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INTRODUCTION

The multiple-instance problem is a difficult machine 
learning problem that appears in cases where knowledge 
about training examples is incomplete. In this problem, 
the teacher labels examples that are sets (also called 
bags) of instances. The teacher does not label whether 
an individual instance in a bag is positive or negative. 
The learning algorithm needs to generate a classifier 
that will correctly classify unseen examples (i.e., bags 
of instances). 

This learning framework is receiving growing at-
tention in the machine learning community and since 
it was introduced by Dietterich, Lathrop, Lozano-Perez 
(1997), a wide range of tasks have been formulated 
as multi-instance problems. Among these tasks, we 
can cite content-based image retrieval (Chen, Bi, & 
Wang, 2006) and annotation (Qi and Han, 2007), text 
categorization (Andrews, Tsochantaridis, & Hofmann, 
2002), web index page recommendation (Zhou, Jiang, 
& Li, 2005; Xue, Han, Jiang, & Zhou, 2007) and drug 
activity prediction (Dietterich et al., 1997; Zhou & 
Zhang, 2007).

In this chapter we introduce MOG3P-MI, a multiob-
jective grammar guided genetic programming algorithm 
to handle multi-instance problems. In this algorithm, 
based on SPEA2, individuals represent classification 
rules which make it possible to determine if a bag is 
positive or negative. The quality of each individual is 
evaluated according to two quality indexes: sensitivity 
and specificity. Both these measures have been adapted 
to MIL circumstances. Computational experiments 
show that the MOG3P-MI is a robust algorithm for 
classification in different domains where achieves 
competitive results and obtain classifiers which con-
tain simple rules which add comprehensibility and 
simplicity in the knowledge discovery process, being 

suitable method for solving MIL problems (Zafra & 
Ventura, 2007).

 
BACKGROUND

In the middle of the 1990’s, Dietterich et al. (1997) 
described three Axis-Parallel Rectangle (abbreviated 
as APR) algorithms to solve the problem of classifying 
aromatic molecules according to whether or not they 
are “musky”. These methods attempted to search the 
appropriate axis-parallel rectangles constructed by 
their conjunction of features. Their best performing 
algorithm (iterated-discrim) started with a point in the 
feature space and grew a box with the goal of finding 
the smallest box covered at least one instance from each 
positive bag and no instances from any negative bag. 
The resulting box was then expanded (via a statistical 
technique) to get better results.

Following Dietterich et al.’s study, a wide variety 
of new methods of multi-instance learning has ap-
peared. Auer (1997) tried to avoid some potentially 
hard computational problems that were required by the 
heuristics used in the iterated-discrim algorithm and 
presented a theoretical algorithm, MULTINST. With a 
new approach, Maron and Lozano-Perez (1998) pro-
posed one of the most famous multi-instance learning 
algorithms, Diverse Density (DD), where the diverse 
density of a point, p, in the feature space was defined 
as a probabilistic measure which considered how many 
different positive bags had an instance near p, and how 
far the negative instances were from p. This algorithm 
was combined with the Expectation Maximization (EM) 
algorithm, appearing as EM-DD (Zhang & Goldman, 
2001). Another study that extended the DD algorithm 
to maintain multilearning regression data sets was the 
EM-based multi-instance regression algorithm (Amar, 
Dooly, Goldman, & Zhang, 2001). 
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In 1998, Long and Tan (1998) described a poly-

nomial-time theoretical algorithm and showed that if 
instances in the bags were independently drawn from 
product distribution, then the APR was PAC-learnable. 
Following with PAC-learnable research, Kalai and 
Blum (1998) described a reduction from the problem 
of PAC-learning under the MIL framework to PAC-
learning with one-sided random classification noise, and 
presented a theoretical algorithm with less  complexity 
than the algorithm described in Auer (1997).

The first approaches using lazy learning, decision 
trees and rule learning were researched during the year 
2000. In the lazy learning context, Whang and Zucker 
(2000) proposed two variants of the k nearest-neighbour 
algorithm (KNN) that they referred to as Citation-KNN 
and Bayesian-KNN; these algorithms extended the k-
nearest neighbor algorithm for MIL adopting Hausdorff 
distance. With respect to decision trees and learning 
rules, Zucker and Chevaleyre (2000) implemented 
ID3-MI and RIPPER-MI, which are multi-instance ver-
sions of decision tree algorithm ID3 and rule learning 
algorithm RIPPER, respectively. At that time, Ruffo 
(2000) presented a multi-instance version of the C4.5 
decision tree, which was known as RELIC. Later, Zhou 
et al. (2005) presented the Fretcit-KNN algorithm, a 
variant of Citation-KNN that modified the minimal 
Hausdorff distance for measuring the distance between 
text vectors and using multiple instance perspective. 
There are also many other practical multiple instance 
(MI) algorithms, such as the extension of standard 
neural networks to MIL (Zhang & Zhou, 2006). Also 
there are proposals about adapting Support Vector 
Machines to multi-instance framework (Andrews et 
al., 2002; Qi and Han, 2007) and the use of ensembles 
to learn multiple instance concepts, (Zhou & Zhang, 
2007). 

