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Abstract—This paper evaluates the performance of different
classifiers when predicting wind speed from synoptic pressure
patterns. The prediction problem has been formulated as a classi-
fication problem, where the different classes are associated to four
values in an ordinal scale. The problem is relevant for long term
wind speed prediction and also for wind speed reconstruction
in areas (mainly wind farms) where there are not direct wind
measures available. The results obtained in this paper present
the Support Vector Machine as the best tested classifier for this
task. In addition, the use of the intrinsic ordering information
of the problem is shown to improve classifier performance.

Index Terms—ordinal classification, ordinal regression, wind
speed, pressure patterns, long-term wind speed prediction, wind
farms.

I. INTRODUCTION

Long-term wind speed prediction and wind speed series
analysis and reconstruction are important problems in wind
farms management. Existing approaches for both problems
are mainly based on historic registers of wind measures, from
which statistical models are constructed in order to explain the
wind behaviour. These models can be then applied to future
values of time in the case of long-term wind speed prediction,
or to values in the past in order to reconstruct or analyze wind
speed series. Different techniques have been used to obtain
these wind speed models, such as statistical methods [27],
[17], neural networks [21], [1], [20], support vector machines
[22], etc. The majority of the existing techniques to construct
long-term wind speed models are exclusively based on past
wind speed data, and some of them include other atmospheric
variables as input data such as local temperature, radiation
or pressure at the measuring point. The problem with this
approach based on wind measures is that, in some cases, these
data are not available, due to problems in the measurement
systems, or just because the terrain is a prospective site to
install a wind farm, and there is not a meteorological tower
installed yet. This problem is even harder in the case of historic
analysis or wind series reconstruction, since it is not possible
to obtain any direct wind measure if it is not available.

In these cases, the possibility of obtaining indirect measures
of wind is currently a hot topic, in which many companies
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owning wind farms are investing lots of resources. In the
case of the wind, it seems reasonable that a possible source
of indirect wind measures is the pressure pattern at synoptic
scale, since the wind at a given point is a direct function (when
we remove the effects of limit boundary layer) of the pressure
gradient. Specifically, in this paper we tackle the problem of
wind speed estimation in a given point (wind farm), from the
corresponding synoptic pressure pattern. The problem involves
daily pressure patterns in a synoptic grid, in this case centred
in Spain, and a wind speed module measure. The first novelty
of the paper is that this wind speed is discretized into different
levels of wind (classes) in order to treat it as a classification
problem. The motivation behind this is that the manager of the
wind farm can get enough information from the considered
classes in order to set functional operations for the farm (such
as wind turbines stop, for example). Note that the exact wind
speed value is not usually important for this task. Four classes
have been considered because they cover all the wind speed
spectrum measured in a given wind farm.

Ordinal classification plays an important role in various
decision making tasks. In these tasks, the classes are ordered.
However, little attention is paid to this type of learning
tasks compared with traditional nominal classification learning
(where no order is found between the classes). The character-
istics of the wind make that the problem can be defined as an
ordinal classification problem, in which the different classes
(wind speed intervals), can be ordered from the smallest to
the largest, in increasing order. The second novel point of this
paper is the use of the ordering information for obtaining better
quality classifiers, and the comparison of their performance
with respect to nominal classifiers.

We have tested different intelligent algorithms to this task,
and we compare the results of the different approaches for
three wind farms in Spain, obtaining interesting results and
conclusions.

The structure of the rest of the paper is the following:
next section presents the definition of the problem. Section III
presents the main characteristics of the algorithms tested for
this problem. The experiments of the paper are then presented
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in Section IV. Finally, Section V closes the paper giving some
concluding remarks.

II. PROBLEM DEFINITION

The problem in this paper may be summarized as follows:
Let y = {y;,i = 1,...,7} be a series of daily wind
speed discretized measures at a given point, in such a way
that y; € Y = {C1,Ca,...,Ck}, ie. y belongs to one out
of K classes which are subjected to an ordinal order (i.e.
C; < Cy < --- < Cg, where < is an ordering relationship
between the labels). Let X = {x;,i = 1,...,T} be a series
of daily synoptic-scale pressure measures in a grid. In our case,
each component of X is a matrix of 14 x 13 surface pressure
values (182 values), measured in a grid surrounding the Iberian
Peninsula (Figure 1). The problem we face in this paper is a
classification problem, consisting of obtaining a machine ®
by using a training set {(x;,y;),t =1,...,T: < T} (the first
part of the series), so that for a given value of x;, it estimates
the associated value of y;, i.e. ®(x;) — v, in such a way that
the machine ¢ minimizes an error measure in an independent
test set {(x;,9:),i = Ty + 1,..., T} (the rest of the series),
to ensure the good generalization of the machine.

