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Abstract—This contribution is focused on the enhancement of
the precision for Fuzzy Rule Based Classification Systems by the
refinement of the Knowledge Base. Specifically, we make use of
a Hierarchical Fuzzy Rule Based Classification System, which
consists in the application of a thicker granularity in order to
generate the initial Rule Base, and to reinforce those problem
subspaces that are specially difficult by means of the application
of rules with a higher granularity. Furthermore, we will perform
a genetic rule selection process in order to obtain a compact and
accurate model.

Our experimental results show the goodness of this approach,
especially when the number of classes is high, which usually
implies a higher difficulty in the separability of the examples.
Our conclusions are supported by means of the corresponding
statistical tests.

I. INTRODUCTION

Linguistic Fuzzy Rule Based Classification Systems (FR-
BCSs) [1] are a very useful tool in the field of Data Min-
ing. They provide an accurate model which is also easily
interpretable by the end-user or expert by means of the use
of linguistic labels. The main handicap in the application of
linguistic systems is the hard restrictions on the fuzzy rule
structure,which may suppose a loss in accuracy when dealing
with some complex systems, i.e. high dimensional problems,
when the classes are overlapped or in the presence of noise.

In this contribution, we propose the use of a hierarchical
environment in order to improve the behaviour of linguistic
FRBCSs [2]. This approach preserves the original descriptive
power and increases its accuracy by reinforcing those problem
subspaces that are specially difficult. Therefore, we focus
our efforts in enhancing the classification performance in the
boundary areas of the problem, obtaining a good separability
among the classes.

We consider the modification of the Knowledge Base (KB)
structure using the concept of “layers” that was introduced in
[3], defined by the authors as Hierarchical Knowledge Base
(HKB). In order to obtain a Hierarchical Fuzzy Rule Base
Classification System (HFRBCS), we will apply a two-level
learning methodology:

1) A Linguistic Rule Generation (LRG) method is used to
create the initial Rule Base (RB), from which we extract
the Hierarchical Rule Base (HRB).

2) A Genetic Algorithm (GA) is employed to select the
best cooperative rules from the HRB.

To obtain the initial linguistic fuzzy models, we will employ
a simple inductive LRG-method, the Chi et al.’s method [4],
using triangular membership functions for the fuzzy partitions
and rule weights in the consequent of the rules [5].

Our objective is to analyse the behaviour of the HFRBCS
by contrasting its performance with the one obtained by
the simple Chi algorithm with different granularity levels in
standard classification. We have selected 15 data-sets from
UCI repository [6] within the experimental framework. The
measure of performance is based on accuracy rate and the
significance of results is supported by the proper statistical
analysis as suggested in the literature [7], [8].

This contribution is set up as follows. Section II we give a
brief introduction to linguistic FRBCS and the description of
the fuzzy algorithm selected for our study. Then, in Section
III, we describe the concept of a HFRBCS. In Section IV
we present the two-level methodology to automatically design
an HFRBCS from a generic LRG-method. In Section V we
include our experimental analysis. Finally, in Section VI some
concluding remarks are pointed out.

II. FUZZY RULE BASED CLASSIFICATION SYSTEMS AND

LINGUISTIC RULE GENERATION METHOD

Any classification problem consists of m training patterns
xp = (xp1, . . . , xpn), p = 1, 2, . . . , m from M classes where
xpi is the ith attribute value (i = 1, 2, . . . , n) of the p-th
training pattern.

In this work we use fuzzy rules of the following form for
our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj
(1)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an
n-dimensional pattern vector, Aji is an antecedent fuzzy set,
Cj is a class label, and RWj is the rule weight [9].

Fuzzy learning methods are the basis to build a FRBCS.
The algorithm used in this work is the method proposed in
[4], that we have called the Chi et al.’s rule generation. To
generate the fuzzy RB this FRBCSs design method determines
the relationship between the variables of the problem and
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establishes an association between the space of the features
and the space of the classes by means of the following steps:

1) Establishment of the linguistic partitions. Once the do-
main of variation of each feature Ai is determined, the
fuzzy partitions are computed.