We can see that a variety of algorithms have been 
introduced to learn in multi-instance settings. Many 
of them are based on well-known supervised learning 
algorithms following works such as Ray and Craven’s 
(2005) who empirically studied the relationship be-
tween supervised and multiple instance learning, or 
Zhou (2006) who showed that multi-instance learners 
can be derived from supervised learners by shifting 
their focuses from the discrimination on the instances 
to the discrimination on the bags. Although almost all 
popular machine learning algorithms have been applied 
to solve multiple instance problems, it is remarkable 
that the first proposals to adapt Evolutionary Algorithm 

to this scenario have not appeared until 2007 (Zafra, 
Ventura, Herrera-Viedma, & Romero 2007; Zafra & 
Ventura, 2007) even though these algorithms have been 
applied successfully in many problems in supervised 
learning. 

MAIN FOCUS

Genetic Programming is becoming a paradigm of 
growing interest both for obtaining classification rules 
(Lensberg, Eilifsen, & McKee, 2006), and for other tasks 
related to prediction, such as characteristic selection 
(Davis, Charlton, Oehlschalager, & Wilson, 2006) and 
the generation of discriminant functions. The major 
considerations when applying GP to classification tasks 
are that a priori knowledge is not needed about the sta-
tistical distribution of the data (data distribution free). It 
can operate directly on the data in their original form, 
can detect unknown relationships that exist among data, 
expressing them as a mathematical expression and can 
discover the most important discriminating features of 
a class. We can find different proposals that use the GP 
paradigm to evolve rule sets for different classification 
problems, both two-class ones and multiple-class ones. 
Results show that GP is a mature field that can effi-
ciently achieve low error rates in supervised learning, 
hence making it feasible to adapt to multiple instance 
learning to check its performance.

We propose, MOG3P-MI, a multiobjective grammar 
guided genetic programming algorithm.  Our main moti-
vations to introduce genetic programming into this field 
are: (a) grammar guided genetic programming (G3P) is 
considered a robust tool for classification in noisy and 
complex domains where it achieves to extract valuable 
information from data sets and obtain classifiers which 
contain simple rules which add comprehensibility and 
simplicity in the knowledge discovery process  and (b) 
genetic programming with multiobjective strategy al-
lows us to obtain a set of optimal solutions that represent 
a trade-off between different rule quality measurements, 
where no one can be considered to be better than any 
other with respect to all objective functions. Then, we 
could introduce preference information to select the 
solution which offers the best classification guarantee 
with respect to new data sets.  

In this section we specify different aspects which 
have been taken into account in the design of the 
MOG3P-MI algorithm, such as individual representa-



1374  

Multi-Instance Learning with MultiObjective Genetic Programming

tion, genetic operators, fitness function and evolution-
ary process. 

Individual Representation

The choice of adequate individual representation is a 
very important step in the design of any evolutionary 
learning process to determine the degree of success in 
the search for solutions. In the proposed algorithm the 
representation is given by two components: a phenotype 
and a genotype. An individual phenotype represents a 
full classifier which is applied to bags. This classifier 
labels a bag as being a positive bag if it contains at least 
one instance which satisfies the antecedent, otherwise 
it is labelled as a negative bag. The representation has 
the structure shown in Figure 1.

The antecedent consists of tree structures and is ap-
plied to instances. It represents the individual genotype 
which can contain multiple comparisons attached by 
conjunction or disjunction according to a grammar to 

enforce syntactic constraints and satisfy the closure 
property (see Figure 2). 

Genetic Operators

The elements of the following population are generated 
by means of two operators: mutation and crossover, 
designed to work in grammar guided genetic program-
ming systems.

Mutation

The mutation operator randomly selects a node in the 
tree and the grammar is used to derive a new subtree 
which replaces the subtree in this node. If the new 
offspring is too large, it will be eliminated to avoid 
having invalid individuals. Figure 3 shows an example 
of this mutation.