Fig. 1. Synoptic pressure grid considered (Sea Level Pressure values have
been used in this paper).

Two evaluation metrics have been considered which quan-
tify the accuracy of n predicted ordinal labels for a given
dataset {yi,v5,...,y5}, with respect to the true targets
{v1,92, -, un

1) Accuracy (C) is simply the fraction of correct predic-

tions on individual samples:

1 & .
O:;;Hyi =), (1

where I(-) is the zero-one loss function and n is the
number of patterns of the dataset.

2) Mean Absolute Error (M AF) is the average deviation
of the prediction from the true target, i.e.:

1 n
MAE == _|0(y) = Oy, )

=1
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where O(Cy,) = k,1 < k < K, i.e. O(y;) is the order
of class label y;.

These measures are aimed to evaluate two different aspects
that can be taken into account when an ordinal regression
problem is considered: whether the patterns are generally well
classified (C) and whether the classifier tends to predict a class
as close to the real class as possible (M AFE).

III. EVALUATED CLASSIFIERS

In this paper, several methods have been tested for facing
the problem described in Section II. As mentioned in Section
I, one of the aims of this paper is to evaluate the improvement
of a standard classifier when including the label ordering
information in its description. In this way, the evaluated clas-
sifiers have been organized in two different groups, nominal
classifiers and ordinal classifiers. Support Vector Machine
(SVM) methods receive a special attention because they yield
the best performance for the problem of wind speed prediction
(see Section IV).

A. Nominal classifiers

Very well-known standard nominal classifiers have been
considered. We briefly describe their main characteristics in
the following subsections.

1) Support Vector Machines: The SVM [2], [5] is perhaps
the most common kernel learning method for statistical pattern
recognition. They are linear parametric models re-cast into
an equivalent dual representation in which the predictions are
based on a linear combination of a kernel function evaluated
at the training data points. The parameters of the kernel model
are typically given by the solution of a convex optimization
problem, so there is a single, global optimum.

SVM [2] can be thought as generalized perceptrons with a
kernel that computes the inner product on transformed input
vectors ¢(x), where ¢(x) denote the feature vector x in a high
dimensional reproducing kernel Hilbert space (RKHS) related
to x by a specific transformation. All computations are done
using the reproducing kernel function only, which is defined
as:

k(x,x') = (¢(x) - p(x')) , (©)

where (-) denotes inner product in the RKHS.

The basic idea behind SVMs is to separate the two different
classes — they are firstly defined for two classes and then
extended to the multiclass case — through a hyperplane which
is specified by its normal vector w and the bias b. The
hyperplane can be given as:

what yields the corresponding decision function:

fx) =y" =sen((w-o(x)) +0), )

where y* = +1 if x belongs to the corresponding class and
y* = —1 otherwise.

Beyond specifying non-linear discriminants by kernels, an-
other generalization has been proposed which replaces hard
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margins by soft margins. This way allows to handle noise
and pre-labeling errors, which often occur in practice. Slack-
variables &; are used to relax the hard-margin constraint [5].
As Vapnik [5] shows, the optimal separating hyperplane is
the one which maximizes the distance between the hyperplane
and the nearest points of both classes (called margin) and
results in the best prediction for unseen data. In this way, the
optimal separating hyperplane with maximal margin can be
formulated as the following quadratic optimization problem:

min
weRnm,£eR™

1 n
L(w.&) = 5[wl*+C> & (©)

i=1

subject to:

where y; is the class of the input pattern x;.

In order to deal with the multiclass case, a “l1-versus-1”
approach can be considered, following the recommendations
of Hsu and Lin [13]. The idea is to construct a binary classifier
per each of pair of classes and joining their multiple responses
to obtain a final prediction.

2) Other standard nominal classifiers: Other standard ma-
chine learning classifiers have been considered, given their
good performance and competitiveness. They include:

o The Logistic Model Tree (LMT) [18] classifier.

o The C4.5 classification tree inducer [25].

o The AdaBoost.M1 algorithm [9], using C4.5 as the base
learner and the maximum number of iterations set to 10
and 100 iterations (Adal0 and Adal00).

o Multi-logistic regression methods, including the Mul-
tiLogistic (MLogistic) and SimpleLogistic (SLogistic)
algorithms.

