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Abstract

This paper compares performance of the Pittsburgh-style system GAssist with the Michigan-
style system XCS on several datamining problems. Our analysis shows that both systems are
suitable for datamining but have different advantages and disadvantages. The study does not
only reveal important differences between the two systems but also suggests several structural
properties of the underlying datasets.

1 Introduction

Successful data mining applications are important for modern-day learning classifier systems
(LCSs). Additionally, the study and comparison of different types of data miners on various data
sets may enable the identification of strengths and weaknesses of the respective data miners. Sev-
eral types of problem difficulty can be distinguished in data mining including data volume, search
space size and type, complexity of the concept, noise in the data, the handling of missing values,
or the problem of over-fitting.

Successful datamining applications of learning classifier systems have been shown in the past
(Bernadó, Llorà, & Garrell, 2001) investigating and comparing performance of the accuracy-based
Michigan-style LCS XCS (Wilson, 1995) and the Pittsburgh-style LCS GALE (Llorà & Garrell,
2001). Both systems showed competent performance in comparison to six other machine learning
systems.

Recently, new systems have appeared in the LCS field, like the Pitt-style LCS GAssist (Bacardit
& Garrell, 2003a). Also, there are improved versions of already established systems, like the XCS
with tournament selection (Butz, Sastry, & Goldberg, 2003). The objective of this paper is two-
fold: (1) We provide further performance results of GAssist and XCS on several interesting datasets.
(2) We compare and investigate performance of the two systems revealing problem dependencies,
suitability of the respective approaches, as well as over-fitting or over-generalization tendencies.
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2 Framework

Before we start with the datamining analysis, this section provides a short introduction to the LCSs
under investigation.

2.1 GAssist

GAssist (Bacardit & Garrell, 2003a) is a Pittsburgh genetic-based machine learning system de-
scendant of GABIL (DeJong, Spears, & Gordon, 1993). The system applies a near-standard GA
that evolves individuals that represent complete problem solutions. An individual consists of an
ordered, variable-length rule set. Bloat control is achieved by a combination of a fitness function
based on the minimum description length (MDL) principle and a rule deletion operator (Bacardit
& Garrell, 2003a).

The knowledge representation used for real-valued attributes is called adaptive discretization
intervals rule representation (ADI ) (Bacardit & Garrell, 2003b). This representation uses the
semantics of the GABIL rules (conjunctive normal form predicates), but applies non-static intervals
formed by joining several neighbor discretization intervals. These intervals can evolve through the
learning process splitting or merging among them potentially using several discretizers at the same
time.

The system also uses a windowing scheme called ILAS (incremental learning with alternating
strata) (Bacardit & Garrell, 2003c). This scheme stratifies the training set into s subsets of equal
size and approximately uniform class distribution. Each GA iteration uses a different strata to
perform its fitness computation, using a round-robin policy. This method showed to introduce an
additional implicit generalization pressure to GAssist. 1

2.2 XCS

The XCS classifier system (Wilson, 1995; Wilson, 1999) evolves online a set of condition-action
rules, that is, a population of classifiers. In difference to GAssist, in XCS the population as a whole
represents the problem solution. XCS differs in two fundamental ways to other Michigan-style
LCSs: (1) Rule fitness is derived from rule accuracy instead of rule reward prediction. (2) GA
selection is applied in the subsets of currently active classifiers resulting in an implicit pressure
towards more general rules.

Due to the variable properties of the investigated datasets including real values, nominals, and
binary features, we use a hybrid XCS/XCSR approach that can handle any feature combination
as done before in (Bernadó, Llorà, & Garrell, 2001). Additionally, we apply tournament selection
which proved to result in more robust fitness pressure toward accurate rules (Butz, Sastry, &
Goldberg, 2003). 2

1GAssist’s parameters were set as follows: Crossover probability 0.6; tournament selection; tournament size 3;
population size 400; probability of mutating an individual 0.6; initial number of rules per individual 20; probability
of “1” in initialization 0.75; Rule Deletion Operator: Iteration of activation: 5; minimum number of rules: number
of classes of domain +3; MDL-based fitness function: Iteration of activation 25; initial theory length ratio: 0.075;
weight relax factor: 0.9. ADI knowledge representation: split and merge probability: 0.05; reinitialize probability
at initial iteration: 0.02; reinitialize probability at final iteration: 0; merge restriction probability: 0.5; maximum
number of intervals: 5; set of uniform discretizers used: 4, 5, 6, 7, 8, 10, 15, 20 and 25 bins; iterations: maximum of
1500. Results are averaged over 150 experiments.

