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Abstract-Recently, Multi-Objective Evolutionary Algo-
rithms have been also applied to improve the difficult trade-
off between interpretability and accuracy of Fuzzy Rule-Based
Systems. It is know that both requirements are usually con-
tradictory, however, a Multi-Objective Genetic Algorithm can
obtain a set of solutions with different degrees of trade-off.

This contribution presents a Multi-Objective Evolutionary
Algorithm to obtain linguistic models with improved accuracy
and the least number of possible rules. In order to minimize
the number of rules and the system error, this model performs
a rule selection and a tuning of the membership functions of
an initial set of candidate linguistic fuzzy rules.

I. INTRODUCTION

Many automatic techniques have been proposed in the
literature to extract a proper set of fuzzy rules from numerical
data. However, most of these techniques usually try to
improve the performance associated to the prediction error
without inclusion of any interpretability measure, an essential
aspect of Fuzzy Rule-Based Systems (FRBSs). In the last
years, the problem of finding the right trade-off between
interpretability and accuracy, in spite of the original nature of
fuzzy logic, has arisen a growing interest in methods which
take both aspects into account [1]. Of course, the ideal thing
would be to satisfy both criteria to a high degree, but since
they are contradictory issues generally it is not possible.

Recently, Multi-Objective Evolutionary Algorithms
(MOEAs) [4], [9] have been also applied to improve the
difficult trade-off between interpretability and accuracy of
FRBSs, obtaining linguistic models not only accurate but
also interpretable. Since this problem presents a multi-
objective nature the use of these kinds of algorithms to
obtain a set of solutions with different degrees of accuracy
and interpretability is an interesting way to work. Most of
these works apply MOEAs to obtain Mamdani FRBSs [6],
[17], [18], [19], [20], [24] since they are much more
interpretable than Takagi-Sugeno ones [22], [31], [32].

This contribution briefly reviews the state of the art in
this recent topic, analyzing the most representative works
of the specialized literature in order to point out the most
important aspects that should been taken into account to
deal with these kinds of problems. All these works try to
obtain the complete Pareto (set of non-dominated solutions
with different trade-off) by selecting or learning the set of
rules better representing the example data, i.e., improving the
system accuracy and decreasing the FRBS complexity but not
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considering learning or tuning of the Membership Function
(MFs) parameters. In this way, this work presents a specific
MOEA to obtain simpler and still accurate linguistic fuzzy
models by applying rule selection and a tuning of the system
parameters, which represents a more complex search space
and therefore needs of different considerations respect to the
works in the existing literature.

In order to do that, this contribution is arranged as follows.
Next section presents a brief study of the existing MOEAs
for general purpose which usually are modified or directly
applied to obtain FRBSs with good interpretability-accuracy
trade-off. Section III briefly analyzes the state of the art on
the use of MOEAs to get the desired trade-off in different
application areas of FRBSs. In Section IV, we present an
algorithm to perform linguistic rule selection together with
a tuning of MFs by using one of the most known MOEAs.
Section V shows an experimental study of this method in a
complex but interesting problem. Finally, Section VI points
out some conclusions and further research lines.

II. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Evolutionary algorithms simultaneously deal with a set of
possible solutions (the so-called population) which allows to
find several members of the Pareto optimal set in a single run
of the algorithm. Additionally, they are not too susceptible
to the shape or continuity of the Pareto front (e.g., they can
easily deal with discontinuous and concave Pareto fronts).

The first hint regarding the possibility of using evolution-
ary algorithms to solve a multi-objective problem appears
in a Ph.D. thesis from 1967 [26] in which, however, no
actual MOEA was developed (the multi-objective problem
was restated as a single-objective problem and solved with
a genetic algorithm). David Schaffer is normally considered
to be the first to have designed a MOEA during the mid-
1980s [27]. Schaffer's approach, called Vector Evaluated
Genetic Algorithm (VEGA) consists of a simple genetic
algorithm with a modified selection mechanism. However,
VEGA had a number of problems from which the main one
had to do with its inability to retain solutions with acceptable
performance, perhaps above average, but not outstanding for
any of the objective functions.