— MLogistic is an algorithm for building a multinomial
logistic regression model with a ridge estimator to
guard against over-fitting by penalizing large coef-
ficients, based on the work by le Cessie and van
Houwelingen [4]. In order to find the coefficient ma-
trices, a Quasi-Newton Method is used. Specifically,
the method used is the active-sets’ method with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

— SLogistic algorithm builds multinomial logistic re-
gression models by using the LogitBoost algorithm
[11], which was proposed by Friedman et al. for fit-
ting additive logistic regression models by maximum
likelihood. These models are a generalization of the
(linear) logistic regression models. This version of
the algorithm is based on controlling the number of
variables of the model to avoid over-fitting [18].

B. Ordinal Classifiers

In an ordinal regression problem, an example (x,y) is
composed of an input vector x € R™ and an ordinal label
(i.e., rank) y; € Y = {C1,Ca,...,Cx}, in such a way that
Cy < Cy < -++ < Cg. This looks similar to that of a multi-
class classification problem, except that the ranks are ordered.
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1) A Simple Approach to ordinal regression (ASA): 1t is
straightforward to realize that ordinal information allows ranks
to be compared. For a fixed rank O(y;) = k, an associated
question could be “is the rank of x greater than k?”. Such
a question is exactly a binary classification problem, and the
rank of x can be determined by asking multiple questions for
k =1,2, until (K —1). Frank and Hall [8] proposed to solve
each binary classification problem independently and combine
the binary outputs to a rank.

2) Extended Binary Classification (EBC): Although the
approach proposed by Frank and Hall [8] is simple, the
generalization performance using the combination step cannot
be easily analyzed. The EBC method [19] works differently.
First, all the binary classification problems are solved jointly
to obtain a single binary classifier. Second, a simpler step is
used to convert the binary outputs to a rank, and generalization
analysis can immediately follow.

Let us assume that f(x, k) is a binary classifier for all the
associated questions above. A good prediction would be the
following: f(x,k) =1 (“yes”) for k =1to k =y — 1 (where
y is the rank associated to the pattern x) and f(x,k) = 0
(“no”) afterwards.

Furthermore, the ordinal information can help to model
the relative confidence in the binary outputs. That could be
possible if we associate the absolute value of f(x,k) to the
confidence of the outputs. A possible ranking function r(x)
based on all the binary answers f(x, k) is the following:

K—1
r(x) =1+ > [f(x.k) > 0], ®)
k=1
being [-] a Boolean test which is 1 if the inner condition is
true, and O otherwise. In summary, the EBC method is based
on the following three steps:
1) Transform all training samples (x;,y;) into extended
samples (xgk),yi(k)), 1<k<K-1:
x(V = (xi k), o =20k <O@)] 1. )
but weighting these samples in the following way:

Wy, & = [Cow) .k — Cowy) ksl (10

where C' is a V-shaped cost matrix, with CO(yi),k—l >
CO(yi),k if k < O(yz) and C(’)(yi),k' < C(’)(yi),k+1 if
k> O(y:) -

2) All the extended examples are then jointly learned by a
binary classifier f with confidence outputs, aiming at a
low weighted 0/1 loss.

3) The ranking rule (8) is used to construct a final predic-
tion for new samples.

This framework can be adapted for Support Vector Ma-
chines, by using a threshold model to estimate f(x,k):

fk) = g(x) — O, (11)

where ¢(x) is a non-linear function defined as g(x) =

(W - o(x)).
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As long as the threshold vector © is ordered, i.e., 61 <
0y < --- < Ox_1, the function f is rank-monotonic. The
adaptation of the SVM framework can be performed by
simply defining extended kernels. The extended kernels of the
extended examples (x, k) will be the original kernel plus the
inner product between the extensions:

K((x,k), (X', k) = (¢(x) - 6(x)) + (ex - er),  (12)

where E is a coding matrix of (K — 1) rows and ey, is the
k-th row of this matrix. Depending on the selection of E,
several SVM algorithms can be reproduced. In this paper, we
use E = Ix_; and the absolute value cost matrix, applied to
the standard soft-margin SVM, so:

Fx®) = ((1,0), (6(x), er)) -

IV. EXPERIMENTS

13)

In the following subsections, the description of the datasets
and the experimental design is given. Then, the details on the
preprocessing of the datasets are explained, and finally the
results are included.

A. Dataset Description and Experimental Design

Three different wind farms have been considered for this
study, resulting in three datasets (M, U and Z). Each dataset
includes a series of discretized wind speed values (targets),
taken in a tower at 40m of height, and averaged over 24 hours
to obtain daily data values. On the other hand, a series of
grids of average daily pressure maps for the same period have
been obtained from the National Center for Environmental
Prediction/National Center for Atmospheric Rearch Reanalysis
Project (NCEP/NCAR) [16], [23], which are public data
profusely used in climatology and meteorology applications.
As previously mentioned, we have considered an uniform
grid in latitude and longitude, shown in Figure 1, with 182
measurement points, and each element of this grid is one input
variable.