2) Generation of a fuzzy rule for each example xp =
(xp1, . . . , xpn, Cp). To do this is necessary:

2.1 To compute the matching degree μ(xp) of the
example to the different fuzzy regions using a
conjunction operator.

2.2 To assign the example xp to the fuzzy region with
the greatest membership degree.

2.3 To generate a rule for the example, whose an-
tecedent is determined by the selected fuzzy region
and whose consequent is the label of class of the
example.

2.4 To compute the rule weight.

Rules with the same antecedent can be generated during
the learning. If they have the same class in the consequent we
remove one of the duplicated rules, but if it is different, only
the rule with the highest weight is kept in the RB.

III. HIERARCHICAL FUZZY RULE BASED CLASSIFICATION

SYSTEM

The HFRBCS approach [3] presents a more flexible KB
structure that allows to improve the accuracy of the FRBCSs
without losing their interpretability: the HKB, which is com-
posed of a Hierarchical Data Base (HDB) and an HRB.

The HKB is composed of a set of layers, and each layer is
defined by its components in the following way:

layer(t, n(t)) = DB(t, n(t)) + RB(t, n(t)), (2)

with n(t) being the number of linguistic terms in the fuzzy
partitions of layer t, DB(t, n(t)) being the Data Base (DB)
which contains the linguistic partitions with granularity level
n(t) of layer t (t-linguistic partitions), and RB(t, n(t)) being
the RB formed by those linguistic rules whose linguistic
variables take values in DB(t, n(t)) (t-linguistic rules). For the
sake of simplicity in the descriptions, the following notation
equivalences are established:

DB(t, n(t)) ≡ DBt and RB(t, n(t)) ≡ RBt. (3)

We must point out that we are using linguistic partitions
with the same number of linguistic terms for all input vari-
ables, composed of symmetrical triangular-shaped and uni-
formly distributed membership functions (see Fig. 1). The
number of linguistic terms in the t-linguistic partitions is
defined in the following way:

n(t) = (n(1) − 1) · 2t−1 + 1 , (4)

with n(1) being the granularity of the initial fuzzy partitions.
Figure 1 (left) graphically depicts the way in which a

linguistic partition in DB1 becomes a linguistic partition in
DB2. Each term of order k from DBt, S

n(t)
k (Sn(1)

k in the

figure), is mapped into the fuzzy set S
2·n(t)−1
2k−1 , preserving the

former modal points, and a set of n(t)-1 new terms is created,
each one between S

n(t)
k and S

n(t)
k+1 (k = 1, ..., n(t) − 1) (see

Figure 1 right).
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Fig. 1. Two layers of linguistic partitions which compose the HDB and
mapping between terms from successive DBs.

The main purpose of developing an HRB is to divide
the problem space in a more accurate way. To do so, those
linguistic rules from RB(t, n(t)) –RBt– that classify a sub-
space with bad performance are expanded into a set of
more specific linguistic rules, which become their image in
RB(t + 1, 2 · n(t) − 1) –RBt+1–. This set of rules classify
the same subspace that the former one and replaces it. As a
consequence of the previous definitions, we could now define
the HKB as the union of every layer t:

HKB = ∪tlayer(t, n(t)). (5)

In this contribution, we will just consider a two-layer HKB
which allows us to produce a refinement of simple FRBCS
to increase their accuracy, preserving their structure and de-
scriptive power, and reinforcing only the classification of those
problem subspaces with more difficulties by a hierarchical
treatment of the rules generated in these zones.

IV. TWO-LEVEL LEARNING METHOD FOR BUILDING

HFRBCSS

In this section we will describe the algorithm to obtain an
HFRBCS, which is based on a two-stage methodology:

1) HKB Generation Process: An HRB is created from a
simple RB obtained by an LRG-method.

2) HRB Genetic Selection Process: The best cooperative
rules are selected by means of a GA.

A. Hierarchical Knowledge Base Generation Process

We use an existing inductive LRG-method and a previously
defined DB1. Specifically, as we state in Section II, we
consider as LRG-method the Chi et al. [4] approach, that will
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lead us to obtain simple linguistic fuzzy models, although any
other technique could be used.

