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Abstract

Classification in imbalanced domains is a recent cha-
llenge in machine learning. We refer to imbalanced classi-
fication when data presents many examples from one class
and few from the other class, and the less representative
class is the one which has more interest. One of the most
used techniques to tackle this problem consists in preproces-
sing the data previously to the learning process. This pre-
processing could be done through under-sampling; remo-
ving examples, mainly belonging to the majority class; and
over-sampling, by means of replicating or generating new
minority examples. This contribution proposes an under-
sampling procedure based on evolutionary algorithms to
perform a training set selection for optimizing the models
obtained by the C4.5 decision tree. The proposal has been
compared with other under-sampling and over-sampling te-
chniques and the results are very competitive in terms of
accuracy, and the obtained models are more interpretable.

1. Introduction

In the last years, the class imbalance problem is one of
the emergent challenges in data mining [24]. The problem
appears when the data presents a class imbalance, which
consists in containing many more examples of one class
than the other one and the less representative class is the
most interesting [8]. Imbalance in class distribution is per-
vasive in a variety of real-world applications, including but
not limited to telecommunications, WWW, finance, biology
and medicine.

Usually, the instances are grouped into two type of clas-
ses: the majority or negative class, and the minority or posi-
tive class. The minority or positive class is often of interest
and also accompanied with a higher cost of making errors.
A standard classifier might ignore the importance of the mi-
nority class because its representation inside the data set is

not strong enough. As a classical example, if the ratio of im-
balance presented in the data is 1:100 (that is, there is one
positive instance versus one hundred negatives), the error of
ignoring this class is only 1%.

Many approaches have been proposed to deal with the
class imbalance problem. They can be divided into algo-
rithmic approaches and data approaches. The first ones as-
sume modifications in the operation of the algorithms, ma-
king them cost-sensitive towards the minority class [18, 15].
The data approaches modify the data distribution, conditio-
ned on an evaluation function. Re-sampling of data could
be done by means of under-sampling, by removing instan-
ces from the data, and over-sampling, by replicating or ge-
nerating new minority examples. There have been nume-
rous papers and case studies exemplifying their advantages
[3, 6, 22, 11, 7].

Evolutionary Algorithms (EAs) have been used for data
reduction with promising results. They have been success-
fully used for feature selection [23, 14, 21] and instance
selection [4, 12]. They have also been applied for under-
sampling the data in imbalanced domains in instance-based
learning [13]. EAs also have a good behaviour for Training
Set Selection (TSS) in terms of getting a trade-off between
precision and interpretability with classification rules [5].

In this contribution, we propose the use of EAs for TSS
in imbalanced data sets. Our objective is to increase the
accuracy of the well-known C4.5 decision tree [19] classi-
fier by means of removing instances mainly belonging to
the majority class. We compare our approach with other
under-sampling, over-sampling methods and hybridization
proposals of over-sampling and under-sampling [3] studied
in the literature. The empirical study has been contrasted
via non-parametrical statistical testing.

To achieve this objective, the rest of the contribution is
organized as follows: Section 2 gives an explanation about
the measure used for evaluating imbalanced classification.
In Section 3, the evolutionary TSS issues are explained, to-
gether with a description of the used model. In Section 4 the
experimentation framework and the results and their analy-
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sis are presented. Finally, in Section 5, we point out our
conclusion.

2. Evaluation Measure Used for Evaluating
Imbalanced Classification

When we want to evaluate a classifier over imbalanced
domains, classical ways of evaluating, such as classification
accuracy, have no sense. A standard classifier that uses ac-
curacy rate may be biased towards the majority class due to
the bias inherent in the measure, which is directly related to
the ratio between the number of instances of each class.

The most correct way of evaluating the performance of
classifiers is based on the analysis of the confusion ma-
trix. In Table 1, a confusion matrix is illustrated for a
problem of two classes, with the values for the positive
and negative classes. From this matrix it is possible to
extract a number of widely used metrics to measure the
performance of learning systems, such as Error Rate, de-
fined as Err = FP+FN

TP+FN+FP+TN and Accuracy, defined as

Acc = TP+TN
TP+FN+FP+TN = 1 − Err.