After VEGA, the researchers designed a first generation
of MOEAs characterized by its simplicity where the main
lesson learned was that successful MOEAs had to combine
a good mechanism to select non-dominated individuals (per-
haps, but not necessarily, based on the concept of Pareto opti-
mality) combined with a good mechanism to maintain diver-
sity (fitness sharing was a choice, but not the only one). The
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TABLE I
CLASSIFICATION OF MOEAs

Reference MOEA Ist Gen. 2nd Gen.
[14] MOGA V
[15] NPGA V
[28] NSGA V
[3] micro-GA V
[11] NPGA2 V
[10] NSGA-II V
[23] PAES V
[7], [8] PESA & PESA-1I V
[33], [34] SPEA & SPEA2 _ _

most representative MOEAs of this generation are the follow-
ing: Nondominated Sorting Genetic Algorithm (NSGA) [28],
Niched-Pareto Genetic Algorithm (NPGA) [15] and Multi-
Objective Genetic Algorithm (MOGA) [14].
A second generation of MOEAs started when elitism

became a standard mechanism. In fact, the use of elitism is
a theoretical requirement in order to guarantee convergence
of a MOEA. Many MOEAs have been proposed during the
second generation (which we are still living today). However,
most researchers will agree that few of these approaches have
been adopted as a reference or have been used by others.
In this way, the Strength Pareto Evolutionary Algorithm
2 (SPEA2) [34] and the Nondominated Sorting Genetic
Algorithm II (NSGA-II) [10] can be considered as the most
representative MOEAs of the second generation, also being
of interest some others as the Pareto Archived Evolution
Strategy (PAES) [23]. Table I shows a resume of the most
representative MOEAs of both generations.

Finally, we have to point out that nowadays NSGA-II is the
paradigm within the MOEA research community since the
powerful crowding operator that this algorithm uses usually
allows to obtain the widest Pareto sets in a great variety
of problems, which is a very appreciated property in this
framework. In this way, the question is: "Is NSGA-II the best
MOEA to get the desired interpretability-accuracy trade-off
of FRBSs?". Next section presents the state-of-the-art on the
use of the MOEAs to get this difficult trade-off in order to
see how different researchers have affronted this problem.
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III. USE OF MOEAs TO GET THE INTERPRETABILITY-
ACCURACY TRADE-OFF OF FRBSs

As mentioned, MOEAs generate a family of equally valid
solutions, where each solution tends to satisfy a criterion to
a higher extent than another. For this reason, MOEAs have
been also applied to improve the difficult trade-off between
interpretability and accuracy of FRBSs, where each solution
in the pareto front represents a different trade-off between
interpretability and accuracy (see Figure 1).

The most continuous and prolific research activity in
the application of MOEAs to Mamdani FRBS generation
for finding the accuracy-interpretability trade off has been
certainly performed by Ishibuchi's group. Earlier works [17]
were devoted to the application of simple MOEAs of the
first generation to perform a rule selection on an initial
set of classification rules involving "don't care" conditions
and considering two different objectives (classification ac-
curacy and number of rules). Then, a third objective was
also included in order to minimize the length of the rules
by rule selection [18] or rule learning [18]. In [20], they
apply a better MOEA, the Multi-Objective Genetic Local
Search [16] (MOGLS), following the same approach for rule
selection with three objectives. And finally, two algorithms
based on a MOEA of the second generation (NSGA-II) have
been proposed respectively for rule selection [24] and rule
learning [21] considering the same concepts. In the literature,
we can also find some papers of other researchers in this
topic. For instance in [6], Cordon et al. use MOGA for
jointly performing feature selection and fuzzy set granularity
learning with only two objectives.
At this point, we can see that all the methods mentioned

were applied to classification problems for rule selection
or rule learning, without learning or tuning the MFs that
were initially fixed. Most of the works in this topic only
consider quantitative measures of the system complexity
in order to improve the interpretability of such systems,
rarely considering qualitative measures. Moreover, MOEAs
considered were slight modifications of MOEAs proposed
for general use (MOGA, NSGA-II, etc.) or based on them.
Notice that, although NSGA-II improves the results respect
to other MOEAs, since to cross non-dominated rule sets with
very different numbers of rules and different rule structures
(forced by the NSGA-II crowding operator) usually gives a
bad accuracy, this MOGA needed of an adaptation to favor
the cross of similar solutions in order to also get good results
for the accuracy objective [24]. The problem is that, although
to directly apply this powerful algorithm to this problem gets
a wider Pareto front with several good solutions, to improve
the accuracy objective is more difficult than simplifying the
fuzzy models, by which the Pareto front finally obtained still
becomes sub-optimal respect to the accuracy objective.
On the other hand, there are a few works in the framework

of fuzzy modeling for regression problems. In [19], authors
show how a simple MOGA can be applied to a three-
objective optimization problem (again not considering learn-
ing or tuning of parameters). Some applications of MOEAs
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Fig. 1. Trade-off between the error and the interpretability of rule sets



have been also discussed in the literature to improve the
difficult trade-off between accuracy and interpretability of
Takagi-Sugeno models [29]. In [22], [31], [32], accuracy,
interpretability and compactness have been considered as
objectives to obtain interpretable and very accurate Takagi-
Sugeno models. However, since Takagi-Sugeno models have
a linear function in the consequent part of each fuzzy rule,
they are close to accuracy representing another type of trade-
off with less interpretable models [19]. For this reason, the
type of rule most used to achieve the trade-off between
accuracy and complexity are the fuzzy rules with linguistic
terms in both the antecedent and consequent parts, i.e.,
Mamdani rules [25].