Two measures of error are used in the algorithm: a global
measure, which is used to evaluate the complete RB, and
a local measure, used to determine if an individual rule is
expanded. Their expressions are defined below:

1) Global measure. We will employ the accuracy per class,
computed as:

Acci (Xi, RB) =
|{xp∈Xi / FRM(xp,RB)=Class(xp)}|

|Xi|
(6)

where | · | is the number of patterns, with Xi being
the subset of examples of the i-th class (i ∈ 1...M ),
FRM(xp, RB) is the output class computed following
the Fuzzy Reasoning Method (FRM) using the current
RB and Class(xp) is the class label for example xp.

2) Local measure. The accuracy for a simple rule, R
n(1)
j ,

calculated over X, is shown as follows:

Acc
(
X,R

n(1)
j

)
=

|X+(R
n(1)
j )|

|X(R
n(1)
j )|

(7)

X+(R
n(1)
j ) = {xp ∈ X / μ

R
n(1)
j

(xp) > 0

and Class(xp) = Class(R
n(1)
j )}

(8)

X(R
n(1)
j ) = {xp ∈ X / μ

R
n(1)
j

(xp) > 0} (9)

where Class(·) is a function that provides the class label
for a pattern, or for a rule. We must note that X+(R

n(1)
j )

and X(R
n(1)
j ) only include those examples that the rule

actually classifies, since we will use as FRM the winning
rule approach.

TABLE I
TWO-LEVEL LEARNING METHOD

HIERARCHICAL KNOWLEDGE BASE GENERATION PROCESS

Step 0. RB(1,n(1)) Generation Process
Step 1. RB(2,2·n(1)-1) Generation Process
Step 2. Summarization Process

HIERARCHICAL RULE BASE GENETIC SELECTION PROCESS

Step 3. HRB Genetic Selection Process

Now we will describe the HKB generation process (sum-
marized in Table I), which basically consists of the following
steps:

Step.0 RB1 Generation. Generate the rules from
DB1 by means of an existing LRG-method:
RB1=LRG-method(DB1, X).

Step.1 RB2 Generation. Generate RB2 from RB1, DB1 and
DB2.

a) Calculate the global error of RB1 per class:
Acci

(
Xi, RB1

)
, i = 1, . . . , M .

b) Calculate the local error of each 1-linguistic rule:
Acc

(
X,R

n(1)
j

)
.

c) Select the 1-linguistic rules with bad performance
which will be expanded (the expansion factor α

may be adapted in order to have more or less
expanded rules):

R′(i, j) =

⎧⎪⎨
⎪⎩

RB1
bad, If Acc

(
X, R

n(1)
j

)
≤

(1 − α) · Acci

(
Xi, RB1

)
RB1

good, otherwhise.
(10)

where Class(R
n(1)
j ) = i.

d) Create DB2.
e) For each bad performance 1-linguistic rule to be

expanded, R
n(1)
j ∈ RBbad:

i) Select the 2-linguistic partitions terms from
DB2 for each rule. For all linguistic terms
considered in R

n(1)
j , i.e., S

n(1)
jk defined in DB1,

select those terms S
2·n(1)−1
h in DB2 that signif-

icantly intersect them. We consider that two lin-
guistic terms have a “significant intersection”
between each other, if the maximum cross level
between their fuzzy sets in a linguistic partition
overcomes a predefined threshold δ:

I(S
n(1)
jk ) = {S

2·n(1)−1
h ∈ DB2/maxu∈Uk

min{μ
S

n(1)

jk

(u), μ
S

2·n(1)−1

h

(u)} ≥ δ}

(11)
where δ ∈ [0, 1].

ii) Combine the previously selected s sets I(S
n(1)
jk )

by the following expression:

I(R
n(1)
j ) = I(S

n(1)
j1 ) × · · · × I(S

n(1)
js ) (12)

iii) Extract 2-linguistic rules, which are the expan-
sion of the bad 1-linguistic rule R

n(1)
j . This task

is performed by the LRG-method, which takes
I(R

n(1)
j ) and the set of examples X(R

n(1)
j ) as

its parameters:

CLR(R
n(1)
j ) = LRG-method(I(R

n(1)
j ), X(R

n(1)
j ))

= {R
2·n(1)−1
j1

, ..., R
2·n(1)−1
jL

}
(13)

with CLR(R
n(1)
j ) being the image of the ex-

panded linguistic rule R
n(1)
j , i.e., the candidates

to be in the HRB from rule R
n(1)
j .