2XCS’s parameters are set as follows: N = 6400, r0 = 4(100), P# = 0.6, β = 0.2, χ = 1.0 applying uniform
crossover, µ = 0.04, m0 = 0.2, θGA = 48, τ = 0.4, ε0 = 1, δ = 0.1, θdel = 50, GA Subsumption is applied with
θsub = 50. Experiments are run applying either 100,000 learning steps (averaging over 150 experiments) or 500,000
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3 Experiments

3.1 Tests setup

In Table 1 we show the datasets we have selected from the University of California at Irvine (UCI)
repository (Blake, Keogh, & Merz, 1998). The selected datasets are:

• Annealing Data (ann)

• 1985 Auto Imports Database (aut)

• Balance Scale Weight & Distance (bal)

• Contraceptive Method Choice (cmc)

• Horse Colic (col)

• German Credit (cr-g)

• Glass Identification (gls)

• Cleveland Heart Disease (h-c)

• Hungarian Heart Disease (h-h)

• Johns Hopkins University Ionosphere database (ion)

• Sonar, Mines vs. Rocks database (son)

• Wisconsin Breast Cancer database (wbcd)

• Wisconsin Diagnostic Breast Cancer (wdbc)

The selection of datasets gives a representative overview over the phenomena we were able to detect
using GAssist and XCS.

The test design for GAssist has two goals: Comparing the effect of using both different number
of iterations and different degrees of generalization pressure. The latter goal is achieved by using
the ILAS windowing scheme. However, our goal here is not run-time reduction, but maximizing as
much as possible the generalization pressure introduced by ILAS. Thus, we will increase the number
of iterations when using windowing proportional to the number of strates used. This means having
constant number of learning steps (using the Michigan-LCS meaning of the term). We will also
test another stratified setup using a number of iterations that makes it equivalent in run-time as
the non-windowed setting.

3.2 Results

Results of GAssist and XCS are shown in Table 2. The comparison is not meant to determine
which system is better in general but rather to show in which problem types which system appears
to have advantages. Our comparison starts with a general data observation and then investigates
separate datasets with respect to specific phenomena.

A look at the overall performance shows that XCS and GAssist show comparative performance
results indicating the general difficulty of the respective datasets. XCS tends to learn the training

learning steps (averaging over 20 experiments).
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Table 1: The dataset properties indicate complexity, size, and data distributions in the respective
datasets. #Inst. = Number of Instances, #Attr. = Number of attributes, #Real = Number
of real-valued attributes, #Nom. = Number of nominal attributes, #Cla. = Number of classes,
Dev.cla. = Deviation of class distribution, Maj.cla. = Percentage of instances belonging to the
majority class, Min.cla. = Percentage of instances belonging to the minority class, MV Inst. =
Percentage of instance with missing values, MV Attr. = Number of attributes with missing values,
MV values = Percentage of values (#instances · #attr) with missing values

Dataset Properties
Name #Inst. #Attr. #Real #Nom. #Cla. Dev.cla. Maj.cla. Min.cla. MV Inst. MV Attr. MV values

ann 898 38 6 32 5 28.28% 76.17% 0.89% — — —
aut 205 25 15 10 6 10.25% 32.68% 1.46% 22.44% 7 1.11%
bal 625 4 4 — 3 18.03% 46.08% 7.84% — — —
cmc 1473 9 2 7 3 8.26% 42.70% 22.61% — — —
col 368 22 7 15 2 13.04% 63.04% 36.96% 98.10% 21 22.77%
cr-g 1000 20 8 12 2 20.00% 70.00% 30.00% — — —
gls 214 9 9 — 6 12.69% 35.51% 4.21% — — —
h-c1 303 13 6 7 2 4.46% 54.46% 45.54% 2.31% 2 0.17%
h-h 294 13 6 7 2 13.95% 63.95% 36.05% 99.66% 9 19.00%
ion 351 34 34 — 2 14.10% 64.10% 35.90% — — —
son 208 60 60 — 2 3.37% 53.37% 46.63% — — —

wbcd 699 9 9 — 2 15.52% 65.52% 34.48% 2.29% 1 0.23%
wdbc 569 30 30 — 2 12.74% 62.74% 37.26% — — —

data much more precise which however is not necessarily advantageous for performance on the test
data (using stratified ten-fold cross-validation). The solution representation differs (as expected)
very significantly between GAssist and XCS: The number of rules in the best individual in GAssist is
much smaller than the number of rules in XCS. However, it should be noted that GAssist maintains
400 individuals and thus the overall number of rules is actually similar to the number of rules in
XCS. While we did not make explicit speed comparisons it appears that XCS runs take longer than
GAssist’s. Again, this is expectable since XCS is an online learner that learns from each problem
instance separately and iteratively. Thus, the number of necessary learning iterations are higher.

