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Abstract. In this contribution, we study the influence of an Evolution-
ary Adaptive Inference System with parametric conjunction operators
for Fuzzy Rule Based Classification Systems. Specifically, we work in the
context of highly imbalanced data-sets, which is a common scenario in
real applications, since the number of examples that represents one of the
classes of the data-set (usually the concept of interest) is usually much
lower than that of the other classes.

Our experimental study shows empirically that the use of the para-
metric conjunction operators enables simple Fuzzy Rule Based Classifi-
cation Systems to enhance their performance for data-sets with a high
imbalance ratio.
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1 Introduction

This work is focused on the use of Fuzzy Rule Based Classification Systems
(FRBCSs), for classification with imbalanced data-sets [1]. This problem occurs
when one or more classes are represented by few examples (known as positive
classes), whereas the others are described by many instances (negative classes).

Standard classification algorithms are usually biased towards the majority
classes trying to maximize the overall accuracy and their performance is poor
on highly imbalanced data-sets. In our previous study on the topic [2], we stud-
ied different configurations for FRBCS in order to determine the most suitable
model in this framework. Furthermore, we showed the necessity to apply a re-
sampling procedure. Specifically, we found a very good behaviour in the case of
the “Synthetic Minority Over-sampling Technique” (SMOTE) [3].
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Our aim now is to improve the fuzzy system behaviour by means of the appli-
cation of parametrized expressions for the conjunction connectors in the Inference
System (IS),whilemaintaining the original interpretability associated to fuzzy sys-
tems [4]. This approach is usually called Adaptive Inference System (AIS) and it
has shown very good results in fuzzy modelling [5,6]. The idea is to perform a tun-
ing of parameters with a Rule Base (RB) previously established, using Genetic
Algorithms (GAs) as a tool to evolve the connector parameters resulting on an
Evolutionary Adaptive Inference System (EAIS). Thus, we will increase the per-
formance of the fuzzy models to make them competitive with C4.5 [7], a decision
tree algorithm that presents a good behaviour in imbalanced data-sets [8,9].

We will develop an experimental study with twenty-two data-sets from UCI
repository with a high imbalance ratio (IR). Multi-class data sets are modified
to obtain two-class non-balanced problems, defining the joint of one or more
classes as positive and the joint of one or more classes as negative. To evaluate
our results we have applied the Area Under the Curve (AUC) metric [10] carrying
out some non-parametric tests [11,12] with the aim to show the significance in
the performance improvements obtained with the EAIS model.

In order to do that, the contribution is organized as follows. Section 2 presents
an introduction on the class imbalance problem, including the description of the
problem, proposed solutions, and proper measures for evaluating classification
performance in the presence of the imbalance data-set problem. In Section 3
we describe the fuzzy rule learning methodology used in this study, the Chi
et al. rule generation method [13]. Next, Section 4 introduces the EAIS with
the parametric conjunction operators. In Section 5 we include our experimental
analysis in highly imbalanced data-sets. Finally, in Section 6 some concluding
remarks are pointed out.

2 Imbalanced Data-Sets in Classification

Learning from imbalanced data is an important topic that has recently appeared
in the Machine Learning community [1]. This problem is very representative since
it appears in a variety of real-world applications including, but not limited to,
medical applications, finance, telecommunications, biology and so on.

In this framework, the class distribution is not uniform, resulting on a high
number of examples belonging to one or more classes and a few from the rest.
The minority classes are usually associated to the most interesting concepts
from the point of view of learning and, due to that fact, the cost derived from
a misclassification of one of the examples of these classes is higher than that of
the majority classes. In this work we will focus on binary problems where there
are just one positive and negative class.

Standard classifier algorithms have a bias towards the majority class, since
the rules that predicts the higher number of examples are positively weighted
during the learning process in favour of the accuracy metric. Consequently, the
instances that belongs to the minority class are misclassified more often than
those belonging to the majority class. Nevertheless, the most important issues
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of this type of problems are the apparition of small disjuncts and the overlapping
between the examples of the positive and the negative classes.

In our previous work on this topic [2], we analyzed the cooperation of some
preprocessing methods with FRBCSs, showing a good behaviour for the oversam-
pling methods, specially in the case of the SMOTE methodology [3]. According
to this, we will employ in this contribution the SMOTE algorithm in order to
deal with the problem of imbalanced data-sets.

We will use the IR [8] as a threshold to categorize the different imbalanced
scenarios, which is defined as the ratio of the number of instances of the majority
class and the minority class. We consider that a data-set presents a high degree
of imbalance when its IR is higher than 9 (less than 10% of positive instances).

