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Abstract

In this work we present some gen-
eral results on ignorance functions.
In particular we focus on the rela-
tion between overlap functions and
ignorance functions, with a special
stress on how the latter can be con-
structed from the former.
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1 Introduction

In real life there are many situations on which
the lack of knowledge of an expert plays an
important role ([4, 5]). For instance, if an ex-
pert is asked to classify the pixels of a given
image in those belonging to an object and
those belonging to the background, for some
of them he or she will not know clearly how
to make this classification. The bigger this
lack of certainty is, the worse the results pro-
vided by the expert will be. So it would be
useful to have a way of measuring this lack of
knowledge. If we require the expert to give us
a fuzzy membership function representing an
image, for pixels with very high membership
value, the expert is quite sure that they be-
long either to the background or to the object
in that image (depending on how the func-
tion is supposed to represent the image). So
the membership value can be understood as a
number to measure how certain the expert is
that a given pixel belongs to the object, and
how certain he or she is that the same pixel

belongs to the background, then we can de-
fine a binary function, that we are going to
call ignorance function measuring his or her
”uncertainty”. Or, in other words, ignorance
functions give us a value for the lack of knowl-
edge the expert suffers when dealing with a
particular problem.

The structure of this work is the following. In
Section 2 we start recalling some very well-
known concepts. In Section 3 we introduce
the concept of ignorance function. We re-
late ignorance functions to overlap functions
in Section 4. Section 5 is devoted to a method
to construct interval-valued fuzzy sets using
ignorance functions in such a way that the in-
formation these functions contain is reflected
in the interval-valued membership. Finally,
we end with some conclusions and comments.

2 Preliminary results

An automorphism of the unit interval is a bi-
jective and continuous mapping ϕ : [0, 1] →
[0, 1] such that ϕ(0) = 0 and ϕ(1) = 1.
A strict negation is a continuous bijection
n : [0, 1] → [0, 1] such that n(0) = 1 and
n(1) = 0. If n is a strict negation such that
n(n(x)) = x for all x ∈ [0, 1], we will call n a
strong negation. Let us also remind that a bi-
nary aggregation function ([1]) is an increas-
ing mapping M : [0, 1]2 → [0, 1] such that
M(0, 0) = 0 and M(1, 1) = 1.

A fuzzy set Q over a finite, non-empty refer-
ential set X will be determined by a member-
ship function µQ : X → [0, 1]. That is, for us,



a fuzzy set will be an expression of the type

Q = {(x, µQ(x) | x ∈ [0, 1]}

Let’s define L([0, 1]) as the set of all closed
subintervals of the closed unit interval [0, 1].
An interval-valued fuzzy set (IVFS) over the
referential X is an expression of the type:

A = {(x,A(x)| x ∈ X}

where A : X → L([0, 1]). From now on,
we will use bold letters to denote intervals.
Moreover, if x ∈ L([0, 1]), then we will write
x = [xL, xU ], where xL ∈ [0, 1] denotes the
lower bound of the interval x and xU ∈ [0, 1],
the upper bound. Clearly, we will always have
xL ≤ xU .

A concept that will very important for us in
the subsequent developments is that of over-
lap function ([2]).

Definition 1 An overlap function is a map-
ping GO : [0, 1]2 → [0, 1] such that:

(GO1) GO(x, y) = GO(y, x) for all x, y ∈
[0, 1];

(GO2) GO(x, y) = 0 if and only if x = 0 or
y = 0;

(GO3) GO(x, y) = 1 if and only if x = y = 1;

(GO4) GO is non decreasing.

(GO5) GO is continuous.

3 Definition and main properties

of ignorance functions

We start by presenting the definition of igno-
rance function, which can be found in [3]

Definition 2 An ignorance function is a con-
tinuous, commutative mapping Gi : [0, 1]2 →
[0, 1] such that

(Gi1) Gi(x, y) = 0 if and only if x = 1 or y = 1;

(Gi2) Gi(x, y) = 1 if x = y = 0.5;

(Gi3) Gi is decreasing in [0.5, 1] × [0.5, 1];

(Gi4) Gi is increasing in [0, 0.5] × [0, 0.5]

Observe that our definition implies that we
have assume that a value of 0.5 corresponds
to complete lack of knowledge of the expert.

Example The mapping

Gi(x, y) =

{

2 min(1 − x, 1 − y) if x, y ≥ 1
2

1
2 min(1−x,1−y) in other case.

provides an example of ignorance function.

