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Abstract. This paper introduces an approximate fuzzy representation to Fuzzy-
UCS, a Michigan-style Learning Fuzzy-Classifier System that evolves linguistic 
fuzzy rules, and studies whether the flexibility provided by the approximate 
representation results in a significant improvement of the accuracy of the mod-
els evolved by the system. We test Fuzzy-UCS with both approximate and lin-
guistic representation on a large collection of real-life problems and compare 
the results in terms of training and test accuracy and interpretability of the 
evolved rule sets. 
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1   Introduction 

Fuzzy-UCS [1] is a Michigan-style learning fuzzy-classifier system that evolves a 
fuzzy rule set with descriptive or linguistic representation. One of the main novelties 
of Fuzzy-UCS with respect to other genetic fuzzy systems is that it evolves the rule set 
on-line from a stream of examples. Fuzzy-UCS represents the knowledge with lin-
guistic fuzzy rules, which are highly interpretable since they share a common seman-
tic. However, as this representation implies the discretization of the feature space, a 
single rule may not have the granularity required to define the class boundary of a 
given domain accurately. Thus, Fuzzy-UCS creates a set of overlapping fuzzy-rules 
around the decision boundaries which match examples of different classes, and the 
output depends on how the reasoning mechanism combines the knowledge of all these 
overlapping rules. Fuzzy-UCS proposed three inference schemes which led to a tra-
deoff between the amount of information used for the inference process and the size 
of the rule set.  

To achieve better accuracy rates in fuzzy modeling, several authors have introduced 
the so-called approximate rule representation (also known as non-grid-oriented fuzzy 
systems, prototype-based representation, or fuzzy graphs), which proposes that the 
variables of fuzzy rules define their own fuzzy sets instead of representing linguistic 
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variables [2]. In this way, approximate fuzzy rules are semantic free, being able to tune 
the fuzzy sets of any variable of each rule independently. However, this also results in 
a degradation of interpretability of the rule set, since the fuzzy variables no longer 
share a unique linguistic interpretation. In this paper, we analyze whether the flexibility 
provided by the approximate representation allows the system to achieve higher per-
formance and how this affects the interpretability of the evolved rule sets. That is, the 
approximate representation is more powerful than the linguistic one since it enables 
fuzzy systems to evolve independent fuzzy sets for each attribute that fit the class 
boundaries of each particular problem accurately. Nonetheless, the search space also 
increases since the semantics is evolved together with the fuzzy rules, posing more dif-
ficulties to the learner. Moreover, this flexibility could also result in overfitting the 
training instances in complex, noisy environments. Therefore, the aim of the present 
work is to study the frontier in the accuracy-interpretability tradeoff, clearly identifying 
the advantages and disadvantages—in terms of accuracy and readability of the rule 
sets—of having a more flexible knowledge representation in the field of on-line learn-
ing. For this purpose, we include the approximate representation to Fuzzy-UCS and 
adapt several mechanisms to deal with it. This new algorithm is addressed as Fuzzy-
UCS with Approximate representation, i.e., Fuzzy-UCSa. We compare the behavior of 
Fuzzy-UCS and Fuzzy-UCSa in a large collection of real-life problems.  

The remainder of this paper is organized as follows. Section 2 describes Fuzzy-
UCSa focusing on the new fuzzy representation. Section 3 explains the analysis me-
thodology and presents the results. Finally, Section 4 concludes the work. 

2   The Approximate Fuzzy-UCS Classifier System 

Fuzzy-UCSa is a system that extends Fuzzy-UCS [1] by introducing an approximate 
fuzzy representation. Fuzzy-UCSa works in two different models: exploration or 
training and exploitation or test. As follows, we describe the system focusing on the 
changes introduced with respect to Fuzzy-UCS. For further details, the reader is re-
ferred to [1]. 

