Defuzzification of fuzzy p-values

Inés Cousband Luciano Sanchéz

Abstract We provide a new description of the notion of fuzzy p-valuéhim the
context of the theory of imprecise probabilities. The fupzyalue is viewed as a
representation of a certain second-order possibility mmeag\ccording to Walley,
any second-order possibility measure can be converted ip&ir of lower and upper
probabilities. Thus, we can convert the fuzzy p-value imdnderval in the real line.
We derive a construction of imprecise (but non fuzzy) testsich are formally
similar to recent tests used to manage with set-valued data.

Key words: Imprecise probabilities, hypothesis testing, fuzzy pdealsecond-
order possibility measure.

1 Introduction

Uncertainty about measurements arises naturally in atyasfecircumstances (see
[7] for a detailed description). This is the reason why thestigpment of procedures
for hypothesis testing with imprecise observations hasig gained increasing at-
tention. When the data set contains intervals rather thamgave are not always
able to take a clear decision about the null hypothesis.dmabent literature, impre-
cise tests are proposed to deal with such situations (sglfThstance). According
to this approach, an interval of upper and lower bounds otthieal value can be
computed from the data set. When both bounds are on one sitle significance
level, the decision (reject or accept) is clear. But whe ithterval and the signifi-
cance threshold do overlap, we are not allowed to take aidacla such situations,
multi-valued test functions are defined. They can take theegd 1} (reject),{0}
(accept) and 0,1} (undecided). This idea has been extended to the case of-fuzzy
valued samples, under different approaches. Specifidaltgmoser & Viertl [8]
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and Denceux et al. [6] independently introduce the concepizdy p-value. The
concept of fuzzy test is then derived in a natural way by Denetial. [6]. But
what should we do when a crisp decision is needed? They peapparticular de-
fuzzification of the test output, in order to take a decisidere we will propose
an alternative construction, based on an interval-valssdyaation for the critical
level. We will justify why such defuzzification of the fuzzyyalue makes sense.
We will show that it is in accordance with the possibilistitarpretation of fuzzy
random variables developed in [3].

2 Fuzzy p-values and fuzzy tests

2.1 Fuzzy p-value associated to a fuzzy random sample

Let X*: Q — R be a random variable with distribution functiéif and letX* =
(X{,....X5) : Q" — R" be a simple random sample of sizérom F* (a collection
of niid random variables with common distributiéri. They represen indepen-
dent observations of*.) Let now the Borel-measurable mappifgg R" — {0, 1}
represent a non-randomized test for

Hp:0€©y versus Hi:6¢e0;.

Both hypotheses refer to a certain parameter of thedfWe will denote byR
the critical region ofg, i.e., R= {x € R":¢(x) = 1}. Let supgcg,Eq(¢(X)) =
SUpyeo, Po(RejectHo) denote the size of the tegt Suppose that for every €
(0,1) we have a sizexr test¢, with rejection regiorRy and letx* = (x;,...,X;)
a realization of the sample. The p-valuexdfis defined as the quantityg(x*) =
inf{a:x* € Ry}.

Let us now assume that we have got imprecise informationtabowand such
imprecise information is given by means of a fuzzy subs&jfk € .#(R"). Ac-
cording to the possibilistic interpretation of fuzzy Sefgx) represents the possibil-
ity grade that the “true” realizatiox coincides with the vectot. Denceux et al. [6]
and Filzmoser & Viertl [8] independently extend the concefpp-value, introduc-
ing the notion of fuzzy p-value. Each of those papers dedls avspecific problem,
but both definitions lead to the same general notion. We \allltbe fuzzy p-value
of the fuzzy samplé to the fuzzy seext(pya)(X) determined by the membership
function:

ext(pva) (X)(p) = sup{X(x): Ix € R", with pai(x) = p}, Vpe [0,1]. (1)

~_According to the possibilistic interpretation of fuzzy sethe membership
ext(pval) (X)(p) represents the possibility grade of the equaligy(®*) = p, accord-

1 We show in [2, 3] some specific situations where such a meripefisnction is derived from an
imprecise perception of some.
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ing to the imprecise information we have abatitlescribed by. The last fuzzy set
is closely related to the nested family of sgia(X5))sc(o,1) defined as follows:

Pval(X5) = {Pvai(X) X € X5}, VO € [0, 1].