We will denote by Ig the set of ignorance
functions. As first remark, notice that, if we
take G1, G2 ∈ Ig, then the mappings

G1,2(x, y) = min(G1(x, y), G2(x, y))

and

G1,2(x, y) = max(G1(x, y), G2(x, y))

are also ignorance functions. Moreover, if,
given G1, G2 ∈ Ig we denote by ≤i the or-
dering defined by G1 ≤i G2 if and only if
G1(x, y) ≤ G2(x, y) for all x, y ∈ [0, 1], the
supremum of Ig is given by

Gsup(x, y) =

{

0 if max(x, y) = 1;

1 in other case.

whereas the infimum is given by

Ginf(x, y) =

{

1 if x = y = 0.5;

0 in other case.

Observe that none of both mappings are over-
lap functions. All these considerations to-
gether lead us to the following structural re-
sult.

Proposition 1 The space (Ig,≤i) is a partial
ordered, non-complete lattice which has not
either supremum or infimum.

Ignorance functions can be characterized in a
first approach as follows.

Theorem 1 A mapping Gi : [0, 1] × [0, 1] →
[0, 1] with Gi(0, 0) < 1 is an ignorance func-
tion with Gi(0, 0) < Gi(x, y) for all x, y ∈
(0, 0.5] if and only if, for all x, y ∈ [0, 1], the
mappings

M1(x, y) = Gi(1−
x

2
, 1− y

2
) with x, y ∈ [0, 1] ;



and

M2(x, y) =
1

1 − Gi(0, 0)
(Gi(

x

2
,
y

2
) − Gi(0, 0))

are continuous and symmetric aggregation
functions such that M1(x, 0) = M1(0, x) =
0 for all x ∈ [0, 1] and M2(x, y) 6= 0 if
max(x, y) > 0.

Proof. If Gi is an ignorance function in the
conditions of the theorem, then M1 and M2

are clearly aggregation functions as stated.
Conversely, suppose that M1 and M2 are ag-
gregation functions in the conditions stated in
the theorem. Then we have that

Gi(x, y) = M1(2(1 − x), 2(1 − y))

for all x, y ≥ 0.5, whereas

Gi(x, y) = (1−Gi(0, 0))M2(2x, 2y) + Gi(0, 0)

for all x, y ≤ 0.5. This two mappings can eas-
ily be extended to symmetric and continuous
mappings in the whole unit square. Hence the
result is proved. �

4 Relation between ignorance

functions and overlap functions

There is a very close relation between igno-
rance functions and overlap functions, as the
next results shows.

Theorem 2 Let G0 : [0, 1]2 → [0, 1] be an
overlap function. Then, the mapping Gi :
[0, 1]2 → [0, 1] given by

Gi(x, y) = G0(1−x,1−y)
G0(0.5,0.5)

if G0(1 − x, 1 − y) ≤ G0(0.5, 0.5), and

Gi(x, y) = G0(0.5,0.5)
G0(1−x,1−y)

otherwise, is an ignorance function.

Proof. Symmetry of Gi is clear. If Gi(x, y) =
0, then there are two possibilities:

a) If G0(1 − x, 1 − y) ≤ G0(0.5, 0.5), then
G0(1 − x, 1 − y) = 0 , which means by defini-
tion of overlap function that (1−x)(1−y) = 0,
that is, x = 1 or y = 1.

b) If G0(1 − x, 1 − y) > G0(0.5, 0.5), then
G0(0.5, 0.5) = 0, which contradicts the defi-
nition of overlap function

On the other hand, if x = 1 or y = 1, then
(1 − x)(1 − y) = 0, so G0(1 − x, 1 − y) = 0 ≤
G0(0.5, 0.5) and Gi(x, y) = 0.

The fact that Gi(0.5, 0.5) is evident from the
definition.

Let x1, x2, y ∈ [0.5, 1] such that 0.5 ≤ x1 ≤ x2

and 0.5 ≤ y. Therefore 0.5 ≥ 1 − x1 ≥
1 − x2 and 0.5 ≥ 1 − y. Then G0(1 −
x1, 1 − y) ≤ G0(0.5, 0.5) and G0(1 − x2, 1 −
y) ≤ G0(0.5, 0.5). Therefore Gi(x1, y) =
G0(1−x1,1−y)

G0(0.5,0.5) ≥ G0(1−x2,1−y)
G0(0.5,0.5) = Gi(x2, y).