2.1   Knowledge Representation 

Fuzzy-UCS evolves a population [P] of classifiers which consist of a fuzzy rule and a 
set of parameters. The fuzzy rule follows the structure   

IF x1 is FSk
1 and . . . and xn is FSk

n THEN ck WITH wk , (1) 

where each input variable xi is represented by a fuzzy set FSi. In our experiments, we 
used triangular fuzzy sets; so, each FSi is defined by the left vertex a, the middle ver-
tex b, and the right vertex c of the triangle, i.e., FSi = (a, b, c). The consequent of the 
rule indicates the class ck which the rule predicts. wk is a weight (0 ≤ wk ≤ 1) that de-
notes the soundness with which the rule predicts class ck. The matching degree µA

k(e) 
of an example e with a classifier k is computed as the T-norm (we use the product) of 
the membership degree of each input attribute ei with the corresponding fuzzy set FSi. 
We enable the system to deal with missing values by considering that µA

k(e) = 1 if ei 
is not known.  
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Each classifier has four main parameters: 1) the fitness F, which estimates the ac-
curacy of the rule; 2) the correct set size cs, which averages the sizes of the correct 
sets in which the classifier has participated (see Sect. 2.2); 3) the experience exp, 
which computes the contributions of the rule to classify the input instances; and 4) the 
numerosity n, which counts the number of copies of the rule in the population. 

2.2   Learning Interaction 

At each learning iteration, the system receives an input example e that belongs to 
class c. Then, it creates the match set [M] with all the classifiers in [P] that have a 
matching degree µA

k(e)  greater than zero. Next, in exploration mode, the classifiers in 
[M] that advocate class c form the correct set [C]. In exploitation mode, the system re-
turns the class of the rule that maximizes Fk · µA

k(e)  and no further action is taken. If 
none of the classifiers in [C] match e with µA

k(e) > 0.5, the covering operator is trig-
gered, which creates the classifier that maximally matches the input example. The 
covering operator creates an independent triangular-shape fuzzy set for each input va-
riable with the following supports 

(rand(mini – (maxi-mini)/2, ei), ei , rand(ei, maxi+(maxi-mini)/2)) , (2) 

where mini and maxi are the minimum and maximum value that the attribute i can 
take, ei is the attribute i of the example e for which covering has been fired, and rand 
generates a random number between both arguments. The parameters F, n, and exp of 
the new classifiers are set to 1. The new classifier is inserted into the population, de-
leting another one if there is not room for it. 

2.3   Parameters Update 

In the end of each learning iteration, Fuzzy-UCSa updates the parameters of the rules 
in [M]. First, the experience of the rule is incremented according to the current 
matching degree: expk

t+1 = expk
t + µA

k(e). Next, the fitness is updated. For this pur-
pose, each classifier internally maintains a vector of classes {c1, ..., cm} and a vector 
of associated weights {vk

1, . . . , v
k
m}. Each weight vk

j indicates the soundness with 
which rule k predicts class j for an example that fully matches this rule. The class ck 
advocated by the rule is the class with the maximum weight vk

j . Thus, given that  
the weights may change due to successive updates, the class that a rule predicts may 
also vary.  

To update the weights, we first compute the sum of correct matchings cmk for each 
class j: cmk

jt+1 = cmk
jt+m(k, j), where m(k, j) = µA

k(e) if the class predicted by the 
classifier equals the class of the input example and zero otherwise. Then, cmk

jt+1 is 
used to calculate the weights vk

jt+1: v
k
jt+1 = cmk

jt+1/expk
t+1. Note that the sum of all the 

weights is 1. 
The fitness is computed from the weights with the aim of favoring classifiers that 

match examples of a single class. We use Fk
t+1=vk maxt+1−Σj|j≠max v

k
jt+1, where we sub-

tract the values of the other weights from the weight with maximum value vk max. 
The fitness Fk is the value used as the weight wk of the rule (see Equation 1). Next, the 
correct set size of all the classifiers in [C] is calculated as the arithmetic average of 
the sizes of all the correct sets in which the classifier has participated. 
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2.4   Discovery Component 

