
Enhancing Fuzzy Rule Based Systems in Multi-Classification
Using Pairwise Coupling with Preference Relations

Alberto Fernández
Dept. of Computer

Science and Artificial Intelligence,
University of Granada, Spain

alberto@decsai.ugr.es
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Abstract

This contribution proposes a techni-
que for Fuzzy Rule Based Classifica-
tion Systems (FRBCSs) based on a
multi-classifier approach using fuzzy
preference relations for dealing with
multi-class classification. The idea is
to decompose the original data-set
into binary classification problems
using a pairwise coupling approach
(confronting all pair of classes), and
to obtain a fuzzy system for each one
of them. Along the inference pro-
cess, each FRBCS generates an as-
sociation degree for its two classes,
and these values are encoded into a
fuzzy preference relation. The final
class of the whole FRBCS will be ob-
tained by decision making following
a non-dominance criterium.

We show the goodness of our propo-
sal in contrast with the base fuzzy
model with an extensive experimen-
tal study following a statistical study
for analysing the differences in per-
formance among the algorithms. We
will also contrast our results versus
the well-known C4.5 decision tree.
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1 Introduction

Fuzzy Rule Based Classification Systems
(FRBCSs) [10] are a popular tool in Machine
Learning because of their advantage on the
use of linguistic terms to increase the global
interpretability of the output model.

In this work, we focus our attention on the
multi-class problem, since this type of data is
very common in real-world applications and
may represent an additional difficulty for the
fuzzy classifier to find the separability in an
search space with a high number of classes.
In order to simplify the original problem,
we propose a methodology based on pairwise
coupling (all-pairs) [3, 6], transforming an m-
class problem into m(m − 1)/2 binary pro-
blems, one for each pair of classes, and lear-
ning a fuzzy classifier for each separate pro-
blem. In order to manage the ensemble of
classifiers, we will apply a fuzzy preference
relation model [13] to determine the output
among all predictions of the associated clas-
sifiers. This connection between classifica-
tion learning and fuzzy preference modeling
was established by Hüllermeier and Brinker
in [8], and was later employed by Hühn and
Hüllermeier on a Fuzzy Round Robin Ripper
approach based on a decision rule using fuzzy
preference relations [7].

We will analyse the effect of this multi-
classifier approach over a well-performing
FRBCSs, the Fuzzy Hybrid Genetics-Based
Machine Learning (FH-GBML) algorithm
[12], in order to determine whether our propo-
sal enhances the behaviour of the correspon-



ding base fuzzy model. Furthermore, we will
include in the comparative study the C4.5 de-
cision tree [14], as a well-known state-of-the-
art rule-based algorithm.

We have selected 16 multi-class data-sets from
UCI repository [1] within the experimental
framework. The measure of performance is
based on accuracy rate and the significance of
results is supported by the proper statistical
analysis as suggested in the literature [2, 5].

To do so, this work is organised as follows.
In Section 2 we present the concept of multi-
classification and we introduce our pairwise
coupling proposal using fuzzy preference re-
lations, also describing the FH-GBML algo-
rithm selected for our study. Next, Section
3 includes the experimental framework, that
is, the benchmark data-sets, parameters, and
the statistical tests for the performance com-
parison. In Section 4 we present our empirical
analysis. Finally, Section 5 concludes the pa-
per summarizing all the lessons learned.

2 Fuzzy Rule Based
Multi-Classifier Systems

In this work, we aim to improve the per-
formance of FRBCSs introducing a multi-
classifier proposal based on pairwise coupling
[3, 6]. This methodology enables a better ex-
ploration of the domain of the problem by di-
viding the original data-set into binary sub-
problems that are easier to discriminate.

In this section we will first introduce the
concept of multi-classification and then, we
will present our learning proposal for a
fuzzy multi-classifier system using pairwise
coupling. Next, we will define the procedure
used to obtain the final classification output
among all classifiers by means of fuzzy prefe-
rence relations. Finally, we will describe the
FH-GBML algorithm, which will be employed
as the base fuzzy model.

