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Abstract— Classification in imbalanced domains is an important
problem in Data Mining. We refer to imbalanced classification when
data presents many examples from one class and few from the other
class, and the less representative class is the one which has more
interest from the point of view of the learning task. The aim of this
work is to study the behaviour of the GP-COACH algorithm in the
scenario of data-sets with high imbalance, analysing both the per-
formance and the interpretability of the obtained fuzzy models. To
develop the experimental study we will compare this approach with
a well-known fuzzy rule learning algorithm, the Chi et al.’s method,
and an algorithm of reference in the field of imbalanced data-sets,
the C4.5 decision tree.

Keywords— Fuzzy Rule-Based Classification Systems, Genetic
Fuzzy Systems, Genetic Programming, Imbalanced Data-Sets, Inter-
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1 Introduction
In the area of Data Mining, real world classification problems
present some features that can diminish the accuracy of Ma-
chine Learning algorithms, such as the presence of noise or
missing values, or the imbalanced distribution of classes.

Specifically, the problem of imbalanced data-sets has been
considered as one of the emergent challenges in Data Mining
[1]. This situation occurs when one class is represented by a
large number of examples (known as negative class), whereas
the other is represented by only a few (positive class).

Our objective is to develop an empirical analysis in the con-
text of imbalance classification for binary data-sets when the
class imbalance ratio is high. In this study, we will make use
of Fuzzy Rule Based Classification Systems (FRBCSs), a very
useful tool in the ambit of Machine Learning, since they pro-
vide a very interpretable model for the end user [2].

We will employ a novel approach, GP-COACH (Genetic
Programming-based evolutionary algorithm for the learning
of COmpact and ACcurate FRBCS) [3], that learns disjun-
ctive normal form (DNF) fuzzy rules (generated by means
of a context-free grammar) and obtains very interpretable
FRBCSs, with few rules and conditions per rule, with a high-
generalization capability.

We want to analyse whether this model is accurate for data-
sets with high imbalance in contrast with an FRBCS, the Chi
et al.’s approach [4] and with C4.5 [5], a decision tree algo-
rithm that has been used as a reference in the imbalanced data-

sets field [6, 7]. We will also focus on the tradeoff between
accuracy and interpretability [8] for the final obtained models.
We will employ the Area Under the Curve (AUC) metric [9] to
compute the classification performance, whereas we will mea-
sure the interpretability of the system by means of the number
of rules in the system.

We have selected a large collection of data-sets with high
imbalance from UCI repository [10] for developing our empi-
rical analysis. In order to deal with the problem of imbalan-
ced data-sets we will make use of a preprocessing technique,
the “Synthetic Minority Over-sampling Technique” (SMOTE)
[11], to balance the distribution of training examples in both
classes. In this manner, we will analyse the positive synergy
between the GP-COACH model and the SMOTE preproces-
sing technique for dealing with imbalanced data-sets. Further-
more, we will perform a statistical study using non-parametric
tests [12, 13, 14] to find significant differences among the ob-
tained results.

This contribution is organized as follows. First, Section 2
introduces the problem of imbalanced data-sets, describing its
features, how to deal with this problem and the metric we have
employed in this context. Next, in Section 3 we present the
GP-COACH algorithm, explaining in detail the characteristics
of this novel approach. Section 4 contains the experimental
study for GP-COACH, Chi et al.’s and C4.5 algorithms re-
garding performance and interpretability. Finally, Section 5
summarizes and concludes the work.

2 Imbalanced Data-Sets in Classification
Learning from imbalanced data is an important topic that
has recently appeared in the Machine Learning community
[15, 16, 17]. The significance of this problem consists in its
presence in most of the real domains of classification, such as
fraud detection [18], risk management [19] and medical appli-
cations [20] among others.

This problem occurs when the number of instances of one
class is much lower than the instances of the other classes. In
this situation, the class of interest is often the one with the
smaller number of examples, whereas the other class(es) re-
present(s) the counterpart of that concept and, in that manner,
include(s) a high amount of data.