Fig. 2. Location of the wind farms considered in this work.

For each wind farm, two different sets are obtained, one
for training the models and another one for assessing the
performance of the algorithms. In this way, the structure of
the different datasets used in this study is given in Table I
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TABLE I
STRUCTURE OF TRAINING AND TEST SETS: TOTAL NUMBER OF PATTERNS
(Size), NUMBER OF PATTERN IN EACH CLASS (C1,C2,C3,Ca)
(Distribution) AND FINAL NUMBER OF PRINCIPAL COMPONENTS (PCs)

Wind Training Test

farm Size Distribution Size Distribution PCs!
M 2231  (220,1590,396,52) 1115  (173,779,147,16) 10
U 2017 (527,1167,280,43) 1008 (361,547,85,15) 6
Z 1749 (901,637,184,27) 874 (516,279,68,11) 13

The structures of these datasets are challenging, because the
distribution of the different classes is clearly imbalanced, with
very few situations of high wind speed (class C4) and lot of
patterns belonging to a moderate wind speed class (class C2).

Since all the tested algorithms are deterministic, they will be
run once, deriving a model from the training set and evaluating
its accuracy over the test set. Both training and test sets are
parts of a wind series, so it is not advisable to do different
random partitions of them.

For the selection of the SVM’s hyperparameters (regu-
larization parameter, C, and width of the Gaussian func-
tions, ), a grid search algorithm was applied with a ten-
fold cross-validation, using the following ranges: C €
{1073,1072,...,10%} and v € {1073,1072,...,10%}. This
cross-validation has been applied only taking into account the
training data, and then repeating the process with the best
parameter combination using the complete training set.

B. Preprocessing of the dataset

As previously said, our vector of inputs is formed by 14 x13
surface pressure values (182) values in a grid around the
Iberian Peninsula), which results in a very high number of
variables. When too many inputs are presented to the standard
machine learning algorithms, a very well known problem
appears, the curse of dimensionality, which can decrease the
performance of these algorithms and significantly increase the
computational cost.

With the aim of alleviating this problem, a simple approach
has been applied based on the standard technique of Principal
Component Analysis (PCA) [15]. PCA is the predominant
linear dimensionality reduction technique, and has been widely
applied to datasets in all scientific domains. Generally speak-
ing, PCA maps data points from a high dimensional space to
a low dimensional space, while keeping all the relevant linear
structure intact.

PCA algorithm returns so many principal components (PCs,
linear combinations of the input variables) as the total number
of inputs, but they are sorted in the following way: the first PC
has as high variance as possible (that is, accounts for as much
of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the
constraint that it will be orthogonal to (i.e. uncorrelated with)
the preceding components. One should still decide how many
of the first PCs are retained when reducing the dimensionality
of the problem.

With this aim, we have applied the algorithm included in
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Deciding # of Principal Components::
Input: Training dataset (7'r), Test dataset (1'e)
Output: Projected training dataset (7'7*), Projected test
dataset (Te*)
1: Apply PCA to T'r, without considering T'e
2: Max < Number of PCs retaining a 99% of the total
variance of the dataset
3: for i =1 — Maz do
Tr; < T'r projected over the ¢ first PCs.
Apply a ten-fold cross-validation method, considering
Tr; data and the LDA classifier.
e; < cross-validated error of the classifier.
end for
n <— argmin,e;
Tr* <— T'r projected over the n first PCs.
Te* + Te projected over the n first PCs.
return 7r* and Te*

RANE

e Y ® R

—_—

Fig. 3. Algorithm for deciding the number of principal components

Fig. 3. The idea is very simple, the coefficients of the PCs
are obtained using the training data and we try all possible
combinations from 1 to the number of PCs that retain a 99%
of the variance. A 10-fold cross-validation is applied for each
combination, estimating the error with one of the simplest
classifier possible in order to limit the computational time (a
Linear Discriminant Analysis, LDA). Once the best number of
PCs is decided, training and test data are projected into them,
and the reduced datasets are returned.