2.1 Learning Proposal for a Fuzzy
Multi-classifier System

There are a high amount of applications
which require multi-class categorization, na-

mely, objects identification, image processing
and handwritten digit recognition among ot-
hers. In order to simplify the boundaries of
those type of problems we can proceed by di-
viding the initial problem into multiple two-
class sets that can be solved separately.

We will employ the pairwise coupling ap-
proach [3, 6], dividing the original training set
into m(m− 1)/2 subsets, where m stands for
the number of classes of the problem, in order
to obtain m(m − 1)/2 different fuzzy classi-
fiers. Every subset contains the examples for
a different pair of classes and thus, the trained
classifiers are devoted to discriminate between
two specific classes of the initial data-set. At
classification time, a query instance is submit-
ted to all binary models, and the predictions
of these models are combined into an overall
classification.

Each one of these fuzzy classifiers will have its
own Knowledge Base (KB), composed by a lo-
cal Data Base (DB) and Rule Base (RB). We
decided to focus on the precision of the mo-
del by contextualizing the fuzzy partitions for
each sub-problem separately, taking as uni-
verse of discourse the range of the values for
the variables of the subset of examples selec-
ted for each training subset.

The RB for each classifier is learnt using
an ad-hoc procedure, which can be selected
among the different approaches of the specia-
lized literature, making our proposal indepen-
dent of the fuzzy rule learning method used.

Once all KBs have been learnt, we proceed to
the final inference step. When a new input
pattern arrives to the system, each FRBCS is
fired in order to define the output degree for
its pair of associated classes.

The next part of this section is devoted to des-
cribe how these association degrees are com-
bined in order to provide the final class label.

2.2 Non-Dominance Classification
Process with Fuzzy Preference
Relations

We will consider the classification problem as
a decision making problem, and we will define



a fuzzy preference relation R [13] with the co-
rresponding outputs of the FRBCSs, treating
them as fuzzy degrees of preference. In this
manner, the computation of each fuzzy de-
gree of preference is based on the aggregation
function that combines the positive degrees of
association between the fuzzy rules and the in-
put pattern, which is known as Fuzzy Reaso-
ning Method (FRM).

We consider the maximum matching FRM,
where every new pattern xp is classified as
the consequent class of a single winner rule
(Class(xp) = Cw) which is determined as

µAw
(xp) ·RWw = max{µAq

(xp) ·RWq, Rq ∈ RB}
(1)

where µAq(xp) is the membership degree of
the pattern example xp = (xp1, . . . , xpn) with
the antecedent of the rule Rq and RWq is the
rule weight [9].

R(i, j) (the fuzzy degree of preference between
classes i and j) is the maximum association
degree for all rules in RB that concludes class
i. R(i, j) will be normalized to [0, 1] having
the relation R(i, j) = 1−R(j, i).

R =




− r1,2 . . . r1,m

r2,1 − . . . r2,m
...

. . . . . .
...

rm,1 rm,1 . . . −




(2)

From the fuzzy preference relation we must
extract a set of non-dominated alternatives
(classes) as the solution of the fuzzy deci-
sion making problem and thus, our classifica-
tion output. Specifically, the maximal non-
dominated elements of R are calculated by
means of the following operations, according
to the non-dominance criterium proposed by
Orlovsky [13]:

• First, we compute the fuzzy strict prefe-
rence relation R′ which is equal to:

R′(i, j) =





R(i, j)−R(j, i), when
R(i, j) > R(j, i)

0, otherwhise.
(3)

• Then, we compute the non-dominance
degree of each class NDi, which is simply
obtained as:

NDi = 1− sup
j∈C

[R′(j, i)] (4)

This value represents the degree to which
the class i is dominated by no one of the
remaining classes. C stands for the set
of total classes in the data-set. The out-
put class is computed as the index of the
maximal non-dominance value:

Class(xp) = arg max
i=1,...,m

{NDi} (5)

In order to clarify this procedure, we have
selected a pattern from the vehicle data-set,
which is shown in Table 1.