Standard classifier algorithms have a bias towards the ma-
jority class, since the rules that predicts the larger number of
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examples are positively weighted during the learning process
in favour of the accuracy metric. Consequently, the instan-
ces that belongs to the minority class are misclassified more
often than those belonging to the majority class [21]. Other
important issue of this type of problem is the small disjuncts
that can be found in the data-set [22] and the difficulty of most
learning algorithms to detect those regions. Furthermore, the
main handicap on imbalanced data-sets is the overlapping bet-
ween the examples of the positive and the negative class [23].
These facts are depicted in Fig. 1.a and 1.b.

Small Disjuncts

a)

Small Disjuncts

a) b)b)

Figure 1: Example of the imbalance between classes: a) small
disjuncts b) overlapping between classes

In this contribution we will focus on the data-sets with
a higher degree of imbalance, using the imbalance ratio
(IR) [24] as a threshold to categorize the different imbalanced
scenarios. This measure is defined as the ratio of the number
of instances of the majority class and the minority class.

In our previous work on this topic [25], we analysed the
cooperation of some preprocessing methods with FRBCSs,
showing a good behaviour for the oversampling methods, spe-
cially in the case of the SMOTE methodology [11]. According
to this, we will employ in this contribution the SMOTE algo-
rithm in order to deal with the problem of imbalanced data-
sets.

In short, its main idea is to form new minority class exam-
ples by interpolating between several minority class examples
that lie together. Thus, the overfitting problem is avoided and
causes the decision boundaries for the minority class to spread
further into the majority class space.

Regarding the empirical measure, instead of using accuracy,
a more correct metric is considered. This is due to the fact that
accuracy can lead to erroneous conclusions, since it does not
take into account the proportion of examples for each class.
Because of this, in this work we use the AUC metric [9], which
can be defined as

AUC =
1 + TPrate − FPrate

2
(1)

where TPrate is the percentage of positive cases correctly
classified as belonging to the positive class and FPrate is the
percentage of negative cases misclassified as belonging to the
positive class.

3 GP-COACH Algorithm
In this work we will make use of GP-COACH, a new FRBCS
proposal [3]. The main features of this approach are listed
below:

• It uses a context-free grammar that allows the learning of
DNF fuzzy rules and the absence of some input features.

• It follows the cooperative-competitive approach, that is,
it encodes a single rule per individual and the rule base
(RB) is formed by the whole population. That makes
necessary the use two different fitness functions in GP-
COACH:

– On the one hand, a local fitness function that eva-
luates the goodness of each one of the different ru-
les in the population of individuals. From now on,
we will refer it simply as fitness function.

– On the other hand, a global fitness function that eva-
luates the goodness of a whole population of indi-
viduals (a rule set). From now on, we will refer it
as global fitness score.
This last fitness function has been introduced in
GP-COACH in order to obtain the best rule set ge-
nerated during the evolutionary process.

• It includes a mechanism to promote the diversity into
the population, in order to avoid that all individuals con-
verge to the same area of search space. Specifically, it
uses the Token Competition diversity mechanism which
makes rules compete among themselves during the evo-
lutionary process, deleting irrelevant rules, and thus gi-
ving out a smaller number of rules that present a high-
generalization capability.

• Finally, GP-COACH uses a two level hierarchical infe-
rence process because it learns rule sets containing two
different types of rules: primary rules, which are strong
and general rules generated by the genetic operators, and
secondary rules, which are weaker and more specific ru-
les, generated after the token competition procedure to
increase the diversity in the population.

In the following subsections we will explain each one of
these components and we will describe the way of working of
this algorithm.

3.1 Context-free grammar for learning DNF fuzzy rules

GP-COACH learns DNF fuzzy rules:

Rk : If X1 is Âk1 and . . . and Xnv is Âknv

then Class is Ck with RWk
(2)

where each input variable Xi takes as a value a set of linguis-
tic terms or labels Âki =

{
L1

i or . . . or Lli
i

}
joined by

a disjunctive operator, (Class) is one of the class labels and
RWk is the rule weight [26]. We use triangular membership
functions as antecedent fuzzy sets.

