2006)
10. Goh, T., Kinshuk, Lin, T.: Developing an adaptive mobile learning system. Proc. of the In-

ternational Conference on Computers in Education, Hong Kong, (2003) 1062-1065
11. Kinshuk: Adaptive Mobile Learning Technologies. GlobalEducator.com, (2003)
12. Mayorga, M.C., Fernández, A.: Learning Tools for Java Enabled Phones: An Application

to Actuarial Studies. Proc. of the International Conference MLEARN, UK (2003) 95-98
13. Mobile EMT-B Quiz: http://www.emszone.com/mobilequiz (2006)
14. QuestionMark: http://www.questionmark.com (2006)
15. Real: http://sourceforge.net/projects/real-java (2006)
16. Romero, C., De Bra, P., Ventura, S.: An authoring tool for web-based adaptive and classic

tests. Proc. of the World Conference on E-Learning in Corporate, Goverment, Healthcare
and Higher Education, Washington, (2004) 174–177

17. Treiblmaier, H.: Measuring the Acceptance of Adaptive and Adaptable Systems. Proc. of
the HHCCII, Hawai, USA, (2004) 1-8

18. Van der Linde, W. J., Hambleton, R. K.: Handbook of Modern Item Response Theory.
Springer Verlag, Berlin (1997)

19. Webassessor: http://www.webassessor.com (2006)
20. Wainer, H.: Computerized Adaptive Testing: A premier. New Jersey, Lawrence Erlbaum

Associates (2000)
21. Yuan, M.J.: Enterprise J2ME: Developing Mobile Java Applications. Prentice Hall, New

Jersey (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