Positive Prediction Negative Prediction
Positive Class True Positive (TP) False Negative (FN)
Negative Class False Positive (FP) True Negative (TN)

Table 1. Confusion matrix for two-class pro-
blem.

In relation to the use of error (or accuracy) rate, another
type of metric in the domain of the imbalanced problems
is considered more correct. Concretely, from Table 1 it is
possible to obtain four metrics of performance that measure
the classification performance for the positive and negative
classes independently:

• False negative rate FNrate = FN
TP+FN is the percen-

tage of true positive cases misclassified as negative.

• False positive rate FPrate = FN
FP+TN is the percen-

tage of true negative cases misclassified as positive.

• True negative rate TNrate = TN
FP+TN is the percen-

tage of true negative cases correctly classified as nega-
tive.

• True positive rate TPrate = TP
TP+FN is the percen-

tage of true positive cases correctly classified as posi-
tive.

The goal of a classifier is to minimize the false positive
and false negative rates or, in a similar way, to maximize the
true positive and true negative rates.

In [2] it was indicated a metric called Geometric Mean
(GM), defined as g =

√
a+ · a−, where a+ denotes accu-

racy in positive examples (TPrate), and a− is accuracy on
negative examples (TNrate). This measure tries to maxi-
mize accuracy in order to balance both classes at the same
time. It is an evaluation measure that allows to simultaneo-
usly maximize the accuracy in positive and negative exam-
ples with a good trade-off. We focus our study in the GM
metric.

3. Evolutionary Training Set Selection in Im-
balanced Classification

Let us assume that there is a training set TR with N ins-
tances which consists of pairs (xi, yi), i = 1, ..., N , where
xi defines an input vector of attributes and yi defines the
corresponding class label. Each of the N instances has M
input attributes and they should belong to positive or nega-
tive class. Let S ⊆ TR be the subset of selected instances
resulted in the execution of an algorithm.

TSS can be considered as a search problem in which EAs
can be applied. Our approach will be denoted by Evolutio-
nary Under-Sampling for Training Set Selection (EUSTSS).
We take into account two important issues: the specification
of the representation of the solutions and the definition of
the fitness function.

• Representation: The search space associated is consti-
tuted by all the subsets of TR. This is accomplished by
using a binary representation. A chromosome consists
of N genes (one for each instance in TR) with two
possible states: 0 and 1. If the gene is 1, its associated
instance is included in the subset of TR represented by
the chromosome. If it is 0, this does not occur.

• Fitness Function: Let S be a subset of instances of TR
and be coded by a chromosome. We define a fitness
function based on the GM measure evaluated over TR.

Fitness(S) = GM. (1)

This fitness function relates the proposal to the Evolu-
tionary Under-Sampling guided by Classification Mea-
sures (EUSCM) proposed in [13]. The C4.5 decision
tree is used for measuring the accuracy associated with
the tree induced by using the instances selected in S.
The accuracy independently computed in each class is
useful to obtain GM value associated to the chromo-
some. The objective of the EAs is to maximize the
fitness function defined: maximize the GM rate.

A mechanism to avoid overlearning in training data is
needed in the fitness function. Although C4.5, in its
standard definition, incorporates a pruning mechanism
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Data set #Examples #Attributes Class (min., maj.) %Class(min.,maj.)

Abalone9-18 731 9 (18, 9) (5.75, 94.25)
EcoliCP-IM 220 7 (im,cp) (35.00, 65.00)
EcoliIM 336 7 (im,remainder) (22.92, 77.08)
EcoliIMU 336 7 (iMU, remainder) (10.42, 89.58)
EcoliOM 336 7 (om, remainder) (6.74, 93.26)
German 1000 20 (1, 0) (30.00, 70.00)
GlassBWFP 214 9 (build-window-float-proc, (32.71, 67.29)

remainder)
GlassBWNFP 214 9 (build-window-non float-proc, (35.51, 64.49)

remainder)
GlassNW 214 9 (non-windows glass, remainder) (23.93, 76.17)
GlassVWFP 214 9 (Ve-win-float-proc, remainder) (7.94, 92.06)
Haberman 306 3 (Die, Survive) (26.47, 73.53)
New-thyroid 215 5 (hypo,remainder) (16.28, 83.72)
Pima 768 8 (1,0) (34.77, 66.23)
VehicleVAN 846 18 (van,remainder) (23.52, 76.48)
Vowel0 990 13 (0, remainder) (9.01, 90.99)
YeastCYT-POX 483 8 (POX, CYT) (4.14, 95.86)