Step.2 Summarization. Obtain a Joined set of Candidate Lin-
guistic Rules (JCLR), performing the union of the group
of the new generated 2-linguistic rules and the former
good performance 1-linguistic rules:

JCLR = RB1
good∪(∪jCLR(R

n(1)
j )), R

n(1)
j ∈ RB1

bad.

Step.3 HRB Selection. Simplify the set JCLR by removing
the unnecessary rules from it and generating an HRB
with good cooperation. In JCLR −where rules of
different hierarchical layers coexist−, it may happen
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that a complete set of 2-linguistic rules which replaces
an expanded 1-linguistic rule does not produce good
results. However, a subset of this set of 2-linguistic rules
may work properly. A genetic process is considered to
put this task into effect, which is explained on detail in
the next subsection.

B. Hierarchical Rule Base Genetic Rule Selection Process

In the previous part of this section we have mentioned
that an excessive number of rules may not produce a good
performance and it makes difficult to understand the model
behaviour. We may find different types of rules in a large
fuzzy rule set: irrelevant rules, which do not contain significant
information; redundant rules, whose actions are covered by
other rules; erroneous rules, which are wrong defined and
distort the performance of the FRBCS; and conflicting rules,
which perturb the performance of the FRBCS when they
coexist with others.

In this work, we consider the CHC genetic model [10]
in order to make the rule selection process, since it has
achieved good results for binary selection problems [11]. In
the following, the main characteristics of this genetic approach
are presented.

1) Coding Scheme and Initial Gene Pool: It is based
on a binary coded GA where each gene indicates
whether a rule is selected or not (alleles ‘1’ or ‘0’
respectively). Considering that N rules are contained
in the preliminary/ candidate rule set, the chromosome
C = (c1, . . . , cN ) represents a subset of rules composing
the final HRB, such that:

If ci = 1 Then (Ri ∈ HRB ) Else (Ri /∈ HRB ),

with Ri being the corresponding i-th rule in the candi-
date rule set and HRB being the final hierarchical rule
base.
The initial pool is obtained with an individual having
all genes with value ‘1’ and the remaining individuals
generated at random in {0, 1}, so that the initial HRB
is taking into account in the genetic selection process.

2) Chromosome Evaluation: The fitness function is simply
the accuracy rate of the HRB.

3) Crossover Operator: The half uniform crossover scheme
(HUX) is employed. An incest prevention mechanism
is considered in order to apply this operator, i.e., two
parents are crossed if their hamming distance divided
by 2 is higher than a predetermined threshold, L. The
threshold value is initialized as: L = (#Genes/4.0)
and decremented by one when the population does not
change in one generation.

4) Restarting approach: To get away from local optima,
this algorithm uses a restart approach. In this case, the
best chromosome is maintained and the remaining are
generated at random in {1,0}. The restart procedure
is applied when the threshold value is reached, which
means that all the individuals coexisting in the popula-
tion are very similar. We will stop the genetic process

if more than 3 restarts are performed without including
any new chromosome in the population

V. EXPERIMENTAL STUDY

In this section we will first present our experimental frame-
work, providing details of the real-world problems chosen
for the experimentation, the configuration parameters and the
statistical tests applied to compare the results obtained along
the experimental study. Then, we will present our empirical
results and we will extract the conclusions derived from the
performance obtained by the HFRBCS.

A. Experimental Framework

Table II summarizes the properties of the selected data-sets.
It shows, for each data-set, the number of examples (#Ex.),
the number of attributes (#Atts.), and the number of classes
(#Cl.). The magic, page-blocks, penbased and ringnorm data-
sets have been stratified sampled at 10% in order to reduce
their size for training. In the case of missing values (wisconsin)
we have removed those instances from the data-set.

To develop the different experiments we consider a 10-
folder cross-validation model, i.e., 10 random partitions of
data with a 10%, and the combination of 9 of them (90%)
as training and the remaining one as test. For each data-set
we consider the average results of the ten partitions.