In the same way, let x1, x2, y ∈ [0, 0.5] such
that x1 ≤ x2 ≤ 0.5 and y ≤ 0.5. Then 1 −
x1 ≥ 1 − x2 ≥ 0.5 and 1 − y ≥ 0.5, therefore
G0(1 − x1, 1 − y) ≥ G0(0.5, 0.5) and G0(1 −
x2, 1 − y) ≥ G0(0.5, 0.5). Then Gi(x1, y) =

G0(0.5,0.5)
G0(1−x1,1−y) ≤ G0(0.5,0.5)

G0(1−x2,1−y) = Gi(x2, y).

Finally, as by definition every overlap function
is continuous, so is Gi �

We can get stronger result.

Theorem 3 Let n be a strong negation and
Gi an ignorance function such that Gi(x, y) =
1 if and only if x = y = 0.5. Then the map-
ping

GO(x, y) = Gi(n(n(0.5)x), n(n(0.5)y))

is an overlap function. And reciprocally, let
GO be an overlap function and n : [0, 1] →
[0, 1] a strong negation. Then the mapping

Gi(x, y) =

{

GO(n(x),n(y))
GO(n(0.5),n(0.5)

if GO(n(x),n(y))
GO(n(0.5),n(0.5)

≤ 1
GO(n(0.5),n(0.5))

GO(n(x),n(y)
in other case,

is an ignorance function.

Proof. It is just an easy comprobation, bear-
ing in mind the definitions of ignorance func-
tions, overlap functions and strong negations
�

Moreover, the connection between overlap
functions and ignorance functions allows us
to go a bit further.

Proposition 2 Let GO be an overlap func-
tions such that for all x, y, α ∈ [0, 1] the iden-
tity G0(α · x, y) = G0(x, α · y). Let Gi be the



ignorance function given by Theorem 3, with
N(x) = 1 − x. Then

Gi(1 − α · x, 1 − y) = Gi(1 − x, 1 − α · y)

for all x, y, α ∈ [0, 1].

Proof. It is a straightforward calculation �

Proposition 3 Let g : [0, 1] → [0, 1] be
a continuous, increasing mapping such that
g(x) = 0 if and only if x = 0 and g(x) = 1 if
and only if x = 1. Then, the mapping Gi(x, y)
defined as

g((1 − x) · (1 − y))

g(0.5 · 0.5)

if g((1 − x) · (1 − y)) ≤ g(0.5 · 0.5), and

g(0.5 · 0.5)
g((1 − x) · (1 − y))

otherwise is an ignorance function such that
Gi(1 − α · x, 1 − y) = Gi(1 − x, 1 − α · y) for
all x, y, α ∈ [0, 1] and Gi(0, 0) = g(0.5 · 0.5).
Proof. (Gi1) As the product is symmetric,
so is Gi. (Gi2) Gi(x, y) = 0 if and only
if g((1 − x) · (1 − y)) = 0 if and only if
(1 − x) · (1 − y) = 0 if and only if x = 1 or
y = 1. (Gi3) Direct. (Gi4) If x1, x2, y ≥ 0.5
and 0.5 ≤ x1 ≤ x2, then 0.5 ≥ 1 − x1 ≥
1 − x2. Under these conditions Gi(x1, y) =
g((1−x1)·(1−y))

g(0.5·0.5) ≥ g((1−x2)·(1−y))
g(0.5·0.5) = Gi(x2, y).

(Gi5) Similar to that for (Gi4). Gi is continu-
ous from the continuity of g. As the mapping
G0(x, y) = g(x · y) is an overlap function ([]),
we are in the conditions of Proposition 2, and
we have Gi(1−α·x, 1−y) = Gi(1−x, 1−α·y).

Finally Gi(0, 0) = g(0.5·0.5)
g(1) = g(0.5 · 0.5). �

Example If we take the following function

g(x) =











x if x ≤ 0.2

0.2 if 0.2 ≤ x ≤ 0.8

4x − 3 if x ≥ 0.8

we have that

Gi(x, y) =







(1−x)·(1−y)
0.20

if (1 − x)(1 − y) ≤ 0.20

1 if 0.20 ≤ (1 − x) · (1 − y) ≤ 0.8
0.20

4((1−x)·(1−y))−3
otherwise,

is an ignorance function.