For some particular situations studied in [6] and [8], ithe family of d—cuts of

ext(pva))(X). In the general case, it is just a gradual representatioheofuzzy p-

value. In other words, the membership functioregf(pya ) (X) can be derived from
such nested family as follows:

&Xt(pear) (%) (p) = SUP(B: P € Prai(R5) -

But we should assume some continuity properties to assat¢m(Xs))seo. is
the family of d—cuts. In general, only the following relation holds:

[pval(;()]g C pval(Xs) C [pvai(X)]s, VO,

where[pval(X)]5 and[pvai(X)]5 respectively denote the strong and the wéalcut.

2.2 Fuzzy test associated to the fuzzy p-value

First of all, let us specify the meaning of the expressioreZfutest” in our con-
text: The null and the alternative hypotheses are refeodbd distribution of the
original random variable; *, so they are customary hypotheses in usual statistical
problems. But the test is a fuzzy-valued function, i.es & imapping that assigns, to
each possible fuzzy samptes .% (R"), a fuzzy subset of0,1}. That fuzzy subset
reflects the possibility grades of rejection and acceptahtige null hypothesis, in
accordance with the information provided by the fuzzy randample. Some re-
cent papers in the literature about statistics with imgedata fit this formulation
(see [6], for instance.) Let the reader notice that this @ggin is not related to other
different works in the fuzzy statistics literature (seefi® a detailed description),
where the test functions are crisp, but they are referrecctrtain parameter of the
probability distribution induced by a fuzzy random variabh a certairo-algebra
of fuzzy events. This approach would not be useful in our exntwhere the frv
represents the imprecise description of an otherwise atdnmdndom variable (see
[1, 3, 4] for more detailed comments.)

In this paper, we will follow Denceux et al. [6] to constructuzty test from a
fuzzy p-value function. They specify the calculations fue Kendall and the Mann-
Whitey-Wilcoxon tests. We will give here a more general digsion.

Let (@a)ac(0,1) e afamily of tests foHp against;, whereg, : R" — {0,1} is
a test of sizen, for eacha € (0,1). Let pa : R" — [0,1] andext(pyq) : -Z (R") —
Z(]0,1]) respectively denote the crisp and the fuzzy p-value funstiin accor-
dance with the formulae given in the last section. We cantcocisthe fuzzy test
Pexip,.) frOm ext(pyal) as follows:
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By (¥)(1) = SUPEXt(pva) (%) (p): p < a}, and
Besty (¥)(0) = Sup{extipva) (X) (p): p > ar}.

According to the interpretation o€xt(pya)(X)(p), the membership value
¢é§t(pva|)()~()(1) represents the possibility grade thatx*) is less than or equal
to a or, in other words, the possibility that belongs to the rejection region. Sim-
ilarly, ¢&t(n/a|)()~()(o) represents the possibility of accepting (no rejecting)rtbi
hypothesis. Thuspg)&( ) (%) represents a fuzzy decision. In the cases where a crisp
decision is needed, %ls fuzzy subset may be defuzzifiedoddenet al. [6] sug-
gest the following rule: rejecting the null hypothesis weesr ¢é;t<pval)(>”<)(1) >
¢é)~(t(pval)(>”<)(>?)(0) and accepting (no rejecting) it otherwise. In Section 3, vil¢ w
propose a different rule based on the theory of impreciseaiitities. First, we
need to give an alternative description of the fuzzy p-value

2.3 An alternative approach to the concept of fuzzy p-value

Let us now give an alternative approach to the notion of fugasalue. Let us
first consider, for each particular realizatioi R", the Borel measurable mapping
D(x) : R" — {0,1} defined by:

B 1 ifpua(y) < pva(x)
DX)(y) = {O otherwise.