Figure 1. Classifier applied to multi-instance learning

Figure 2. Grammar used for individual representation

<antecedent>             <comp>
         | OR    <comp> <antecedent>
         | AND <comp> <antecedent>

<comp>         <comp-num>  <values>
                   | <comp-cat>  <values>

<comp-num>           < 
         | ≥

<comp-cat >   CONTAIN 
   | NOT_CONTAIN

<values>   attribute value

Coverbag(bagi)  IF ∃  instancej ∈ bagi where Coverinstance(instancej) is positive
 THEN The bag is positive.
 ELSE The bag is negative.

Coverinstance(instancei)   IF  (antecedent is satisfied by instancei)
  THEN  The instance is positive.
  ELSE The instance is negative.
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Crossover

The crossover is performed by swapping the sub-trees 
of two parents for two compatible points randomly 
selected in each parent. Two tree nodes are compatible 
if their subtrees can be swapped without producing an 
invalid individual according to the defined grammar. 
If any of the two offspring is too large, they will be 
replaced by one of their parents. Figure 4 shows an 
example of the crossover operator.

Fitness Function

The fitness function evaluates the quality of each 
individual according to two indices that are normally 
used to evaluate the accuracy of algorithms in super-
vised classification problems. These are sensitivity 
and specificity. Sensitivity is the proportion of cases 
correctly identified as meeting a certain condition and 
specificity is the proportion of cases correctly identified 
as not meeting a certain condition. 

The adaptation of these measures to the MIL field 
needs to consider the bag concept instead of the instance 
concept. In this way, their expression would be:

n

n p

tspecificity
t t

=
+

 ; p

p n

t
sensitivity

t f
=

+
 

where true positive (tp) represents the cases where the 
rule predicts that the bag has a given class and the 

bag does have that class. True negative, (tn), are cases 
where the rule predicts that the bag does not have a 
given class, and indeed the bag does not have it. False 
negative, (fn) cases are where the rule predicts that the 
bag does not have a given class but the bag does have 
it. Finally, P, is  the number of positive bags and N, is 
the number of negative bags.

The evaluation involves a simultaneous optimization 
of these two conflicting objectives where a value of 1 
in both measurements represents perfect classification. 
Normally, any increase in sensitivity will be accompa-
nied by a decrease in specificity. Thus, there is no single 
optimal solution, and the interaction among different 
objectives gives rise to a set of compromised solutions, 
largely known as the Pareto-optimal solutions. Since 
none of these Pareto-optimal solutions can be identified 
as better than any others without further consideration, 
the goal is to find as many Pareto-optimal solutions as 
possible and include preference information to choose 
one of them as the final classifier.

Evolutionary Algorithm

The main steps of our algorithm are based on the 
well-known Strength Pareto Evolutionary Algorithm 
2 (SPEA2). This algorithm was designed by Zitzler, 
Laumanns and Thiele (2001). It is a Pareto Front based 
multiobjective evolutionary algorithm that introduces 
some interesting concepts, such as an external elitist 

antecedent

OR    <comp>      <antecedent>

<comp-cat>    <values>

NOT-
CONTAIN atributte1 value

<comp>  

<comp-num>    <values>

< atributte5 value

antecedent

OR    <comp>    <antecedent>

<comp-cat>    <value>

NOT-
CONTAIN

atributte1 value

<comp-num>    <value>

> = atributte2 value

AND   <comp>   <antecedent>

<comp>  

<comp-num>    <value>

< atributte3 value

<antecedent> <antecedent>

Parent Offspring

Figure 3. Example of mutation process



1376  

Multi-Instance Learning with MultiObjective Genetic Programming

Parent 1 Parent 2

antecedent

OR    <comp>   <antecedent>

<comp-num>    <value>

< atributte1 value

<comp>  

<comp-cat>    <value>

CONTAIN atributte2 value

antecedent

OR    <comp>   <antecedent>

<comp-cat>    <values>

NOT-
CONTAIN

atributte3 value <comp-num>    <values>

> = atributte4 value

AND    <comp>   <antecedent>

<comp>  

<comp-num>    <values>

< atributte5 value

<comp>

Figure 4. Example of recombination process

Offsp ring 1 Offsprin g 2

antecedent

OR    <comp>   <antecedent>

<comp-num>    <value>

< atributte1 value

antecedent

OR    <comp>   <antecedent>

<comp-cat>    <values>

NOT-
CONTAIN atributte3 value

AND    <comp>   <antecedent>

<comp>  

<comp-num>    <values>

< atributte5 value

<comp>  

<comp-cat>    <value>

CONTAIN atributte2 value

<comp-num>    <values>

> = atributte4 value

<comp>

set of non-dominated solutions, a fitness assignment 
schema which takes into account how many individu-
als each individual dominates and is dominated by, a 
nearest neighbour density estimation technique and 
a truncation method that guarantees the preservation 
of boundary solutions. The general outline of SPEA2 
algorithm is shown in Figure 5.