In GP-COACH, these DNF fuzzy rules are generated ac-
cording to the production rules of a context-free grammar. In
Table 1, an example of the grammar for a classification pro-
blem with two features (X1, X2), three linguistic labels per
feature (Low, Medium, High) and three classes (C1, C2, C3)
is shown.

3.2 Evaluating an individual: Fitness function

Each one of the individuals in the population is evaluated ac-
cording to a fitness function based on the estimation of:
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Table 1: Grammar example
Start −→ [If ], antec, [then], conseq, [.].
antec −→ descriptor1, [and], descriptor2.
descriptor1 −→ [any].
descriptor1 −→ [X1 is] label.
descriptor2 −→ [any].
descriptor2 −→ [X2 is] label.
label −→ {member(?a, [L, M, H, L or M, L or H,

M or H, L or M or H])}, [?a].
conseq −→ [Class is] descriptorClass.
descriptorClass −→ {member(?a, [C1, C2, C3])}, [?a].

• Confidence, which measures the accuracy of an indivi-
dual, that is, the confidence of the consequent to be true
if the antecedent is verified

Conf(Rk) =
µtp

(µtp + µfp)
(3)

• Support, which measures the coverage of the knowledge
represented in the individual

Supp(Rk) =
µtp

NCk

(4)

where µtp and µfp are the sums of the matching degrees for
true and false positives, and NCk

is the number of examples
belonging to the class indicated in the consequent of the indi-
vidual (Rk).

Both measures are combined to make up the fitness function
in the following way

raw fitness = (α ∗ Conf) + ((1 − α) ∗ Supp) (5)

where α parameter allow us to give more importance to any
of these both measures.

3.3 Evaluating a population: Global fitness score

Global fitness score measure is defined as follows:

Global fitness = (w1 ∗ AUCTra) + (w2 ∗ #V ) +
(w3 ∗ #C) + (w4 ∗ #R)

(6)
The global fitness score measure is formed by other four mea-
sures: a) AUCTra, the normalized value of the AUC metric
for the training examples, b) #V, the normalized value of the
number of variables per individual (rule) in the population, c)
#C, the normalized value of the number of labels (or condi-
tions) per individual, and d) #R, the normalized value of the
number of rules in the population. We must remark that in the
previous formula we employ the complement of these values.

Furthermore, we have included some weights (wi) to give
more importance to any of these four measures.

3.4 Token competition: Maintaining the diversity of the
population

The idea of this mechanism is that each example in the trai-
ning set can provide a resource called “token”, for which all
chromosomes in the population will compete to capture. If an
individual (i.e. a rule) can match the example, it sets a flag
to indicate that the token is seized preventing other weaker
individuals to get this token.

The priority of receiving tokens is determined by the
strength of the individuals. The individuals with higher fit-
ness scores will exploit their niches by seizing as many tokens
as they can. The other ones entering the same niches will have

their strength decreased because they cannot compete with the
stronger ones. This is done introducing a penalization in the
fitness score of each individual. This penalization is based on
the number of tokens that each individual has seized:

Penalized fitness = raw fitness ∗ count

ideal
(7)

where raw fitness is the fitness score obtained from the evalua-
tion function, count is the number of tokens that the individual
actually seized and ideal is the total number of tokens that it
can take, which is equal to the number of examples that the
individual matches.

As a result of the token competition, there exist individuals
that cannot grab any token. These individuals are considered
as irrelevant, and they can be eliminated from the population
due to all of their examples are covered by other stronger in-
dividuals.

3.5 Secondary rules: Improving population diversity

Once the token competition mechanism has finished, it is pos-
sible that some training examples remain uncovered. The ge-
neration of new specific rules covering these examples impro-
ves the diversity in the population, and helps the evolutionary
process to easily find stronger and more general rules covering
these examples.