Regarding the empirical measure, instead of using accuracy, a more correct
metric is considered. This is due to the fact that accuracy can lead to erroneous
conclusions, since it doesn’t take into account the proportion of examples for
each class. Because of this, in this work we use the AUC metric [10], which can
be defined as

AUC =
1 + TPrate − FPrate

2
(1)

where TPrate is the percentage of positive cases correctly classified as belonging
to the positive class and FPrate is the percentage of negative cases misclassified
as belonging to the positive class.

3 Fuzzy Rule Based Classification Systems and Linguistic
Rule Generation Method

Any classification problem consists of m training patterns xp = (xp1, . . . , xpn),
p = 1, 2, . . . , m from M classes where xpi is the ith attribute value (i = 1, 2, . . . , n)
of the p-th training pattern.

In this work we use fuzzy rules of the following form for our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = Cj with RWj (2)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern
vector, Aji is an antecedent fuzzy set, Cj is a class label, and RWj is the rule
weight. We use triangular membership functions as antecedent fuzzy sets.

Fuzzy learning methods are the basis to build a FRBCS. The algorithm used
in this work is the method proposed in [13], that we have called the Chi et
al.’s rule generation. To generate the fuzzy RB this FRBCSs design method
determines the relationship between the variables of the problem and establishes
an association between the space of the features and the space of the classes by
means of the following steps:

1. Establishment of the linguistic partitions. Once the domain of variation of
each feature Ai is determined, the fuzzy partitions are computed.

2. Generation of a fuzzy rule for each example xp = (xp1, . . . , xpn, Cp). To do
this is necessary:
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2.1 To compute the matching degree μ(xp) of the example to the different
fuzzy regions using a conjunction operator.

2.2 To assign the example xp to the fuzzy region with the greatest member-
ship degree.

2.3 To generate a rule for the example, whose antecedent is determined by
the selected fuzzy region and whose consequent is the label of class of
the example.

2.4 To compute the rule weight.

Rules with the same antecedent can be generated during the learning. If they
have the same class in the consequent we remove one of the duplicated rules,
but if it is different, only the rule with the highest weight is kept in the RB.

4 Evolutionary Adaptive Inference System

The conjunction operator is employed in the IS to compute the activation strength
of the if-part for all rules in the RB with an input pattern. This operator is suitable
to be parameterized in order to adapt the IS showing a considerable improvement
in the accuracy of linguistic Fuzzy Systems [5,6].

We will use Dubois t-norm, because it is more efficiently computed and since
it has obtained a better behaviour than other parametric t-norms [5]. The ex-
pression for the computation of this parametric t-norm is shown below:

TDubois(x, y, α) =
x · y

max(x, y, α)
(0 ≤ α ≤ 1) (3)

We must note that Dubois t-norm achieves like a minimum when α = 0 and
like algebraic product α = 1. When 0 < α < 1 , it continues performing like
minimum excepting when every match with antecedents are below α, that takes
values between minimum and product, being similar to a concentration effect.

In this work we will use a model that considers individual parameters αi

for every rule of the KB, having a local tuning mechanism of the behavior of
the IS in order to obtain a good accuracy level, because of the high degree of
freedom of this model. We will consider the use of a specific GA to design the
proposed learning method, the CHC algorithm. The CHC algorithm is a GA
that presents a good trade-off between diversity and convergence, being a good
choice in problems with complex search spaces.

This genetic model makes use of a mechanism of “Selection of Populations”.
M parents and their corresponding offspring are put together to select the best
M individuals to take part of the next population (with M being the population
size). Furthermore, no mutation is applied during the recombination phase, In-
stead, when the population converges or the search stops making progress, the
population is re-initialized.

The components needed to design this process are explained below. They
are: coding scheme, initial gene pool, chromosome evaluation, crossover operator
(together with an incest prevention) and restarting approach.
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1. Coding Scheme: Each chromosome will be composed by R genes, being R
the number of rules in the RB, having a value between 0 and 1.

2. Chromosome Evaluation: The fitness function must be in accordance with
the framework of imbalanced data-sets. Thus, we will use, as presented in
Section 2, the AUC measure.

3. Initial Gene Pool: We will initialize one chromosome with all its genes at 0
to model the minimum t-norm and another chromosome with all genes at 1
to model the product t-norm. The remaining individuals of the population
will be generated at random in the interval [0,1].

4. Crossover Operator: We consider the Parent Centric BLX (PCBLX) operator
with incest prevention mechanism. In this manner, two parents are crossed
if their hamming distance divided by 2 is above a predetermined threshold,
L. Since we consider a real coding scheme, we have to transform each gene
considering a Gray Code (binary code) with a fixed number of bits per gene
(BITSGENE). In this way, the threshold value is initialized as:

L = (#Genes · BITSGENE)/4.0

L is decremented by BITSGENE when there are no new individuals in the
next generation.