Proposition 4 Let ϕ be an automorphism of
the unit interval. Then

Gi(x, y) =

{

ϕ((1−x)·(1−y))
ϕ(0.25)

if (1 − x) · (1 − y) ≤ 0.25
ϕ(0.25)

ϕ((1−x)·(1−y))
otherwise,

is an ignorance function such that Gi(1 − α ·
x, 1− y) = Gi(1−x, 1−α · y) for all α ∈ [0, 1]
and Gi(0, 0) = ϕ(0.25).

Proof. Similar to Proposition 3 �

Example 1) If we take ϕ(x) = x for all x ∈
[0, 1] we have mapping GI(x, y) defined as

Gi(x, y) = 4(1 − x) · (1 − y)

if (1 − x) · (1 − y) ≤ 0.25, and

Gi(x, y) =
1

4((1 − x) · (1 − y))

otherwise, is an ignorance function.

2) If ϕ(x) =
√

x, then the mapping

Gi(x, y) = 2
√

(1 − x) · (1 − y)

if (1 − x) · (1 − y) ≤ 0.25, and

Gi(x, y) =
1

2
√

(1 − x) · (1 − y)

otherwise, is an ignorance function.

5 Ignorance functions and interval

valued fuzzy sets

Given a fuzzy set, ignorance functions can be
used as a mean to get an interval-valued fuzzy
set such that the amplitude of the member-
ship interval for a given point represents the
lack of knowledge that the expert suffers when
determining the fuzzy set. so, the greater the
amplitude of the interval-valued membership,
the greater the lack of knowledge of the ex-
pert. This process is further developed in the
following result.

Theorem 3 Let µQ be the membership func-
tion of a given fuzzy set Q, and let Gi be
an ignorance function, as given by Definition
2. Then the interval-valued fuzzy set defined
by the interval-valued fuzzy membership func-
tion A given by

A(x) = [µQ(x)(1 − Gi(µQ(x), 1 − µQ(x))),

µQ(x) + Gi(µQ(x), 1 − µQ(x))(1 − µQ(x))]



for all x ∈ X, is such that, for any x ∈ X

W (A(x)) = Gi(µQ(x), 1 − µQ(x)),

where, for an interval x = [xL, xU ] ∈ L([0, 1]),
we have that W (x) = xU − xL.

Proof First of all, observe that A defines a
valid interval-valued membership, as it is clear
just by comparing both bounds of the inter-
val. The assertion on the amplitude of the
membership interval follows from a straight
calculation �

We have now the following result.

Theorem 4 In the setting of the previous
theorem:

(i) The membership interval A(x) reduces to
single point for a given x ∈ X if and only
if Gi(µQ(x), 1 − µQ(x)) = 0;

(ii) The membership interval A(x) is equal to
the whole unit interval [0, 1] if and only
if Gi(µQ(x), 1 − µQ(x)) = 1.

Proof Both items are just straightforward
calculations.

Corollary 1 In the setting of the previous
theorem

(i) The membership interval A(x) reduces to
single point for a given x ∈ X if and only
if µQ(x) = 0 or µQ(x) = 1;

(ii) The membership interval A(x) is equal to
the whole unit interval [0, 1] if muQ(x) =
0.5.

Proof It follows from the definition of igno-
rance functions and Theorem 3 �

So the interval-valued fuzzy representation we
have constructed provides a mean to take into
account the lack of knowledge of the expert
when determining the fuzzy set membership
we are considering. In particular, that mea-
sure is given by the amplitude of the differ-
ent interval-valued memberships we obtain.
Moreover, this measure is a local one, as it de-
pends only on the membership value assigned
to a point, regardless what are the member-
ships for the other points in the set we are
considering.

6 Concluding remarks

In this work we have presented the concept
of ignorance function as a tool to handle the
lack of knowledge of an expert when dealing
with a particular problem. We have related
these ignorance functions with the concept
of overlap function, showing how we can get
ones from the others. Finally we have intro-
duced a method to construct interval-valued
fuzzy sets such that the corresponding mem-
bership functions contain significant informa-
tion about the lack of knowledge of the expert.

We think that the concept of ignorance func-
tion and the related subjects considered in
this paper open a wide range of possibilities.
In particular, we hope to use them in a nearby
future to improve some well-known image pro-
cessing methods. We also expect to find ap-
plications for them in fields such as decision
making, where lack of knowledge can play an
important role. Furthermore, the theoretical
development of the concept of ignorance func-
tion is still quite short, and we intend to push
it further to develop possible connections with
other widely used concepts of the fuzzy sets
theory, starting from aggregation functions.
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