FUTURE TRENDS

During these years, significant research efforts have 
been dedicated to MI learning and many approaches 
have been proposed to tackle MI problems. Although 
some very good results have been reported, the study 
of MI learning still requires topics which should be 
addressed. First, more datasets would have to be avail-
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able for the purpose of evaluation because the lack of 
information about many of the MI problems tackled 
limits studies and comparisons with other developed 
methods. Secondly, studies are needed to establish a 
general framework for MI methods and applications. 
Recognizing the essence and the connection between 
different methods can sometimes inspire new solutions 
with well-founded theoretical justifications. Thirdly, 
with respect to our adaptation of the Genetic Program-
ming paradigm, although it has shown excellent results, 
more optimization of this method is possible: issues 
such as the stopping criterion, the pruning strategy, 
the choice of optimal solutions and the introduction 
of new objectives for further simplification would be 
interesting issues for future work.

  

CONCLUSION

The problem of MIL is a learning problem which has 
drawn the attention of the machine learning community. 
We describe a new approach to solve MIL problems 
which introduces the Evolutionary Algorithm in this 
learning. This algorithm is called MOG3P-MI and it is 
derived from the traditional G3P method and SPEA2 
multiobjective algorithm. 

Figure 5. Main steps of MOG3P-MI algorithm

MOG3P-MI generates a simple rule-based classifier 
that increases generalization ability and includes inter-
pretability and simplicity in the knowledge discovered. 
Computational experiments (Zafra & Ventura, 2007) 
show that the multiobjective technique applied to G3P 
is an interesting algorithm for learning from multiple 
instance examples, finding rules which maintain a trade-
off between sensitivity and specificity and obtaining 
the best results in terms of accuracy with respect to 
other existing learning algorithm. 
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KEy TERMS 

Evolutionary Algorithm (EA): They are search 
and optimization methodologies based on simulation 
models of natural selection, which begin with a set 
of potential solutions and then iteratively generate 
new candidates and select the fittest from this set. It 
has been successfully applied to numerous problems 
from different domains, including optimization, au-
tomatic programming, machine learning, economics, 
ecology, studies of evolution and learning, and social 
systems.

Genetic Programming (GP): An Evolutionary 
Algorithm that provides a flexible and complete mecha-
nism for different tasks of learning and optimization. Its 
main characteristic is that it uses expression tree-based 
representations or functional program interpretation as 
its computational model.

Grammar Guided Genetic Programming (G3P): 
An Evolutionary Algorithm that is used for individual 
representation grammars and formal languages. This 
general approach has been shown to be effective for 
some natural language learning problems, and the 
extension of the approach to procedural information 
extraction is a topic of current research in the GP 
community.

Multi-instance Learning (MIL): It is proposed 
as a variation of supervised learning for problems 
with incomplete knowledge about labels of training 
examples. In MIL the labels are only assigned to bags 
of instances. In the binary case, a bag is labeled posi-
tive if at least one instance in that bag is positive, and 
the bag is labeled negative if all the instances in it are 
negative. There are no labels for individual instances. 
The goal of MIL is to classify unseen bags or instances 
based on the labeled bags as the training data.

Multiobjective Optimization Problem (MOP): 
The problem consists of simultaneously optimizing 
vector functions which maintain conflicting objectives 
subject to some constrained conditions.

Multiobjective Evolutionary Algorithms 
(MOEAs): A set of Evolutionary Algorithms suitable 
for solving multiobjective problems. These algorithms 
are well suited to multiobjective optimization problems 
because they are fundamentally based on biological 
processes which are inherently multiobjective. Mul-
tiobjective Evolutionary Algorithms are able to find 
optimal trade-offs in order to get a set of solutions that 
are optimal in an overall sense.

Strength Pareto Evolutionary Algorithm 2 
(SPEA2): It is an elitist Multiobjective Evolutionary 
Algorithm. It is an improved version of the Strength 
Pareto Evolutionary Algorithm (SPEA) which incor-
porates a fine-grained fitness assignment strategy, a 
density estimation technique, and an enhanced archive 
truncation method. SPEA2 operates with a population 
(archive) of fixed size, from which promising candi-
dates are drawn as parents of the next generation. The 
resulting offspring then compete with the former ones 
for inclusion in the population. 

Supervised Learning: A machine learning tech-
nique for creating a model from training data where 
every training instance is assigned a discrete or real-
valued label. The task of the supervised learner is to 
classify unseen instances based on the labelled instances 
of training data.