Therefore, GP-COACH learns rule sets having two diffe-
rent types of fuzzy rules: A core of strong and general rules
(primary rules) that covers most of the examples, and a small
set of weaker and more specific rules (secondary rules) that
are only taken into account if there not exist any primary rule
matching with some of the examples. This two level hierarchi-
cal inference process allows GP-COACH to obtain rule sets
having a better interpretability-accuracy trade-off.

3.6 Genetic operators

GP-COACH makes use of four different genetic operators to
generate new individuals during the evolutionary process:

1. Crossover: A part in the first parent is randomly selected
and exchanged by another part, randomly selected, in the
second one.

2. Mutation: It operates on label sets level. A variable in the
rule is randomly chosen and then one of the next three
different actions is carried out:

(a) A new label is added to the label set.
(b) A label is removed from the label set.
(c) A label in the label set is exchanged by another one

not included in it.

3. Insertion: It looks for all the variables in the rule and
adds another different one that has not been included in
it with a linguistic label set randomly chosen, although it
must have at least one label and it must be different from
the ”any” set (see Table 1).

4. Dropping Condition: It randomly selects one variable in
the rule and then turns it into ”any”. The label set asso-
ciated with this variable is also removed.

We must remark that we generate only one child by using
the genetic operators described above.
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3.7 Description of the Algorithm

GP-COACH algorithm begins creating a random initial popu-
lation according to the rules in the context-free grammar. Each
individual in this population is then evaluated. After that, the
initial population is kept as the best evolved population and
its global fitness score is calculated. Then, the initial popula-
tion is copied to the current population and the evolutionary
process begins:

1. An offspring population, with the same size than the cu-
rrent one, is created. Parents are selected by using the
binary tournament selection mechanism and children are
created by using one of the four genetic operators. The
genetic operator selection is done in a probabilistic way.
Specifically, the probabilities of the four genetic operator
are added in a single measure P = Pc + Pm + Pi + Pdp

(where Pc, Pm, Pi and Pdp represent the crossover, muta-
tion, insertion and dropping condition probabilities, res-
pectively) and then a random value u ∈ [0, P ] is obtained
to choose the genetic operator to be applied.

2. Once the offspring population is created, it is joined to
the current population, creating a new population whose
size is double the current population size. Individuals in
this new population are sorted according to their fitness
and Token Competition mechanism is applied. Seconda-
ries rules are created if some examples remain uncove-
red.

3. Global fitness score measure is then calculated for this
new population. We check whether this new fitness is
better than the one stored for the best population, upda-
ting the best population and fitness if necessary. In any
case, the new population is copied as the current popula-
tion in order to be able to apply the evolutionary process
again.

The evolutionary process ends when the stop condition is
verified (i.e. number of evaluations). Then, the population
kept as the best one is returned as a solution to the problem
and GP-COACH finishes.

4 Experimental Study

In this study, our aim is to analyse the behaviour of the GP-
COACH approach in the context of data-sets with high im-
balance. We will compare the performance of this method
against one state-of-the-art FRBCS algorithm, the Chi et al.’s
approach, and the C4.5 decision tree, employing a large co-
llection of imbalanced data-sets.

Specifically, we have considered twenty-two data-sets from
UCI repository [10] with different IR, as shown in Table 2,
where we denote the number of examples (#Ex.), number of
attributes (#Atts.), class name of each class (minority and ma-
jority), class attribute distribution and IR. This table is in as-
cending order according to the IR. Data-sets with more than
two classes have been modified by taking one against the ot-
hers or by contrasting one class with another.

In order to reduce the effect of imbalance, we will employ
the SMOTE preprocessing method [11] for all our experi-
ments, considering only the 1-nearest neighbour to generate

the synthetic samples, and balancing both classes to the 50%
distribution.

In the remaining of this section, we will first present the ex-
perimental framework and all the parameters employed in this
study and then we will show the results and all the statistical
study for the GP-COACH approach.