Fuzzy-UCSa uses a steady-state genetic algorithm (GA) [3] to discover new promis-
ing rules. The GA is triggered in [C] when the average time since its last application 
upon the classifiers in [C] exceeds a certain threshold θGA. It selects two parents p1 
and p2 from [C] using proportionate selection [3], where the probability of selecting a 
classifier k is proportional to (Fk)ν · µA

k(e), in which ν>0 is a constant that fixes the 
pressure toward maximally accurate rules (in our experiments, we set ν=10). Rules 
with negative fitness are not considered for selection. The two parents are copied into 
offspring ch1 and ch2, which undergo crossover and mutation with probabilities χ and 
μ respectively. The crossover operator generates the fuzzy sets for each variable of the 
offspring as 

bch1 = bp1 α + bp2 (1-α)  and  bch2 = bp1 (1-α) + bp2 α (3) 

where 0 ≤ α ≤ 1 is a configuration parameter. As we wanted to generate offspring 
whose middle vertex b was close to the middle vertex of one of his parents, we set 
α=0.005 in our experiments. Next, for both offspring, the procedure to cross the most-
left and most-right vertices is the following. First, the two most-left and two most-
right vertices are chosen 

minleft = min(ap1, ap2, bch) and midleft = middle(ap1, ap2, bch) , (4) 

midright = middle(cp1, cp2, bch) and maxright = max(cp1, cp2, bch) , (5) 

And then, these two values are used to generate the vertices a and c. 

ach = rand(minleft,midleft) and cch = rand(midright,maxright) , (6) 

where the functions min, middle, and max return respectively the minimum, the mid-
dle, and the maximum value among their arguments. 

The mutation operator decides randomly if each vertex of a variable has to be mu-
tated. The central vertex is mutated as follows: 

b = rand(b − (b − a) ·m0, b + (c − b) ·m0) , (7) 

where m0 (0<m0≤1) defines the strength of the mutation. The left-most vertex is mu-
tated as 

                      a = rand (a – m0(b-a)/2,  a)                       if F>F0 & no crossover, (8) 

a = rand (a – m0(b-a)/2,  a + m0(b-a)/2)    otherwise. (9) 

And the right-most vertex 

                      c = rand(c, c + m0(c-b)/2)                         if F>F0 & no crossover, (10) 

c = rand(c – m0(c-b)/2, c + m0(c-b)/2)     otherwise. (11) 

That is, if the rule is accurate enough (F>F0) and has not been generated through cros-
sover, mutation forces to generalize it. Otherwise, it can be either generalized or spe-
cified. In this way we increase the pressure toward maximum general and accurate 
rule sets.  
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The new offspring are introduced into the population. First, we check whether 
there exists a classifier in [C] that subsumes the new offspring. If it exists, the nu-
merosity of the subsumer is increased. Otherwise, the new classifier is inserted into 
the population. We consider that a classifier k1, which is experienced (expk1 > θsub) 
and accurate enough (Fk1 > F0), can subsume another classifier k2 if for each variable 
i, ai

k1 ≤ ai
k2, c

i
k1 ≥ ci

k2, and bi
k1 − (bi

k1 − ai
k1)δ ≤ bi

k2 ≤bi
k1 + (ci

k1 − bi
k1)δ, where δ is a 

discount parameter (in our experiments we set δ=0.001). Thus, a rule condition sub-
sumes another if the supports of the subsumed rule are enclosed in the supports of the 
subsumer rule and the middle vertices of their triangular-shaped fuzzy sets are close 
in the feature space.  

If the population is full, excess classifiers are deleted from [P] with probability 
proportional to their correct set size estimate csk and their fitness Fk [1]. 

3   Experiments 

In this section, we analyze if the approximate representation a) permits to fit the  
training instances more accurately, b) whether this improvement is also present in the 
prediction of previously unseen instances, and c) the impact on the interpretability of 
the evolved rule set. As follows we explain the methodology and present the obtained 
results. 

3.1   Methodology 

We compare Fuzzy-UCSa as defined in the previous section with Fuzzy-UCS with 
the three types of reasoning schemes defined in [1], that is, weighted average (wavg), 
in which all matching rules emit a vote for the class they predict; action winner 
(awin), in which the class of the rule that maximizes Fk · µA

k(e) is chosen as output; 
and most numerous and fit rules (nfit), in which only the most numerous and fit rules 
are kept in the final population and all the matching rules emit a vote for the class 
they predict. Moreover, we also included C4.5 in the comparison to analyze how 
Fuzzy-UCS performs with respect to one of the most influential learners. We em-
ployed the same collection of twenty real-life problems used in [1] for the analysis.  