Table 2. Imbalanced Data Sets.

to avoid overfitting, the inclusion of the induction tree
process within an evolutionary cycle can direct the re-
sulting tree to an optimal model for training data, loo-
sing the generalization ability. We incorporate a simple
and effective mechanism which consists of providing
to the classification costs a higher weight (W ) to the
instances that are no included in S than to the instan-
ces included in S. An instance of TR well classified
scores a value W if it is not included in S and a value
of 1 if it is included in S. This procedure encourages
the reduction ability of the selected subset, due to the
fact that it is more beneficial to evaluate chromosomes
with a higher number of examples out of the selected
ones. Obviously, the instance causes a substraction on
accuracy of the same magnitude in case of misclassi-
fication. Our empirical studies have determined that a
value of W equal to 3 works appropriately.

• Crossover operator for data reduction: In order to
achieve a good reduction rate, Heuristic Uniform
Crossover (HUX) implemented for CHC undergoes a
change that makes more difficult the inclusion of ins-
tances inside the selected subset. Therefore, if a HUX
switches a bit on in a gene, then the bit could be swit-
ched off depending on a certain probability (its value
will be specified in Section 4.1, Table 3).

• As the evolutionary computation method, we have
used the CHC model [10, 5]. CHC is a classical evolu-
tionary model that introduces different features to ob-
tain a trade-off between exploration and exploitation;
such as incest prevention, reinitialization of the search
process when it becomes blocked and the competition
among parents and offspring into the replacement pro-
cess.

During each generation the CHC develops the follo-
wing steps.

– It uses a parent population of size N to gene-
rate an intermediate population of N individuals,
which are randomly paired and used to generate
N potential offspring.

– Then, a survival competition is held where the
best N chromosomes from the parent and offs-
pring populations are selected to form the next
generation.

CHC also implements a form of heterogeneous recom-
bination using HUX, a special recombination operator.
HUX exchanges half of the bits that differ between pa-
rents, where the bit position to be exchanged is ran-
domly determined. CHC also employs a method of
incest prevention. Before applying HUX to the two
parents, the Hamming distance between them is mea-
sured. Only those parents who differ from each other
by some number of bits (mating threshold) are mated.
The initial threshold is set at L/4, where L is the length
of the chromosomes. If no offspring are inserted into
the new population then the threshold is reduced by
one.

No mutation is applied during the recombination
phase. Instead, when the population converges or the
search stops making progress (i.e., the difference th-
reshold has dropped to zero and no new offspring are
being generated which are better than any member of
the parent population) the population is reinitialized
to introduce new diversity to the search. The chro-
mosome representing the best solution found over the
course of the search is used as a template to reseed the
population. Reseeding of the population is accomplis-
hed by randomly changing 35% of the bits in the tem-
plate chromosome to form each of the other N−1 new
chromosomes in the population. The search is then re-
sumed.
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4. Experimental Framework and Results

This section describes the methodology followed in the
experimental study of the re-sampling compared techni-
ques. We will explain the configuration of the experiment:
used data sets and parameters for the algorithms. The al-
gorithms used in the comparison are: OSS [16], NCL [17],
SMOTE [6], SMOTE + Tomek Links (TL) and SMOTE +
ENN [3].

4.1. Experimental Framework

Performance of the algorithms is analyzed by using 16
data sets taken from the UCI Machine Learning Database
Repository [1]. Multi-class data sets are modified to obtain
two-class non-balanced problems, defining one class as po-
sitive and one or more classes as negative.