D(x)(y) takes the value 1 when the samplas “less compatible” with the null
hypothesis thaw is. Thus, for a fixeck € R", we have:

supPy(D(x) = 1) = supPa({y € R":pai(y) < Pvai(X)})-
66y 66y

Let us now remind thap, is assumed to be a test of siagi.e.,

SUPEg(¢a(X)) = supPy(Ra) = a.
66y 606y

Hence, we can prove thBXx) satisfies the equality:

SupPg(D(x) = 1) = pvai(X).
6Oy

For the sake of simplicity, let us assume that the sizes ofithtests are associated
to a certain value of the parametgyre Oy, i.e., let us assume that:
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SupPg(Ry) =Pgy(Ry) = a, Va € (0,1).
6cOg

(The above condition holds, for instance, when the null ilypsis is simple and also
for the most common unilateral and bilateral tests.) In tase D(x) is a Bernoulli
random variable with parametey,ix), under the distributiofrg,. In other words,
Pval(X) = Pg,({D(x) = 1}), Vx € R". (The p-value ok represents the probability,
under the null hypothesis, of getting a sample which is “lE@m®patible” withHg
thanx is.) Let 2 represent the class of binary random variables that canfbeede
onR" and let us now use the extension principle to extend®" — 2" to # (R").
l.e., let us define the mappimxt(D) : .Z (R") — .7 (2) as follows:

ext(D)(X)(Z) = sup{X(x):D(x) = Z}, VZ € Z .

Let us note thaext(D)(X) is a possibility distribution ove2” and represents our
imprecise information aboud(x*), according to our imprecise perception of the
realizationx*, represented by. More specifically, for each binary random variable
Zc %, ext(D)(X)(Z) represents the possibility grade tHagx*) coincides with

Z. Each binary random variable induces a Bernoulli distidwtB(p). Thus, ac-
cording to [3], we can derive a possibility distribution dretclass of the Bernoulli
measures. From now on, we will denote the class of all Belndistributions by
Z3((0,1y), since it is the class of probability measures that can be ettfover
[0({0,1}). This possibility measurdly, is determined by the possibility distribu-
tion 1 : (j0,1y) — [0,1):

")?(B( —SUp{D( ( Pz= B( )}7 Vpe [071]'

In words, 1z (B(p)) represents the degree of possibility that the probabilieam
sureB(pyal(x*)) induced byD(x*) coincides withB(p). In other wordsjtz(B(p))
represents the degree of possibility of the equaljfy(r*) = p. Mathematically,

1(B(p) —sup{D(i( Pz =B(p)} =sup{D(X)(2):P(Z=1) = p}
= sup{X(x) :P(D(x) = 1) = p} = ext(pva))(X)(p), ¥ p € [0,1].

Summarizing, the fuzzy p-value is closely related to a @egacond-order pos-
sibility measure [5]. Section 3 will be based on this altéiseadescription of the
fuzzy p-value.

3 Defuzzification of the fuzzy p-value

In Section 2.1 we have shown how the fuzzy p-value can bepireeed in terms
of a second order possibility measure. In faoti(pya) (X) represents a possibility
distribution over the class of possible values of the patant# a Bernoulli random
variable, and we have identified it with a second-order [nilitgi measuref1x de-
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flrled over the class of all Bernoulli distributions. Accargito Section 2.1/1¢ and
ext(pval) (X) are connected by the formula:

ext(pvar) (X)(p) = Mx(B(p)) = Mx({B(P)}) ()

According to Walley [10], any second-order possibility reege (which is an
upper probability over the class of standard probabilitias be reduced into a pair
of upper and lower probabilities. Let us briefly describe i¥gs procedure in our
particular situation. We will consider the product spagg (o,1}) x [J({0,1}) and:

e the possibility measurBlx on #y ;o 1y)- (In our particular problem, it repre-
sents our imprecise knowledge about the probability distion of the random
variableD(x*).)

e the “transition probability’P} : Zn101p) X0 ({0,1}) — [0, 1] given by the for-
mula:

P3(A,P) :=P(A), VA€ 0({0,1}),P € P01y

(It represents the following conditional probability imfoation: if P were the
true Bernoulli distribution associated Bx*), then the probability of occur-
rence of the everd(x*) € A should beP(A). In particular, forA = {1}, and
P = B(p), the quantityP({1},B(p)) = p represents the probability of occur-
rence of the everlD(x*) = 1 according to the conditional informatio®{x*)
induces the probability measuBép)”.)