4.1 Experimental Framework

To develop the different experiments we consider a 5-fold
cross-validation model, i.e., 5 random partitions of data with
a 20%, and the combination of 4 of them (80%) as training
and the remaining one as test. Since GP-COACH is a pro-
babilistic method, we perform three executions per partition
with different random seeds. For each data-set we consider
the average results of the five partitions per three executions.
Furthermore, Wilcoxon’s Signed-Ranks Test [27] is used for
statistical comparison of our empirical results. In all cases the
level of confidence (α) will be set at 0.05.

The configuration for the FRBCSs approaches, GP-
COACH and Chi et al.’s, is presented in Table 3. This pa-
rameter selection has been carried out according to the results
achieved by GP-COACH and Chi et al.’s in our former studies
in [3] and [25] respectively.

Table 3: Configuration for the FRBCS approaches
Parameter GP-COACH Chi et al.’s

Conjunction operator Minimum T-norm Product T-norm
Rule Weight Certainty Factor Penalized Certainty Factor

Fuzzy Reasoning Method Additive Combination Winning Rule
Number of Labels 5 Labels 5 Labels

The specific parameters setting for the GP-COACH algo-
rithm, is listed below:

• Number of evaluations: 20000 evaluations.
• Initial Population Size: 200 individuals.
• α: 0.7.
• Crossover Probability Pc: 0.5.
• Mutation Probability Pm: 0.2.
• Dropping Probability Pdp: 0.15.
• Insertion Probability Pi: 0.15.
• Tournament Size: 2.
• w1: 0.8, w2 = w3: 0.05, w4: 0.1.

4.2 Analysis of the GP-COACH Behaviour in Data-sets
with High Imbalance

The main objective in this study is to analyse the behaviour
of the GP-COACH approach in the context of data-sets with
high imbalance. According to this, Table 4 shows the results
in performance (using the AUC metric) for GP-COACH and
the algorithms employed for comparison, that is, Chi et al.’s
learning method and C4.5.

We observe that the performance obtained by GP-COACH
is higher than the one for Chi et al.’s and C4.5. This situation
is represented statistically by means of a Wilcoxon test (Table
5) which shows a higher ranking in both cases for the GP-
COACH algorithm.

Furthermore, when we compare the results for the fuzzy
methods in each data-set, we observe that, as the IR increases,
GP-COACH achieves a better performance than Chi et al.’s
method. In this manner, we may state that GP-COACH is a
very robust method according to the IR.
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Table 2: Summary Description for Imbalanced Data-Sets.
Data-set #Ex. #Atts. Class (min.; maj.) %Class(min., maj.) IR

Data-sets with High Imbalance (IR higher than 9)
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

Table 4: Detailed results in performance (AUC metric) for GP-COACH, Chi et al.’s learning method and C4.5
Dataset GP-COACH Chi et al.’s C4.5

AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st

Yeast2vs4 83.46 ± 2.01 78.26 ± 5.92 90.51 ± 1.43 86.85 ± 6.68 98.14 ± 0.88 85.88 ± 8.78
Yeast05679vs4 82.76 ± 1.25 79.92 ± 5.54 87.97 ± 0.65 76.42 ± 6.17 95.26 ± 0.94 76.02 ± 9.36
Vowel0 96.74 ± 0.76 92.20 ± 5.80 99.64 ± 0.19 97.89 ± 1.83 99.67 ± 0.48 94.94 ± 4.95
Glass016vs2 74.57 ± 2.98 59.35 ± 17.29 76.16 ± 2.11 60.02 ± 8.41 97.16 ± 1.86 60.62 ± 12.66
Glass2 78.45 ± 2.82 66.11 ± 13.76 75.50 ± 1.80 52.06 ± 11.20 95.71 ± 1.51 54.24 ± 14.01
Ecoli4 97.74 ± 0.66 91.91 ± 6.04 98.14 ± 0.65 92.30 ± 8.13 97.69 ± 1.96 83.10 ± 9.90
Yeast1vs7 76.44 ± 2.17 64.03 ± 8.50 84.08 ± 2.14 65.24 ± 10.47 93.51 ± 2.20 70.03 ± 1.46
Shuttle0vs4 99.88 ± 0.08 99.99 ± 0.04 100.0 ± 0.00 98.72 ± 1.17 99.99 ± 0.02 99.97 ± 0.07
Glass4 95.94 ± 1.87 86.94 ± 14.19 98.88 ± 0.56 82.85 ± 10.20 98.44 ± 2.29 85.08 ± 9.35
Page-Blocks13vs4 98.03 ± 0.82 96.39 ± 4.31 98.71 ± 0.23 93.41 ± 8.53 99.75 ± 0.21 99.55 ± 0.47
Abalone9vs18 77.91 ± 2.31 74.27 ± 7.15 71.22 ± 3.09 67.44 ± 9.88 95.31 ± 4.44 62.15 ± 4.96
Glass016vs5 95.83 ± 1.45 94.29 ± 8.21 98.43 ± 0.41 84.86 ± 21.91 99.21 ± 0.47 81.29 ± 24.44
Shuttle2vs4 97.36 ± 3.34 97.43 ± 3.78 100.0 ± 0.00 88.38 ± 21.60 99.90 ± 0.23 99.17 ± 1.86
Yeast1458vs7 66.36 ± 1.61 58.21 ± 8.47 81.83 ± 1.70 59.32 ± 7.68 91.58 ± 2.78 53.67 ± 2.09
Glass5 98.11 ± 1.01 78.05 ± 24.24 98.78 ± 0.48 74.63 ± 20.52 99.76 ± 0.40 88.29 ± 13.31
Yeast2vs8 80.97 ± 3.28 78.77 ± 9.37 83.46 ± 1.68 80.66 ± 6.94 91.25 ± 1.84 80.66 ± 11.22
Yeast4 84.88 ± 1.42 81.95 ± 4.08 87.96 ± 1.54 83.25 ± 2.39 91.01 ± 2.64 70.04 ± 5.65
Yeast1289vs7 72.17 ± 2.75 66.26 ± 10.42 80.03 ± 2.33 70.27 ± 3.75 94.65 ± 1.13 68.32 ± 6.16
Yeast5 95.78 ± 0.68 93.53 ± 2.74 95.43 ± 0.54 93.72 ± 2.72 97.77 ± 1.45 92.33 ± 4.72
Ecoli0137vs26 90.13 ± 2.42 81.00 ± 18.30 96.85 ± 1.59 68.80 ± 22.87 96.78 ± 3.28 81.36 ± 21.68
Yeast6 90.43 ± 1.68 86.67 ± 7.92 89.60 ± 2.00 88.20 ± 8.55 92.42 ± 3.54 82.80 ± 12.77
Abalone19 74.00 ± 3.70 68.45 ± 8.38 77.19 ± 2.49 67.48 ± 10.77 85.44 ± 2.49 52.02 ± 4.41
Mean 86.72 ± 1.87 80.64 ± 8.84 89.56 ± 1.25 78.76 ± 9.65 95.93 ± 1.68 78.25 ± 8.38

Table 5: Wilcoxon test to compare GP-COACH with Chi et
al.’s approach and C4.5 according to their performance. R+

corresponds to GP-COACH and R− to Chi or C4.5
Comparison R+ R− Hypothesis (α = 0.05) p-value

GP-COACH vs. Chi 161.0 92.0 Not Rejected 0.263
GP-COACH vs. C4.5 162.0 91.0 Not Rejected 0.249

Regarding interpretability of the obtained models, we must
stress that GP-COACH is designed to obtain few DNF rules to
describe the concept accurately. Table 6 shows the average
number of rules for the three algorithms considered in this
study, together with the associated standard deviation. The
results from this table clearly shows that GP-COACH is the
most interpretable model.