We used the accuracy, i.e., the proportion of correct predictions, and the number of 
rules in the population to compare the performance and interpretability of the  
different approaches. To obtain reliable estimates of these metrics, we employed a 
ten-fold cross validation procedure. The results were statistically analyzed following 
the recommendations pointed out in [4]. We applied the multiple-comparison test of 
Friedman to contrast the null hypothesis that all the learning algorithms performed 
equivalently on average. If Friedman’s test rejected the null hypothesis, we used the 
non-parametric Nemenyi test to compare all learners with each other. We comple-
mented the statistical analysis by comparing the performance of each pair of learners 
by means of the non-parametric Wilcoxon signed-ranks test. For further information 
about the statistical tests see [4].  

We configured both systems as (see [1] for notation details): N=6,400, F0 = 0.99,  
ν = 10, {θGA, θdel, θsub} = 50, χ = 0.8, μ = 0.04, δ=0.1 and P # = 0.6. Moreover, for 
Fuzzy-UCS, we set the number of linguistic terms to 5. 



 Approximate Versus Linguistic Representation in Fuzzy-UCS 727 

3.2   Results 

Our first concern was to compare the precision in fitting the training instances of 
Fuzzy-UCSa with respect to Fuzzy-UCS and show how both systems perform with 
respect to C4.5. Thus, we computed the training accuracy obtained with the five ap-
proaches. Table 1 summarizes the average rank of each algorithm (the detailed results 
are not included due to space limitations). As a case study, Fig. 1(a) shows the do-
main of one of the tested problems, tao, Figs. 1(b) and 1(c) plot the decision bounda-
ries learned by Fuzzy-UCS awin with 5 and 15 linguistic terms per variable—the grid 
in the two figures indicates the partitions in the feature space made by the cross-points 
of the triangular membership functions associated to the different fuzzy sets—, and 
Fig. 1(d) shows the decision boundaries learned by Fuzzy-UCSa. The results clearly 
show that the flexibility provided by the approximate representation enabled Fuzzy-
UCSa to fit the training instances more accurately. 

The multi-comparison test permitted to reject the null hypothesis that all the learn-
ers were equally accurate at α=0.001. The post-hoc Nemenyi test, at α=0.1, indicated 
that Fuzzy-UCSa achieved significantly better training performance than Fuzzy-UCS 
with any inference type and equivalent results to C4.5. Moreover, Fuzzy-UCS awin 
significantly degraded the training performance achieved with Fuzzy-UCS nfit. The 
pairwise comparisons by means of the non-parametric Wilcoxon signed-ranks test at 
α=0.05 confirmed the conclusions extracted by the Nemenyi test. 

 

Fig. 1. Tao domain (a) and decision boundaries obtained by Fuzzy-UCS awin with 5 (b) and 15 
(c) linguistic terms per variable and Fuzzy-UCSa (d). The training accuracy achieved in each 
case is 83.24%, 94.74%, and 96.94% respectively. 

As expected, the approximate representation enabled Fuzzy-UCSa to fit the  
training examples more accurately; since there was no semantic shared among all 
variables, each variable could define its own fuzzy sets. Next, we analyzed if this  
improvement was also present in the test performance. Table 1 shows the average 
rank of test performance. The multi-comparison test rejected the hypothesis that all 
the learners performed the same on average at α = 0.001. The Nemenyi procedure, at 
α=0.1, identified two groups of techniques that performed equivalently. The first 
group included Fuzzy-UCS wavg, Fuzzy-UCSa, and C4.5. The second group com-
prised Fuzzy-UCSa, Fuzzy-UCS awin, and Fuzzy-UCS nfit. The same significant dif-
ferences were found by the pairwise comparisons. 