Table 1: Vehicle pattern
Compactness = 95.0,
Circularity = 48.0,
Distancecircularity = 83.0,
Radiusratio = 178.0,
Praxisaspectratio = 72.0,
Maxlengthaspectratio = 10.0,
Scatterratio, 162.0,
Elongatedness = 42.0,
Praxisrectangular = 20.0,
Lengthrectangular = 159.0,
Majorvariance = 176.0,
Minorvariance = 379.0,
Gyrationradius = 184.0,
Majorskewness = 70.0,
Minorskewness = 6.0,
Minorkurtosis = 16.0,
Majorkurtosis = 187.0,
Hollowsratio = 197.0;
Class = Van {Van, Saab, Bus, Opel}.

The complete process is depicted in Table 2.

For non fuzzy classifiers, or Machine Learning
algorithms that do not have associated a cer-
tainty degree for each output, i.e. the C4.5
decision tree [14], we define a binary prefe-
rence relation in which:



Table 2: Example of the classification process
by means of the use of the fuzzy preference
relation

Step1. Obtain R:

R =




1.0 1.0 0.727 0.789
0.0 1.0 0.005 0.0
0.273 0.995 1.0 0.478
0.210 1.0 0.522 1.0




Step2. Transform R to R′:

R′ =




0.0 1.0 0.455 0.579
0.0 0.0 0.0 0.0
0.0 0.989 0.0 0.0
0.0 1.0 0.044 0.0




Step3. Compute ND:

ND = {1.0, 0.0, 0.545, 0.421}

Step4. Get class index:

Class = arg maxi=1,...,4{NDi} = 1 (van)

R(i, j) =

{
1, if Class(i, j) = i
0, otherwhise.

(6)

where Class(i, j) stands for the classification
output computed by the classifier associated
to classes i and j. The remaining of the pro-
cess follows the same scheme defined in this
section, which is summarized in Algorithm 1.

2.3 Fuzzy Hybrid Genetic Based
Machine Learning Rule
Generation Algorithm

The FH-GBML method [12] consists in a Pit-
tsburgh approach where each rule set is hand-
led as an individual. It also contains a Ge-
netic Cooperative-Competitive learning ap-
proach (an individual represents an unique
rule), which is used as a kind of heuristic mu-
tation for partially modifying each rule set.

This method uses standard fuzzy rules with
rule weights [11] where each input variable

Algorithm 1 Procedure for the multi-
classifier learning proposal

1. Divide the training set into m(m − 1)/2
subsets for all pair of classes.

2. For each training subset i:

2.1. Build a fuzzy classifier composed by
a local DB and an RB generated
with any rule learning procedure

3. For each input test pattern:

3.1. Build a fuzzy preference relation R
as:
• For each class i, i = 1, . . . , m

• For each class j, j =
1, . . . , m, j 6= i

• The preference degree for
R(i, j) is the normalized as-
sociation degree for the classi-
fier associated to classes i and
j. R(j, i) = 1−R(i, j)

3.2. Transform R to the fuzzy strict pre-
ference relation R′.

3.3. Compute the degree of non-
dominance for all classes.

3.4. The input pattern is assigned to the
class with maximum non-dominance
value.

xi is represented by a linguistic term or la-
bel. The system defines 14 possible linguistic
terms for each attribute as well as a special
“do not care” set.

In the learning process, Npop rule sets are
created by selecting randomly Nrule training
patterns. Then, a fuzzy rule from each of
the selected training patterns is generated
by choosing probabilistically an antecedent
fuzzy set from the 14 candidates (P (Bk) =

µBk
(xpi)∑14

j=1
µBj

(xpi)
) and each antecedent fuzzy set

of the generated fuzzy rule is replaced with
don’t care using a pre-specified probability
Pdon′t care.