In Table 7 we show an example of an RB generated with
the GP-COACH algorithm for the “shuttle2vs4” data-set. We
can observe that the problem is described using few rules and
only three of nine variables, enhancing the readability for the
end-user.

5 Conclusions
In this contribution, we have studied the behaviour of GP-
COACH in the context of data-sets with high imbalance.

Our results have shown the good performance achieved by
this approach in contrast with the Chi et al.’s method, a well-
known fuzzy rule learning algorithm, and C4.5, an algorithm
of reference in the area of imbalanced data-sets.

Furthermore, we have compared the interpretability of the
obtained models by means of the size of the rule set, conclu-
ding that GP-COACH employs a more compact RB in com-
parison with Chi et al.’s and C4.5 algorithms.

We must remark that GP-COACH is a good methodology
for imbalanced data-sets, since it obtains very good classifi-
cation results according to the AUC measure, by using a very
interpretable model with few linguistic fuzzy rules.
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Table 6: Detailed results table in interpretability (number of
rules) for GP-COACH, Chi et al.’s learning method and C4.5

Data-set GP-COACH Chi et al.’s C4.5
Yeast2vs4 6.60 ± 0.74 164.80 ± 3.83 20.40 ± 4.56
Yeast05679vs4 9.87 ± 2.17 191.20 ± 9.12 30.00 ± 6.63
Vowel0 5.60 ± 1.12 694.60 ± 8.32 11.80 ± 2.17
Glass016vs2 6.60 ± 2.23 65.20 ± 5.67 15.20 ± 1.48
Glass2 5.53 ± 1.96 73.20 ± 2.28 16.80 ± 2.49
Ecoli4 5.67 ± 0.90 116.80 ± 6.42 9.20 ± 2.17
Yeast1vs7 8.80 ± 2.01 156.80 ± 6.46 33.20 ± 6.10
Shuttle0vs4 2.60 ± 0.63 79.20 ± 7.56 2.80 ± 1.10
Glass4 6.33 ± 1.59 98.40 ± 10.06 7.40 ± 2.88
Page-Blocks13vs4 5.07 ± 0.96 164.00 ± 7.78 7.00 ± 1.22
Abalone9vs18 9.20 ± 2.24 93.60 ± 5.03 47.60 ± 1.14
Glass016vs5 5.13 ± 0.74 99.60 ± 8.62 10.00 ± 2.83
Shuttle2vs4 3.60 ± 0.99 33.00 ± 4.95 4.00 ± 0.00
Yeast1289vs7 8.93 ± 1.91 160.80 ± 2.68 58.40 ± 6.35
Glass5 4.93 ± 0.70 90.80 ± 6.87 7.00 ± 1.00
Yeast2vs8 5.73 ± 1.53 110.00 ± 2.65 14.60 ± 2.07
Yeast4 8.07 ± 1.22 197.20 ± 7.01 40.40 ± 3.78
Yeast1458vs7 7.27 ± 1.22 181.00 ± 8.69 47.80 ± 6.38
Yeast5 3.47 ± 0.52 206.60 ± 5.32 11.60 ± 2.07
Ecoli0137vs26 5.13 ± 0.74 168.60 ± 5.41 8.00 ± 1.41
Yeast6 5.73 ± 1.49 198.80 ± 6.14 21.60 ± 6.47
Abalone19 6.80 ± 1.15 180.20 ± 7.40 69.20 ± 3.70
Mean 6.21 ± 1.31 160.20 ± 6.29 22.45 ± 3.09

Table 7: Example of a DNF RB extracted using GP-COACH
for the shuttle2vs4 data-set

Rule1: IF X7 is (L4|L5) THEN Class = negative with RW = 1
Rule2: IF X1 is (L3|L4|L5) AND X7 is (L1|L2)

THEN Class = positive with RW = 0.934089
Rule3: IF X7 is (L2|L4) AND X8 is L4

THEN Class = positive with RW = 0.495765
Rule4: IF X7 is (L3|L5) THEN Class = positive

with RW = 0.562457
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