5. Restarting approach: When the threshold value L is lower than zero, all
the chromosomes are regenerated at random within the interval [0.0, 1.0].
Furthermore, the best global solution found is included in the population to
increase the convergence of the algorithm.

5 Experimental Study

The objective of this work is to analyse the behaviour achieved by FRBCSs using
the EAIS model. With this aim, we will perform an empirical study using a large
collection of highly imbalanced data-sets to support our analysis. We will also
include the C4.5 decision tree [7], since this method has a good behaviour in the
framework of imbalanced data-sets [8,9].

We have selected twenty-two data-sets with different IR from UCI repository.
The data is summarized in Table 1, showing the number of examples (#Ex.),
number of attributes (#Atts.), class name of each class (minority and majority),
class attribute distribution and IR.

In the remaining of this section, we will first present the experimental frame-
work and all the parameters employed in this study. Then, we will illustrate
how the EAIS model enhances the behaviour of the base FRBCS model also
contrasting its performance with C4.5.

5.1 Experimental Set-Up

To develop the different experiments we consider a 5-folder cross-validation
model, i.e., 5 random partitions of data with a 20%, and the combination of
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Table 1. Summary Description for Imbalanced Data-Sets

Data-set #Ex. #Atts. Class (min., maj.) %Class(min.; maj.) IR

Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

4 of them (80%) as training and the remaining one as test. For each data-set we
consider the average results of the five partitions.

We must emphasize that, in order to reduce the effect of imbalance, we have
employed the SMOTE preprocessing method [3] for all our experiments, con-
sidering only the 1-nearest neighbour to generate the synthetic samples, and
balancing both classes to the 50% distribution.

We will carry out a rigorous comparison of the performance obtained by the
algorithms used in this work. We consider the use of non-parametric tests due
to the fact that the initial conditions that guarantee the reliability of the para-
metric tests are not satisfied in a single data-set analysis [11,12]. We will use
Wilcoxon’s Signed-Ranks Test [14], which computes the ranking of both algo-
rithms (noted as R+ and R−) with respect to the absolute differences between
their performance in each data-set (average ranks are assigned in case of ties).
The level of confidence (α) will be set at 0.05 (95% of confidence).

We will employ the following configuration for the FRBCS: 3 fuzzy labels,
product T-norm as conjunction operator (for the base FRBCS), together with
the Penalized Certainty Factor approach [15] for the rule weight and FRM of the
winning rule. Finally, the values that have been considered for the parameters
of the CHC algorithm are the following ones: 50 individuals for the population
size, 5,000 · number of variables as number of evaluations and 30 bits per gene
for the Gray codification (incest prevention mechanism).

5.2 Analysis of the Behaviour of the EAIS

The results for the Chi et al.’s algorithm, the Chi method with EAIS and C4.5
are shown in Table 2. We observe that the EAIS improves the performance for
the FRBCS in many data-sets and achieves the best global result among the
algorithms used in the analysis.
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Table 2. Detailed results table for the Chi FRBCS, basic approach and with EAIS
(parametric conjunction operator), and C4.5 for highly imbalanced data-sets

Data-set Chi Chi+EIAS C4.5
AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st