TABLE II
SUMMARY DESCRIPTION OF THE DATA-SETS

id Data-set #Ex. #Atts. #Cl.
bup bupa (liver disorder) 345 6 2
eco ecoli 336 7 8
gla glass identification 214 9 7
iri iris 150 4 3
mag magic 1,902 10 2
new new-thyroid 215 5 3
pag page-blocks 548 10 5
pen pen-based recognition 1,099 16 10
pim pima 768 8 2
rin ringnorm 740 20 2
shu shuttle 2,175 9 7
veh vehicle 846 18 4
win wine 178 13 3
wis wiscosin 683 9 2
yea yeast 1,484 8 10

We will use the following configuration for the FRBCS ap-
proach: product T-norm as conjunction operator, together with
the Penalized Certainty Factor heuristic [5] for the rule weight
and the winning rule approach for the FRM. Furthermore, we
selected the following values for the parameters in the learning
method for building HFRBCSs:

• Rule Generation:

– δ,n(t+1)-linguistic partition terms selector: 0.1
– α, used to decide the expansion of the rule: 0.2

• GA Selection:

– Number of evaluations: 10,000
– Population length: 61

Finally, we must point out that in this contribution, we
use the hypothesis testing techniques to provide statistical
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support to the analysis of the results [12], [13]. Specifically,
we will use non-parametric tests, due to the fact that the initial
conditions that guarantee the reliability of the parametric tests
may not be satisfied, making the statistical analysis to lose
credibility with these type of tests [7], [8]. Specifically, we use
the Iman-Davenport test [13] to detect statistical differences
among a group of results and the Holm post-hoc test [14] in
order to find which algorithms reject the hypothesis of equality
with respect to a selected control method.

Furthermore, we consider the average ranking of the algo-
rithms in order to show graphically how good a method is with
respect to its partners. This ranking is obtained by assigning
a position to each algorithm depending on its performance for
each data-set. The algorithm which achieves the best accuracy
on a specific data-set will have the first ranking (value 1); then,
the algorithm with the second best accuracy is assigned rank
2, and so forth. This task is carried out for all data-sets and
finally an average ranking is computed as the mean value of
all rankings.

B. Empirical Analysis

Table III shows the performance results, ordered incremen-
tally by the number of classes, for the three methods used
in the experimentation, the Chi et al.’s method with 3 and
5 labels and the HFRBCS. We can observe that in almost all
data-sets the HFRBCS obtains better results, which means that
this approach benefits both the learning phase of the FRBCS
(improvement in train) and the generalisation of the output
model (improvement in test).

TABLE III
ACCURACY RESULTS FOR CHI WITH 3 AND 5 LABELS AND THE HFRBCS

Chi3 Chi5 HFRBCS
Data-Set #Cl. Train Test Train Test Train Test
bup 2 60.03 57.87 73.60 59.42 84.24 62.59
mag 2 75.91 75.24 82.89 76.82 85.66 78.55
pim 2 75.72 72.40 86.12 69.80 91.23 72.14
rin 2 59.44 52.57 98.72 56.76 99.73 92.97
wis 2 98.09 91.21 100.0 66.77 100.0 91.07
iri 3 93.73 94.00 96.49 95.33 94.93 92.67
new 3 85.87 84.24 92.83 91.26 97.61 94.46
win 3 98.74 92.68 100.0 75.95 99.94 91.60
veh 4 65.87 60.77 88.37 64.06 93.66 67.26
pag 5 92.60 91.61 94.98 92.70 95.14 92.70
gla 7 65.86 60.04 74.63 58.71 82.05 61.73
shu 7 80.27 80.23 84.08 84.00 84.08 84.05
eco 8 79.46 78.33 90.74 84.53 93.26 87.19
pen 10 98.60 94.82 100.0 78.36 99.94 95.00
yea 10 29.63 29.18 59.34 56.34 63.99 57.48
Mean X 77.32 74.35 88.19 74.05 91.03 81.43

In order to validate our results, we show the ranking of
the different models by means of the procedure described in
subsection V-A. Figure 2 shows the average ranking computed
for the three different alternatives: the two basic approaches
with 3 and 5 labels and the HFRBCS. We can observe that
the HFRBCS is the best option, as the basic FRBCSs obtains
the worst ranking with a much higher value than the former.

Next, we perform a Iman-Davenport test for detecting
significant differences among the results of these approaches.