IV. A MOEA FOR RULE SELECTION AND TUNING OF
MEMBERSHIP FUNCTIONS

As we explain in the previous section most works in the
field of fuzzy systems are applied to classification problems
by learning or selecting rules, not considering tuning of
the MF parameters. The main reason of this fact is that a
tuning of parameters implies a lost of the interpretability
to some degree. However, it is known that this way to
work greatly improves the performance of the linguistic
models so obtained, being another alternative to improve
the interpretability-accuracy trade-off. For this reason, we
would like to show an example of application that focus the
research in the linguistic fuzzy modeling area, in order to
evaluate the performance of MOEAs in a field which is still
less explored, and with the objective of inject some ideas
or recommendations in this open topic (improvement of the
interpretability of very accurate models).

The proposed algorithm will perform rule selection from a
given fuzzy rule set together with a parametric tuning of the
MFs. To do that, we apply one of the most used MOEAs of
the second generation, SPEA2 [34], considering two different
objectives, system error and number of rules.

In the next subsections, we present the SPEA2 algorithm
applied for linguistic fuzzy modeling. At first, the main
components of the algorithm are proposed and then the main
steps and characteristic are described.

A. Main Components of the Algorithm
As mentioned, we use the well-known SPEA2 to perform

rule selection and tuning of MFs with the aim of improving
the desired trade-off between interpretability and accuracy. In
the following, the components needed to apply this algorithm
in this concrete problem are explained. They are coding
scheme, initial gene pool, objectives and genetic operators:

Coding scheme and initial gene pool
A double coding scheme for both rule selection (Cs)
and tuning (CT) is used:

Cp CPCP

In the CS = (CS1,. ..,CSm) part, the coding scheme
consists of binary-coded strings with size m (with
m being the number of initial rules). Depending on

whether a rule is selected or not, values '1' or '0'
are respectively assigned to the corresponding gene. In
the CT part, a real coding is considered, being mt the
number of labels of each of the n variables comprising
the data base,

Ci
CTp

,i biC....i bi i

ClC2 .. Cn -

The initial population is obtained with all individuals
having all genes with value '1' in the CS part. And
in the CT part the initial data base is included as first
individual. The remaining individuals are generated at
random within the corresponding variation intervals.
Such intervals are calculated from the initial data base.
For each MF, Cij = (ai, bi, ci), the variation intervals
are calculated in the following way:

aI a,Ia] = [ai7- (bi- ai)/2, a-i + (bi- ai )/2]
bIt brj ] = [bi -(bi- ai )/2, bi + (ci - b )/2]

[13,jIfj [ci - (ci- bj)/2, ci + (ci- bj)/2]
* Objectives
Two objectives are minimized for this problem: the
number of rules (interpretability) and the Mean Squared
Error (accuracy),

1=1

with El being the size of a data set E, F(xl) being
the output obtained from the FRBS decoded from the
said chromosome when the l-th example is considered
and y1 being the known desired output. The fuzzy
inference system considered to obtain F (xl) is the
center of gravity weighted by the matching strategy
as defuzzification operator and the minimum t-norm as
implication and conjunctive operators.

* Genetic Operators
The crossover operator depends on the chromosome part
where it is applied: the BLX-0.5 [13] in the CT part and
the HUX [12] in the CS part.
Finally, four offspring are generated by combining the
two from the Cs part with the two from the CT part (the
two best replace to their parent). The mutation operator
changes a gene value at random in the Cs and CT parts
(one in each part) with probability Pm.

B. SPEA2 Based Approach
Considering the components defined and the descriptions

of the authors in [34], the SPEA2 algorithm consists of the
next steps:

Input: N (population size),
N (external population size),

T (maximum number of generations).
Output: A (non-dominated set).

1) Generate an initial population Po and create the empty
external population Po = 0.

2) Calculate fitness values of individuals in Pt and Pt.



3) Copy all non-dominated individuals in PtUPt to Pt+
If |Pt+ > N apply truncation operator. If Pt+1 <

N fill with dominated in Pt U Pt.
4) If t > T, return A and stop.
5) Perform binary tournament selection with replacement

on Pt+, in order to fill the mating pool.
6) Apply recombination (BLX-HUX) and mutation oper-

ators to the mating pool and set Pt+, to the resulting
population. Go to step 2 with t = t + 1.