Yeast2vs4 89.68 ± 1.30 87.36 ± 5.16 92.99 ± 1.91 86.31 ± 5.29 98.14 ± 0.88 85.88 ± 8.78
Yeast05679vs4 82.65 ± 1.38 79.17 ± 5.66 86.38 ± 1.39 80.75 ± 5.92 95.26 ± 0.94 76.02 ± 9.36
Vowel0 98.57 ± 0.18 98.39 ± 0.60 99.86 ± 0.18 98.28 ± 1.57 99.67 ± 0.48 94.94 ± 4.95
Glass016vs2 62.71 ± 2.15 54.17 ± 6.82 73.52 ± 6.50 63.69 ± 15.38 97.16 ± 1.86 60.62 ± 12.66
Glass2 66.54 ± 2.18 55.30 ± 14.48 77.39 ± 2.97 59.71 ± 17.82 95.71 ± 1.51 54.24 ± 14.01
Ecoli4 94.06 ± 1.49 91.51 ± 7.21 98.62 ± 0.42 92.15 ± 7.45 97.69 ± 1.96 83.10 ± 9.90
Yeast1vs7 82.00 ± 2.34 80.63 ± 6.61 86.82 ± 1.71 73.93 ± 12.07 93.51 ± 2.20 70.03 ± 1.46
Shuttle0vs4 100.00 ± 0.00 99.12 ± 1.14 100.00 ± 0.00 99.12 ± 1.14 99.99 ± 0.02 99.97 ± 0.07
Glass4 95.27 ± 0.91 85.70 ± 12.92 97.82 ± 0.73 86.94 ± 12.10 98.44 ± 2.29 85.08 ± 9.35
Page-Blocks13vs2 93.68 ± 2.41 92.05 ± 4.73 97.38 ± 0.58 93.94 ± 4.42 99.75 ± 0.21 99.55 ± 0.47
Abalone9-18 70.23 ± 2.25 64.70 ± 10.73 78.08 ± 4.68 62.52 ± 12.67 95.31 ± 4.44 62.15 ± 4.96
Glass016vs5 90.57 ± 4.12 79.71 ± 23.29 98.57 ± 0.56 86.29 ± 22.71 99.21 ± 0.47 81.29 ± 24.44
Shuttle2vs4 95.00 ± 4.71 90.78 ± 7.80 98.98 ± 2.28 96.38 ± 6.98 99.90 ± 0.23 99.17 ± 1.86
Yeast1458vs7 71.25 ± 3.52 64.65 ± 5.92 80.50 ± 1.05 58.79 ± 4.48 91.58 ± 2.78 53.67 ± 2.09
Glass5 94.33 ± 1.23 83.17 ± 11.12 98.23 ± 0.59 86.10 ± 12.45 99.76 ± 0.40 88.29 ± 13.31
Yeast2vs8 78.61 ± 2.61 77.28 ± 10.36 81.71 ± 1.41 77.18 ± 10.23 91.25 ± 1.84 80.66 ± 11.22
Yeast4 83.58 ± 0.93 83.15 ± 2.96 89.63 ± 1.31 83.92 ± 4.12 91.01 ± 2.64 70.04 ± 5.65
Yeast1289vs7 74.70 ± 1.79 77.12 ± 6.50 84.65 ± 2.45 74.51 ± 3.91 94.65 ± 1.13 68.32 ± 6.16
Yeast5 94.68 ± 1.28 93.58 ± 5.11 98.16 ± 0.14 93.30 ± 4.61 97.77 ± 1.45 92.33 ± 4.72
Ecoli0137vs26 93.96 ± 5.63 81.90 ± 20.49 98.27 ± 1.02 82.08 ± 20.58 96.78 ± 3.28 81.36 ± 21.68
Yeast6 88.48 ± 2.38 88.09 ± 9.82 92.73 ± 1.79 87.94 ± 8.03 92.42 ± 3.54 82.80 ± 12.77
Abalone19 71.44 ± 1.82 63.94 ± 9.32 76.76 ± 3.26 58.23 ± 8.12 85.44 ± 2.49 52.02 ± 4.41
Mean 85.09 ± 2.12 80.52 ± 8.58 90.32 ± 1.68 81.00 ± 9.18 95.93 ± 1.68 78.25 ± 8.38

In order to support this conclusion, we carry out a Wilcoxon test (shown in
Table 3) comparing the Chi et al.’s method versus the EAIS. We observe that the
EAIS achieves a higher ranking, which implies the robustness of this approach.
When comparing with C4.5 (also in Table 3) we must emphasize that the use of
the EAIS outperforms C4.5, whereas the simple FRBCS is not enough to obtain
significant differences.

Table 3. Wilcoxon’s test to compare the basic Chi method (R+) against the Chi
approach with EAIS (parametric conjunction operator) (R−)

Comparison R+ R− Hypothesis (α = 0.05) p-value

Chi+AIS vs. Chi 143.5 109.5 Not Rejected 0.566
Chi vs. C4.5 176.0 77.0 Not Rejected 0.108
Chi+AIS vs. C4.5 205.0 48.0 Rejected for Chi+AIS 0.011

In brief, the EAIS is a good design option in order to improve the accuracy
in linguistic FRBCSs for imbalanced data-sets with a high IR. Furthermore, we
must point out that the effect of the adaptive t-norm playing the role of conjunc-
tion operator does not modify the shape of the inferred fuzzy set, maintaining
the original interpretability of the fuzzy labels.

6 Conclusions

The aim of this contribution was to study the goodness of the EAIS model
to improve the performance of simple FRBCS in the framework of imbalanced
data-sets with a high IR. The idea is to maintain the initial interpretability of
the fuzzy model by changing the computation of the conjunction operator.
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Our experimental analysis have shown that the EAIS approach obtains very
good results in highly imbalanced data-sets in contrast with the base FRBCS.
Furthermore, we observe that the Chi et al. method by itself do not outperforms
the results of the C4.5 decision tree, but this algorithm is highly improved with
the application of the EAIS model, obtaining significant differences with respect
to C4.5 in this case.
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