Npop -1 rule sets are generated by selection,
crossover and mutation in the same manner
as the Pittsburgh-style algorithm. Next, with



a pre-specified probability, a single iteration
of the Genetic Cooperative-Competitive-style
algorithm is applied to each of the generated
rule sets.

Finally, the best rule set is added in the cu-
rrent population to the newly generated (Npop

-1) rule sets to form the next population and,
if the stopping condition is not satisfied, the
genetic process is repeated again. Classifica-
tion is performed following the FRM of the
winning rule.

3 Experimental Framework

In this section we will first provide details of
the real-world multi-class problems chosen for
the experimentation and the configuration pa-
rameters of the FRBCSs (subsections 3.1 and
3.2 respectively). Next, we will present the
statistical tests applied to compare the results
obtained along the experimental study (sub-
section 3.3).

3.1 Data-sets

Table 3 summarizes the properties of the se-
lected data-sets. It shows, for each data-set,
the number of examples (#Ex.), the num-
ber of attributes (#Atts.), and the number of
classes (#Cl.). The penbased and page-blocks
data-sets have been stratified sampled at 10%
in order to reduce their size for training. In
the case of missing values (cleveland) we have
removed those instances from the data-set.

3.2 Parameters

We will use the following configuration for the
FRBCS approach: product T-norm as con-
junction operator, together with the Penali-
zed Certainty Factor heuristic [11] for the rule
weight and the winning rule approach for the
FRM. Furthermore, for the genetic process of
the FH-GBML method, we consider the follo-
wing values for the parameters:

• Number of fuzzy rules: 5 ·d rules.
• Number of rule sets: 200 rule sets.
• Crossover probability: 0.9.
• Mutation probability: 1/d.

Table 3: Summary Description of the Data-
Sets
id Data-set #Ex. #Atts. #Cl.
bal balance scale 625 4 3
cle cleveland 297 13 5
con contraceptive 1,473 9 3

method choice
eco ecoli 336 7 8
fla solar flare 1,389 10 6
gla glass identification 214 9 7
iri iris 150 4 3
led led7digit 500 7 10
new new-thyroid 215 5 3
pag page-blocks 548 10 5
pen pen-based 1,099 16 10

recognition
shu shuttle 2,175 9 7
veh vehicle 846 18 4
vow vowel 990 13 11
win wine 178 13 3
yea yeast 1,484 8 10

• Number of replaced rules: All rules ex-
cept the best-one (Pittsburgh-part, eli-
tist approach), number of rules / 5
(GCCL-part).

• Total number of generations: 1,000 gene-
rations.

• Don’t care probability: 0.5.
• Probability of the application of the

GCCL iteration: 0.5.

where d stands for the dimensionality of the
problem (number of variables).

3.3 Statistical tests for performance
comparison

In this paper, we use the hypothesis testing
techniques to provide statistical support to
the analysis of the results [4, 15]. Specifica-
lly, we will use non-parametric tests, due to
the fact that the initial conditions that gua-
rantee the reliability of the parametric tests
may not be satisfied, making the statistical
analysis to lose credibility with these type of
tests [2, 5]. Specifically, we will use the Wil-
coxon signed-rank test [16] as non-parametric
statistical procedure for performing pairwise
comparisons between two algorithms.

4 Experimental Analysis

Our experimental analysis is focused to de-
termine the goodness of our proposal by con-



Table 4: Average accuracy results for FH-GBML and C4.5. Basic approaches and multi-classifier
proposal (noted with suffix -M)