Further analysis pointed out that Fuzzy-UCSa was overfitting the training data  
in some of the domains. To contrast this hypothesis, we monitored the evolution of 
the training and test performance of the problems in which Fuzzy-UCSa degraded the  
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Table 1. Comparison of the average rank of train accuracy, test accuracy, and rule set size of 
linguistic Fuzzy-UCS with weighted average (wavg), action winner (awin), and most numerous 
and fitted rules inference (nfit), and Fuzzy-UCSa on a set of twenty real-world problems. The 
training and test accuracy of C4.5 is also included. 

  Fuzzy-UCS Fuzzy-UCSa C4.5 
Rank 3.35 4.20 3.10 1.75 2.60 

tr
ai

n 

Pos 4 5 3 1 2 

Rank 2.05 3.25 3.80 2.95 2.95 

te
st

 

Pos 1 4 5 2.5 2.5 

Rank 3.95 2.05 1.00 3.00 - 

si
ze

 

Pos 4 2 1 3 - 

 

 
Fig. 2. Evolution of the training and test accuracies obtained with Fuzzy-UCS wavg and Fuzzy-
UCSa in the bal problem 

results obtained by Fuzzy-UCS with any inference type. Figure 2 plots the evolution 
of the training and test performance in the bal problem for Fuzzy-UCS wavg and 
Fuzzy-UCSa. During the first 5,000 learning iterations, both training and test per-
formances of Fuzzy-UCSa rapidly increased, achieving about 90% and 84% accuracy 
rate respectively. After that, the training performance continued increasing while the 
test performance slightly decreased. After 100,000 iterations, the training perform-
ance reached 98%; nonetheless, the test performance decreased to 82%. Thus, at a 
certain point of the learning, the flexibility of the approximate representation led 
Fuzzy-UCSa to overfit the training instances in order to create more accurate classifi-
ers, which went in detriment of the test performance. On the other hand, the training 
and test performance of Fuzzy-UCS wavg continuously increased, showing no signs 
of overfiting. 

Finally, Table 1 also shows the average rank of the number of rules evolved  
for Fuzzy-UCS and Fuzzy-UCSa. The Friedman test rejected the hypothesis that the 
population sizes were equivalent on average at α=0.001. The post-hoc Nemenyi test 
supported the hypothesis that the four learners evolved populations with significantly 
different sizes. Fuzzy-UCS wavg created the biggest populations, closely followed by 
Fuzzy-UCSa. Nonetheless, Fuzzy-UCSa uses an approximate representation, in which 
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rules do not share the same semantic, thus, impairing the readability of the rule sets. 
Fuzzy-UCS awin and, specially, Fuzzy-UCS nfit resulted in the smallest populations. 

4   Conclusions 

This paper analyzed the advantages and disadvantages provided by the flexibility of 
the approximate representation in detail. We showed that the approximate representa-
tion enabled Fuzzy-UCSa to fit the training data more accurately. Nonetheless, there 
was no statistical evidence of this improvement in the test performance and it was 
identified that Fuzzy-UCSa may overfit the training instances in complex domains; 
furthermore, the approximate representation degraded the readability of the final rule 
sets. Therefore, the analysis served to identify that the flexibility provided by the ap-
proximate representation does not produce any relevant improvement to Fuzzy-UCS, 
strengthening the use of a linguistic, more readable representation. 

Acknowledgments 

The authors thank the support of Ministerio de Educación y Ciencia under projects 
TIN2005-08386-C05-01 and TIN2005-08386-C05-04 and Generalitat de Catalunya 
under grants 2005FI-00252 and 2005SGR-00302. 

References 

1. Orriols-Puig, A., Casillas, J., Bernado-Mansilla, E.: Fuzzy-UCS: a Michigan-style learning 
fuzzy-classifier system for supervised learning. IEEE Transactions on Evolutionary Compu-
tation (in press) 

2. Alcala, R., Casillas, J., Cordon, O., Herrera, F.: Building fuzzy graphs: features and taxon-
omy of learning for non-grid-oriented fuzzy rule-based systems. Journal of Intelligent and 
Fuzzy Systems 11(3-4), 99–119 (2001) 

3. Goldberg, D.E.: Genetic algorithms in search, optimization & machine learning, 1st edn. 
Addison-Wesley, Reading (1989) 

4. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine 
Learning Research 7, 1–30 (2006) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