In this setting, Walley constructs, by means of natural msiten techniques, an
upper-lower joint model. Thus, the available informatidroat the marginal dis-
tribution on the second spatq{0,1}) is described, in a natural way, by a pair of
lower and upper probabilitieB,y andPy. In particularPy,({1}) andPw ({1}) will
represent the tightest bounds for the probability of theneldéx*) = 1 or, in other
words, the tightest bounds for the p-valugy (x*). To specify how this reduction is
made, let us first recall that the second-order possibilidasurdTy can be identi-
fied with the class of second-order probability meas{ife® < I1x}. If P were the
“true” second-order probability that governs the “randdreXperiment associated
to the choice of the “true” Bernoulli distribution, then theobability of occurrence
of the even{1} (i.e., the “true” p-value) should be computed as follows\g com-
bine degrees of belief about events and about probabitifiesents into the same
model):

[ B3(1).P) d(P) = [ P({1})dB(P).

Since all we know abouk is that it is dominated by the possibility measiitg, the
lowest upper bound for the probability of occurrence of thereD(x*) = {1} is
determined by

2 Note that we are here interpreting the uncertainty assstiatthe perception of* as “random-
ness”, since this imprecise perception is described by silpibsy measure, which is, in turn, an
upper probability.
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Pw({1}) = sup [ P3({1},P) dP(P) = sup [ P({1})dP(P).
P<Mg P<M

Similar arguments lead us to represent the highest lowendboii the probability
by:
Pw({1}) = inf /11»2 {1},P) dP(P) = int /P (1)) dP(P).

Thus, the Walley reduction aIIows us to convert the fuzzyahtg into the crisp
interval [pyai(X), pvai(X)] = [Pw({1}),Pw({1})]. Furthermore, according to Walley
[10], these upper and lower bounds can be alternatively ctadmas follows:

1 -1
Pw{1) = [ Ps({1)ds, Pw({1})= [ Ps({1})ds
where, for each indexj € [0,1], Ps andP; are defined as follows:

Ps({1}) =sup{Q({1}):Q € Py (j01}),Mx({Q}) > &} and
Ps({1}) =inf{Q({1}):Q € Zn(j0,1}),Mx({Q}) > o}

Theorem 1.

P5({1}) = supext(pva) (%)]5 and P5({1}) = inf[ext(pva)) (X)]5, ¥3 € [0,1].

According to the last theorem, the combination of first antbse-order proba-
bilities into the same model converts the fuzzy p-vakx(pya) (X) into the interval:

Do) ~ [Pa®) P = | [ &K (0153, | sufeR(pua) (0]

(3)
The extreme points of such interval represent the most atebounds for the true
p-value, pa(x*), based on our imprecise knowledgextf Let us denote bgpm

the multi-valueda —test associated to such interval

{0} if pual(X) = Jg inflext(pya) (X)]5 dS > a
b w® ={{1}  if (%) = fg supextipva) (%)]5 d5 < a
{0,1} otherwise.

The following relation betweetp and the Denceux et al. [6] defuzzification of

Pasi OIS

Theorem Z'defubMH(¢&t(ma|)) - ¢m.

According to this result, the multi-valued test proposedhis paper is more
times inconclusive than the Denceux et al. defuzzificatiohas, wheneverpm
leads us to a clear decision (reject or accept the null hygsigh defuqu‘,_;);t )

also leads to the same decision. But, for some fuzzy samplfmmij@extm |))
is conclusive anab |s not. This could be viewed as an argument agamst the
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use of¢m. Nevertheless, it is not clear whether a higher number africlusive
tests is a disadvantage or an improvement. The dependetveedrethe degree of
imprecision of the data-set and how many times a given testnclusive is not
clear, and should be further studied in future works.

4 Concluding remarks

We have proposed a new construction of crisp tests from fdatg, based on the
theory of imprecise probabilities. The new tests are obthias functions of the
fuzzy p-values associated to the fuzzy samples, but thayotde obtained as direct
defuzzifications of the initial fuzzy tests.
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