FH-GBML FH-GBML-M C4.5 C4.5-M
Data-Set Train Test Train Test Train Test Train Test
bal 85.64 82.24 87.04 84.96 89.72 77.28 84.24 76.32
cle 63.05 50.84 75.42 56.56 83.41 51.82 82.32 52.53
con 48.78 45.21 57.03 53.43 73.54 51.93 69.98 52.34
eco 79.76 76.19 92.34 81.55 91.74 78.28 85.27 75.59
fla 68.83 68.10 78.52 74.29 79.08 74.48 76.17 73.92
gla 70.44 60.29 82.48 68.25 91.94 68.73 91.94 73.81
iri 99.33 93.33 99.50 94.67 97.83 93.33 97.83 93.33
led 63.60 60.40 80.15 72.60 77.25 70.60 77.15 71.20
new 96.74 91.16 99.53 95.81 98.37 91.16 98.37 93.49
pag 95.67 94.53 98.17 95.62 98.95 95.07 98.90 95.61
pen 71.93 69.82 96.34 91.09 97.82 89.36 98.55 89.36
shu 95.52 95.22 98.45 97.70 99.72 99.54 99.94 99.63
veh 62.44 58.15 74.53 66.67 89.92 71.87 82.74 71.63
vow 28.79 23.94 89.60 77.68 96.29 79.49 96.87 79.80
win 97.61 92.70 100.00 96.08 99.02 94.90 99.02 91.56
yea 53.84 51.22 65.40 58.90 82.18 55.80 70.25 58.96
Mean 73.87 69.58 85.91 79.12 90.42 77.73 88.10 78.07

trasting the results of the basic and multi-
classifier FRBCS approaches against the well-
known C4.5 algorithm, also considering a
multi-classifier model in this case.

Estimates of accuracy rate were obtained by
means of a 5-fold cross-validation. That is, we
split the data set into 5 folds, each one contai-
ning the 20% of the patterns of the data-set.
For each fold, the algorithm was trained with
the examples contained in the remaining folds
and then, tested with the current fold.

The whole experimental results were presen-
ted in Table 4. We must stress that in all ca-
ses the best performance is associated to the
multi-classifier approach, both for the FRBCS
and for C4.5, which implies the goodness of
our proposed model.

In order to support this affirmation, we have
carried out a Wilcoxon test, shown in Table
5, where we can observe significant differen-
ces between the basic FRBCS and the pair-
wise coupling model in favour of the latter ap-
proach. We have also performed another Wil-
coxon test (Table 6) that suggests that the ap-
plication of the multi-classifier approach ma-
kes the FRBCS to became very competitive in
contrast to the C4.5 decision tree. We observe
that the FH-GBML by itself is outperformed
by C4.5, whereas with our proposal obtains a
better behaviour (refer to the higher ranking

and the low p-value obtained in the compari-
son).

Table 5: Wilcoxon test to compare the ba-
sic FH-GBML and C4.5 methods versus their
multi-classifier version. R+ corresponds to
the basic approach and R− to the multi-
classifier proposal
Comparison R+ R− p-value
FH-GBML vs. FH-GBML-M 0.0 136.0 0.000
C4.5 vs. C4.5-M 52.5 83.5 0.470

Table 6: Wilcoxon test to compare FH-GBML
and C4.5, both in their basic approach and
multi-classifier version. R+ corresponds to
the FH-GBML and R− to C4.5
Comparison R+ R− p-value
FH-GBML vs. C4.5 10.5 125.5 0.004
FH-GBML-M vs. C4.5-M 90.0 46.0 0.255

5 Conclusions

In this contribution we have proposed a lear-
ning methodology for FRBCSs in order to
improve the behaviour of simple fuzzy mo-
dels. The proposal is based on the applica-
tion of a pairwise coupling scheme for buil-
ding a fuzzy multi-classifier system oriented
to discriminate between pairs of classes and
to obtain a better decision boundary.

In order to aggregate the output for every sin-
gle classifier, we have made use of a fuzzy



preference relation translating the classifica-
tion problem into a simple decision making
problem. The final output class is obtained
following the maximal non-dominance crite-
rium.

Our experimental results have shown the high
improvement achieved by this model, which
outperforms the initial FRBCS. This enhan-
cement enables the fuzzy system to be very
competitive even showing a better behaviour
than the C4.5 decision tree.
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