V. EXPERIMENTS

In this section, we present an example on the use of
MOEAs to obtain linguistic models with a good trade-
off between interpretability and accuracy in a real-world
problem [5] with 4 input variables that consists of estimating
the maintenance costs of medium voltage lines in a town.
To do that, we also compare the proposed algorithm with
the paradigm of MOEAs, NSGA-II [10], by also considering
the same components described in section IV-A in order to
show the good behavior of SPEA2 in this specific framework.
Methods considered for the experiments are briefly described
in Table II. WM method is considered to obtain the initial
rule base to be tuned. T and S methods perform the tuning
of parameters and rule selection respectively. TS indicates
tuning together with rule selection in the same algorithm.
All of them consider the accuracy of the model as the
sole objective. MOEAs considered (SPEA2 and NSGA-II)
perform rule selection from a given fuzzy rule set together
with the parametric tuning of the MFs considering two
objectives, system error and number of rules.

TABLE II

METHODS CONSIDERED FOR COMPARISON

Method
WM
WM+T
WM+S
WM+TS
SPEA2
NSGA-II

Ref.
[30]
[2]
[2]
[2]
[34]*
[10]*

Description
Wang & Mendel algorithm
Tuning of Parameters
Rule Selection
Tuning and Rule Selection
Tuning and Rule Selection with SPEA2
Tuning and Rule Selection with NSGA-II

based on that algorithm

In the next subsections, we describe this real-world prob-
lem and finally we show the results obtained.

A. Problem Description and Experiments

Estimating the maintenance costs of the medium voltage
electrical network in a town [5] is a complex but interesting
problem. Since a direct measure is very difficult to obtain,
it is useful to consider models. These estimations allow
electrical companies to justify their expenses. Moreover,
the model must be able to explain how a specific value is
computed for a certain town. Our objective will be to relate
the maintenance costs of the medium voltage lines with the
following four variables: sum of the lengths of all streets in
the town, total area of the town, area that is occupied by
buildings, and energy supply to the town. We will deal with
estimations of minimum maintenance costs based on a model

of the optimal electrical network for a town in a sample of
1,059 towns.
To develop the different experiments, we consider a 5-

folder cross-validation model, i.e., 5 random partitions of
data each with 20%, and the combination of 4 of them (80%)
as training and the remaining one as test. For each one of
the 5 data partitions, the tuning methods have been run 6
times, showing for each problem the averaged results of a

total of 30 runs. In the case of methods with multi-objective
approach (SPEA2 and NSGA-II), the averaged values are

calculated considering the most accurate solution from each
Pareto obtained. In this way, the multi-objective algorithms
are compared with several single objective based methods.
This way to work differs with the previous works in the
specialized literature (see section III) in which one or several
Pareto fronts are presented and an expert should after select
one solution. Our main aim following this approach is to
compare the same algorithm by only considering an accuracy

objective (WM+TS) with the most accurate solution found
by the multi-objective ones in order to see if the Pareto fronts
obtained are not only wide but also optimal (similar solutions
to that obtained by WM+TS should be included in the final
Pareto).

The initial linguistic partitions are comprised by five
linguistic terms with equally distributed triangular shape
MFs. The values of the input parameters considered by the
MOGAs are shown in the next: population size of 200,
external population size of 61 (in the case of SPEA2), 50000
evaluations and 0.2 as mutation probability per chromosome.
Different sizes of population were probed showing not very

different results but presenting the best performance around
200 individuals.

B. Results and Analysis

The results obtained by the analyzed methods are shown in
table III, where #R stands for the number of rules, MSEtra
and MSEt,t respectively for the averaged error obtained over

the training and test data, or for the standard deviation and t
for the results of applying a test t-student (with 95 percent
confidence) in order to ascertain whether differences in the
performance of the multi-objective approach are significant
when compared with that of the other algorithms in the table.
The interpretation of this column is:
* represents the best averaged result.

means that the best result has better performance than
that of the corresponding row.