2.40

1.37

2.23

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Chi3 Chi5 HFRBCS

Fig. 2. Ranking in accuracy for the Chi et al.’s method with 3 and and the
HFRBCS approach

The associated p-value is equal to 0.0058, which implies that
there are significant differences among the results and thus,
we should apply a post-hoc test, in this case the Holm test.
We want to compare the HFRBCS versus the FRBCS with 3
and 5 labels.

The result of this test is shown in Table IV, in which the
algorithms are ordered with respect to the z value obtained.
Thus, by using the normal distribution, we can obtain the
corresponding p-value associated with each comparison and
this can be compared with the associated α/i in the same
row of the table to show whether the associated hypothesis of
equal behaviour is rejected in favour of each corresponding
algorithm against the control method or not.

TABLE IV
HOLM TEST FOR THE HFRBCS AND FRBCS (CHI WITH 3 AND 5

LABELS). HFRBCS IS THE CONTROL METHOD

i algorithm z p α/i Hypothesis (α = 0.05)
2 Chi3 2.82990 0.00466 0.025 Rejected for HFRBCS
1 Chi5 2.37346 0.01762 0.05 Rejected for HFRBCS

We observe from the results of this test that the HFRBCS
outperforms the basic Chi et al.’s method for both granularity
levels. We can conclude then that the use of a hierarchical
system approach derives in a benefit in performance for
linguistic FRBCSs.

Finally, we present the number of rules obtained with each
method in Table V. We can observe that the number of rules
increases when a fine granularity is applied. In the case of
the HFRBCS we have also a higher number of rules in the
second level of granularity (5 labels per variable) and for this
reason there are a loss in the interpretability in the use of the
two-partitions scheme.

In order to detect whether this high number of rules is
caused by the complexity of the problems or to the effective-
ness of the genetic optimisation process, we show in Table
VI the number of rules before and after the genetic rule
selection process, together with the percentage of reduction
both globally and in each granularity level. We observe that in
average we remove approximately a 30% of the total rules, in-
dependently of their granularity. Furthermore, in Table VII we
also show the accuracy obtained before and after the genetic
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rule selection, observing that the percentage of enhancement
in train is quite low due to the fact that in some cases the initial
accuracy is above the 90% and the generalisation capability
(test improvement) is above 1.5 points in only a third part of
the cases. This issues allow us to direct our future work to
develop new mechanisms for the genetic rule selection that
will enable the final KB to have a lower complexity together
with a higher precision.

VI. CONCLUDING REMARKS

In this work we have analysed a hierarchical methodology
for FRBCSs in order to increase the precision of the output
model. Our empirical results have shown that the use of a
two-level HKB derives on a benefit in the performance since
we apply a fine granularity specifically on those areas of the
problem in which the classes are difficult to discriminate.
We have observed that the HFRBCS have a good behaviour
especially when the number of classes is high (4 or more
classes).

Our future work will be oriented to analyse the use of the
hierarchical model over a wider benchmark of data-sets and
with other LRG-methods. We will also focus on the reduction
of the length of the final HRB and the integration of the genetic
rule selection with a genetic tuning of the HDB in order to
obtain a higher improvement of the fuzzy system.

TABLE V
AVERAGE #RULES FOR CHI WITH 3 AND 5 LABELS AND HFRBCS

Chi3 Chi5 HFRBCS
Data-Set #Cl. All 3labels 5labels
bup 2 43.3 111.4 120.0 12.7 107.3
mag 2 153.0 599.1 782.6 56.9 725.7
pim 2 105.2 401.5 531.0 45.9 485.1
rin 2 89.9 590.0 633.4 47.0 586.4
wis 2 224.0 296.6 613.4 216.3 397.1
iri 3 16.5 41.2 18.4 14.0 4.4
new 3 18.4 45.1 38.0 8.2 29.8
win 3 120.2 159.4 144.9 74.7 70.2
veh 4 227.8 640.4 2041.5 118.7 1922.8
pag 5 19.6 53.0 39.4 12.9 26.5
gla 7 27.1 75.0 83.3 15.4 67.9
shu 7 6.8 21.7 31.2 5.8 25.4
eco 8 43.5 112.8 116.6 19.8 96.8
pen 10 685.8 950.7 1307.0 510.4 796.6
yea 10 25.4 137.9 216.0 9.9 206.1
Mean X 120.4 282.4 447.8 77.9 369.9
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