C. Results

The results for the two different evaluation measures con-
sidered (C and M AFE, see Equations (1) and (2)) are included
in Tables II and III, respectively. Based on the C' and M AE
values, the ranking of each method in each park is obtained
(R = 1 for the best performing method and R = 9 for the
worst one). The mean accuracy and M AE (C and M) as well
as the mean ranking (R and Rj,) are also included in Tables
Il and III. The first conclusion is that very high accuracies
are obtained, what reveals that considering the problem as
a classification task can provide an accurate information of
the wind farm (with a lot of values higher than 70% of well
predicted samples).

From these tables, the SVM methods seems to be the
most competitive ones from all the different alternatives con-
sidered. If we analyse the mean ranking and performance
the EBC(SVM) methodology obtains the better results for
both measures, the second best method being standard SVM.
However, high accuracy values can be masking a lower ranking
performance (i.e. a high M AF value), because the classifier
can tend to assign rank values far from the actual ones.

To determine the statistical significance of the rank differ-
ences observed for each method in the different datasets, a
non-parametric Friedman test [10] has been carried out with
the C' and M AFE rankings of the different methods (since
a previous evaluation of the C' and M AFE values results in
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TABLE 11
TEST ACCURACY (C(%)) RESULTS OBTAINED BY USING THE DIFFERENT
METHODS EVALUATED

Type of Wind farm
classifier ~ Classifier M U Y4 C(%) Rc
SVM 7345 6250 69.45 6847  2.67
C4.5 70.04 5754 5572 61.10 7.67
Adal0(C4.5) 6843 6339 61.10 6431 5.67
Nominal ~ Adal00(C4.5) 7220 6250 6636  67.02  3.33
LMT 70.94  62.80 64.65 66.13  4.00
MLogistic 71.66 5744 6224 63778  5.67
SLogistic 7121 5734 6236 63.64 6.17
Ordinal ASA(C4.5) 70.76 5734 56775 61.62  7.83
EBC(SVM) 7390 6250 7048 68.96  2.00

The best result is in bold face and the second best result in italics

TABLE 1II
TEST MEAN ABSOLUTE ERROR (M AFE) RESULTS OBTAINED BY USING
THE DIFFERENT METHODS EVALUATED

Type of Wind farm

classifier  Classifier M U Z M Ry
SVM 0.265 0381 0314 0320 217
C4.5 0.310 0434 0487 0410 8.17
Adal0(C4.5) 0.318 0.382 0420 0.373 5.67

Nominal  Adal00(C4.5) 0.281 0.389 0.354 0.341 3.67
LMT 0293 0.383 0.373 0.350 4.50
MLogistic 0.288 0433 0405 0375 5.33
SLogistic 0.293 0434 0400 0.376 6.00

Ordinal ASA(C4.5) 0299 0.438 0463 0400 8.00
EBC(SVM) 0.261 0382 0.295 0313 1.50

The best result is in bold face and the second best result in italics

rejecting the normality and the equality of variances hypoth-
esis). The test shows that the effect of the method used for
classification is statistically significant at a significance level of
a = 5%, as the confidence interval is Cy = (0, Fy 05 = 2.09)
and the F-distribution statistical values are F* = 2.92 ¢ Cj
for C and F* = 5.01 ¢ C, for M AE. Consequently, the
null-hypothesis stating that all algorithms perform equally in
mean ranking is rejected.

It has been noted that the approach that compares all
classifiers to each other in a post-hoc test is not as sensitive as
the approach comparing all classifiers to a given classifier (a
control method). The Bonferroni-Dunn test [7] is an example
of this latter type of comparison with a control method. This
test has been applied to both C' and M AFE rankings using
EBC(SVM) as the control method. The test concludes that
there are not significant differences when comparing C' values,
and that the differences are significant at a significance level
of « = 5% when EBC(SVM) is compared to C4.5 and
ASA(C4.5) (with differences of ranking of 6.67 and 6.50,
respectively).

Consequently, an important conclusion of our study is that
the use of the ordering information improves the results
obtained by the nominal classifiers, specially when taking
into account the M AFE measure: EBC(SVM) improves the
accuracy and M AFE values of standard SVM for the three
wind farms considered; ASA(C4.5) also improves the accuracy
and M AFE values of standard C4.5 method for all the wind
farms except for the U wind farm.
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V. CONCLUSIONS

This paper introduced a new approach for predicting wind
speed, based on a classification task rather than the usual
regression approach. Wind speed was discretized in four
different ranges, which gather the main information needed
by the experts when managing the wind farm. On the other
hand, synoptic pressure measures have been considered as the
input variables. The results of this preliminary study show
that the best performing method is the SVM, with very high
accuracy and low M AE values. This paper has also shown
how ordering information (more precisely, the EBC algorithm)
can still improve the performance of SVM, yielding to more
accurate predictions.
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