TABLE III

RESULTS OBTAINED BY THE STUDIED METHODS

Method #R MSEtra (7tra t MSEtst atst t
WM 65 57605 2841 + 57934 4733 +
WM+T 65 18602 1211 + 22666 3386 +
WM+S 40.8 41086 1322 + 59942 4931 +
WM+TS 41.9 14987 391 + 18973 3772
SPEA2 33 13272 1265 * 17533 3226 *
NSGA-II 41.0 14488 965 18419 3054



Analysing the results showed in table III we can highlight
the two following facts:

. NSGA-II obtains the same accuracy and the same

number of rules than the models obtained with WM+TS
(single objective-based approach) considering the most
accurate result of each obtained Pareto. Therefore, we

could consider that this algorithm gets good solutions,
from the most accurate ones (with more complexity) to
the most simple ones (with the worst accuracy).
The SPEA2 method shows a reduction of the MSEtra
and produces more or less the same MSEt,t respect to
the models obtained by only considering the accuracy

objective (WM+TS). Moreover, a considerable number
of rules have been removed from the initial FRBS,
obtaining simpler models with a similar performance.
In this way, the most accurate models obtained by
SPEA2 considering a multi-objective approach get a

better trade-off between interpretability and accuracy

than those obtained by a single objective based al-
gorithm (which theoretically should obtain the most
accurate results).

These results are due to the large search space that involves
this problem. There are some initial rules that should be
removed since they do not cooperate in a good way with
the remaining ones. Even in the case of only considering
an accuracy-based objective, the large search space that
supposes the tuning of parameters makes very difficult to
remove these kinds of rules since bad rules are tuned
together with the remaining ones searching for their best
cooperation. The use of a multi-objective approach favors a

better selection of the ideal number of rules, preserving some

rule configurations until the rule parameters are evolved to
dominate solutions including bad rules.

Fig. 2. Evolution of the Pareto fronts of SPEA2

On the other hand, NSGA-II tries to obtain a wider
Pareto front by crossing very different solutions based on its
crowding operator. However, in this problem, it is difficult
to obtain accurate solutions by favoring the crossing of
solutions with very different rule configurations (those in the
Pareto), which try to obtain the best accuracy by learning
very different parameters for the MFs. In our opinion, this
is the main reason by which this algorithm does not work as

well as SPEA2 in this particular problem.

Fig. 3. Evolution of the Pareto fronts of NSGA2

In Figures 2 and 3, we can see the Pareto evolution for
each multi-objective algorithm. We can observe as the Pareto
moves along without having a wide extension, even in the
case of NSGA-II. In this way, although SPEA2 implements
a truncation operator that is similar to the crowding operator
in NSGA-II, this operator is never used since the number
of non-dominated solutions is always very lower than the
size of the external population (which is completed with
the best solutions that do not belong to the Pareto and that
can be close or similar to those in the Pareto). This favors
the evolution of the parameters of the MFs by allowing the
crossing of solutions with more or less the same subset of
rules and different parameters. All these facts suggest the
design of more specific algorithms in order to get even better
solutions for these kinds of problems, probably, solutions
with a better performance that considering a single objective
and with a minor number of rules.

VI. CONCLUDING REMARKS

In this work we have analyzed the use of MOEAs to
improve the trade-off between interpretability and accuracy

of FRBSs. A brief revision of the state of the art in this topic
has been performed. From this study we can point out the
following facts:

Most of the contributions in this topic were made in the
framework of fuzzy classification, considering Mamdani
FRBSs.
Most of the works only consider quantitative measures

of the system complexity to determine the FRBS inter-
pretability.
None of the works considered a learning or tuning of
the MFs, only performing a rule learning or selection.
The MOEAs considered were slight modifications of
MOEAs proposed for general use (MOGA, NSGA-II,
etc.) or specifically developed for this concrete and
difficult problem. It is due to the special nature of this
problem, in which to improve the accuracy objective
is more difficult than simplifying the fuzzy models, by
which the Pareto front finally obtained still becomes
sub-optimal respect to the accuracy objective. This
specially occurs in algorithms as NSGA-II [24], since
to cross non-dominated rule sets with very different

NSGA2
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numbers of rules and different rule structures (forced
by the NSGA-II crowding operator) usually gives a bad
accuracy, by which this MOGA needs of an adaptation
to favor the cross of similar solutions in order to also
get good results for the accuracy objective.

On the other hand, this contribution has presented an
algorithm based on SPEA2 and a case of study on the use
of MOEAs to obtain simpler and still accurate linguistic
fuzzy models by also considering a tuning of the system
parameters, which represents a more complex search space
and therefore needs of different considerations respect to the
works in the existing literature.

The results obtained have shown that the use of MOEAs
can represent a way to obtain even more accurate and simpler
linguistic models than those obtained by only considering
performance measures. In this case (also performing a tuning
of the parameters), the problem of crossing very different
solutions with different number of rules and very different
parameters becomes more important since to obtain a wide
Pareto with the best solutions is practically impossible.
Therefore, as further work, more specific algorithms should
be proposed in order to get the best possible solutions.
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