The data sets are sorted by their IR values in an incre-
mental way. The main characteristics of these data sets are
summarized in Table 2. For each data set, it shows the num-
ber of examples (#Examples), number of attributes (#Attri-
butes) and class name (minority and majority).

The data sets considered are partitioned using the ten fold
cross-validation (10-fcv) procedure. The parameters of the
used algorithms are presented in Table 3.

Algorithm Parameters
SMOTE k = 5, Balancing Ratio = 1 : 1
EUSTSS Pop = 50, Eval = 10000,

P rob. inclusion HUX = 0.25, W = 3

Table 3. Parameters considered for the algo-
rithms.

4.2. Results and Analysis

Table 4 shows the results in test data obtained by the al-
gorithms compared by means of GM evaluation measure.
The column denoted by none corresponds to the case in
which no re-sampling is performed previous to C4.5. The
best case in each data set is remarked in bold.

Table 5 shows the average number of rules (or leafs) ob-
tained by C4.5 in each data set.

Observing Tables 4 and 5, we can make the following
analysis:

• EUSTSS proposal obtains the best average result in
GM measure. It clearly outperforms the other under-
sampling methods (OSS and NCL) and it improves
the accuracy even when comparing with over-sampling
approaches.

• Over-sampling techniques obtain better accuracy than
under-sampling procedures in combination with C4.5
[3], but they cannot improve EUSTSS proposal.

• Except for OSS, EUSTSS produces decision trees with
lower number of rules than the remaining methods.
Although the combination OSS + C4.5 yields less ru-
les, the accuracy in GM is the worst of all the re-
sampling methods.

• Over-sampling techniques force C4.5 to produce many
rules. This fact is not desirable when our interest lies
in interpretable models.

We have included a second type of table accomplishing
a statistical comparison of methods over multiple data sets.
Demšar [9] recommends a set of simple, safe and robust
non-parametric tests for statistical comparisons of classi-
fiers. One of them is Wilcoxon Signed-Ranks Test [20].
Table 6 collects results of applying Wilcoxon’s test bet-
ween our proposed methods and the rest of re-sampling al-
gorithms studied in this paper over the 16 data sets consi-
dered. This table is divided into two parts: In the first part,
the measure of performance used is the accuracy classifi-
cation in test set through GM . In the second part, we ac-
complish Wilcoxon’s test by using as performance measure
the number of rules yielded by C4.5. Each part of this table
contains one column, representing our proposed methods,
and Na rows where Na is the number of algorithms consi-
dered in this study. In each one of the cells can appear three
symbols: +, = or -. They represent that the proposal outper-
forms (+), is similar (=) or is worse (-) in performance than
the algorithm which appears in the column (Table 6). The
value in brackets is the p-value obtained in the comparison
and the level of significance considered is α = 0.10.

EUSTSS EUSTSS
algorithm GM num. rules

none + (.001) + (.088)
OSS + (.003) - (.052)
NCL + (.047) + (.074)
SMOTE + (.052) + (.000)
SMOTE + TL = (.501) + (.000)
SMOTE + ENN = (.363) + (.000)

Table 6. Wilcoxon’s test results over GM and
number of rules

We make a brief analysis of results summarized in Table
6:

• The use of Wilcoxon’s test confirms the improve-
ment caused by EUSTSS over OSS and NCL under-
sampling methods. Curiously, it statistically outper-
forms SMOTE, but it does not the hybrids of SMOTE.
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dataset none OSS NCL SMOTE SMOTE + TL SMOTE + ENN EUSTSS

abalone9-18 0.3763 0.4761 0.4963 0.6023 0.6724 0.6724 0.6697
ecoliCP-IM 0.9787 0.9486 0.9787 0.9751 0.9748 0.9787 0.9787

ecoliIM 0.8167 0.8882 0.8860 0.8795 0.9060 0.8811 0.8809
ecoliIMU 0.7709 0.7600 0.8092 0.8661 0.8137 0.8671 0.8579
ecoliOM 0.8073 0.8220 0.8749 0.8412 0.8010 0.8725 0.9291
german 0.5759 0.6437 0.6753 0.6410 0.6636 0.6658 0.6419

glassBWFP 0.8138 0.6652 0.7551 0.8216 0.7599 0.7971 0.8425
glassBWNFP 0.6934 0.5648 0.7353 0.7511 0.7631 0.7427 0.7235

glassNW 0.8942 0.8101 0.9505 0.9239 0.9373 0.9344 0.9321
glassVWFP 0.5286 0.6755 0.6884 0.6994 0.7572 0.4930 0.7816

haberman 0.4280 0.4329 0.6089 0.6832 0.6292 0.6022 0.6206
new-thyroid 0.9048 0.9132 0.8810 0.9193 0.9492 0.9414 0.9463

pima 0.6908 0.6457 0.7161 0.7155 0.6990 0.7181 0.7179
vehicle 0.9172 0.8737 0.9118 0.9202 0.9216 0.9241 0.9239
vowel0 0.9808 0.9360 0.9808 0.9657 0.9764 0.9671 0.9734

yeastCYT-POX 0.0699 0.7245 0.1000 0.5585 0.6156 0.6176 0.6489

AVERAGE 0.7030 0.7363 0.7530 0.7977 0.8025 0.7922 0.8168

Table 4. Results obtained by C4.5 using GM evaluation measure over test data

dataset none OSS NCL SMOTE SMOTE + TL SMOTE + ENN EUSTSS

abalone9-18 8.10 6.50 7.30 57.50 57.30 52.60 6.30
ecoliCP-IM 2.00 2.50 2.00 2.90 3.10 2.00 2.00

ecoliIM 5.30 5.10 6.20 10.40 10.10 10.40 6.00
ecoliIMU 10.00 5.80 6.50 16.70 13.10 14.00 5.40
ecoliOM 3.90 3.40 4.40 7.80 6.60 6.80 5.40
german 91.00 35.30 57.60 159.90 121.00 82.40 33.60

glassBWFP 12.20 5.80 6.70 15.70 10.40 10.40 7.00
glassBWNFP 12.40 5.50 11.60 19.90 15.90 15.90 9.60

glassNW 6.70 4.10 4.40 9.70 6.90 7.10 5.60
glassVWFP 7.50 6.10 8.40 13.40 13.10 13.50 6.90

haberman 2.60 3.90 8.70 16.10 18.20 18.00 5.70
new-thyroid 4.10 2.60 4.30 4.90 4.90 5.00 4.30

pima 22.40 16.10 24.60 39.50 38.90 34.90 14.50
vehicle 20.60 12.50 16.30 28.40 23.40 22.50 11.10
vowel0 7.80 5.00 7.80 10.70 11.40 10.50 7.90

yeastCYT-POX 1.70 3.70 2.30 23.30 19.70 21.20 7.60

AVERAGE 13.64 7.74 11.19 27.30 23.38 20.45 8.68

Table 5. Average number of rules obtained by C4.5 decision tree
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We have seen in Table 4 that SMOTE obtains a higher
average GM than SMOTE + ENN, but Wilcoxon’s test
indicates us that SMOTE has an irregular behaviour
depending on the data sets.

• In the case of interpretability, Wilcoxon’s test again
confirms the results observed in Table 5. The combi-
nation EUSTSS + C4.5 yields a low number of rules.

• EUSTSS outperforms OSS, NCL and SMOTE in GM
measure and behaves similarly to SMOTE + TL and
SMOTE + ENN. However, the number of rules produ-
ced by C4.5 when it is applied after EUSTSS is much
lower than the produced by them. EUSTSS allows
C4.5 to induce very precise trees with few rules.

5. Concluding Remarks

The purpose of this paper is to present a proposal of
Evolutionary Training Set Selection Algorithm for C4.5 in
imbalanced data sets. The results shows that our proposal
allows to C4.5 to obtain very accurate trees with a low num-
ber of rules or leafs. The accuracy of the model is very com-
petitive with respect to advanced hybrids of over-sampling
and under-sampling, and the interpretability of the models
obtained is increased.
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