Taking a closer look at the particular datasets we see that in the anneal (ann) dataset, per-
formance of both systems reaches a similar level if XCS is run long enough. As also indicated by
XCS’s smaller population size in longer runs, generalization appears important and requires suffi-
cient learning time. Generalization is even more important in the autos (aut) problem indicated by
XCS’s poor performance when starting specific and its improved test performance and smaller pop-
ulation size in longer runs as well as in GAssist’s slight performance improvement and rule number
decrease when using three strata. Additionally, the higher population size of XCS compared to
the anneal problem indicates a general higher complexity of the problem. Balance-scale (bal) is a
typical problem which can be over-fitted easily: XCS’s performance is worse when starting more
specific and when performing longer runs. Note that the population size of XCS actually increases
when starting general and running more iterations—a clear indication of over-fitting. GAssist’s
performance points in the same direction in that generalization can slightly improve performance
but longer runs are not helpful. The cmc problem appears to be a tough problem in general. XCS
over-fits the data more than GAssist showing higher train performance but worse test performance.
In the colic (col) as well as in the heart-h (h-h) problem, performance of XCS is significantly worse
compared to GAssist. The major reason for this appears to be the missing value policy. While in
GAssist a missing value is replaced by the majority value for the nominal case or by the average
value in the real-valued case, XCS assumes a match in the missing value case. The latter strategy
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Table 2: Performance results of GAssist and XCS show train and test performance using 10-folded
cross-validation. Additionally, we show the number of rules in the best individual of GAssist and the
number of (macro-)classifiers in XCS (at the end of a run). The different GAssist runs distinguish
a different application of strata as well as number of iterations (609,1827, and 1447, respectively).
In XCS, we compare long and short learning runs as well as a general and specific initialization of
the population.

GAssist XCS (500,000) XCS (100,000)
Data Res. 1 strata 3 str.(steps) 3 str.(time) r0 = 100 r0 = 4 r0 = 100 r0 = 4

ann
Train 97.44±2.23 97.80±3.27 97.89±2.51 99.56±0.46 99.95±0.18 94.26±1.97 98.88±0.61
Test 97.03±2.55 97.40±3.45 97.47±2.80 98.38±1.57 98.56±1.49 91.22±2.70 91.73±2.93
#rules 6.9±0.9 6.3±0.7 6.3±0.5 2507.1±232.0 3210.8±146.0 4440.4± 86.8 5425.9± 51.4

aut
Train 85.54±2.93 84.66±3.16 82.82±3.73 99.76±0.23 99.64±0.39 99.27±0.67 99.38±0.56
Test 67.54±9.82 68.79±9.66 67.50±9.46 71.54±9.47 68.83±12.05 64.69±9.64 13.40±6.91
#rules 12.8±2.7 7.8±1.1 7.8±1.0 3403.2± 98.5 4679.1±216.7 4281.1± 87.3 5426.2± 36.9

bal
Train 87.67±0.49 85.97±0.69 85.93±0.73 98.37±0.72 98.59±0.64 90.63±2.18 97.96±0.86
Test 78.98±4.22 78.80±3.76 79.17±4.38 81.37±3.58 80.97±3.82 84.57±3.27 81.96±3.49
#rules 13.1±2.0 9.6±1.6 9.8±1.6 2060.8± 73.2 2013.8± 59.8 1611.2±168.5 2465.2± 65.9

cmc
Train 59.77±0.96 59.55±1.13 59.75±1.09 70.46±1.86 77.56±2.01 57.04±1.84 71.48±2.23
Test 54.78±4.18 54.60±4.00 54.90±4.11 53.63±4.02 52.89±4.71 50.12±4.67 53.59±3.56
#rules 7.7±1.4 9.3±3.0 9.1±2.9 3261.3± 88.1 3210.1± 84.3 3957.8± 91.4 3929.2± 64.7

col
Train 99.72±0.34 99.56±0.48 99.54±0.50 94.58±1.18 95.52±1.32 91.67±1.64 94.96±1.12
Test 93.00±4.67 93.77±4.57 94.06±4.31 84.35±5.03 83.68±5.80 84.46±5.83 84.82±5.55
#rules 7.4±1.6 7.0±1.4 7.0±1.4 3102.1±156.1 3685.1± 84.2 3612.4±168.8 4099.5± 96.3

cr-g
Train 81.95±0.76 83.72±0.94 84.32±0.83 98.24±1.19 99.61±0.34 89.69±3.15 94.42±1.39
Test 72.30±3.61 72.03±4.21 72.20±3.78 70.15±3.63 72.30±4.16 71.39±3.85 72.45±3.11
#rules 6.8±1.5 11.3±3.0 13.1±2.1 2015.6± 69.2 2622.9± 75.4 3217.0±105.8 4401.2±103.8

gls
Train 82.14±1.81 80.41±1.89 79.88±1.84 98.84±0.64 99.57±0.67 89.67±2.83 96.62±1.43
Test 68.18±9.32 69.40±9.16 68.39±9.89 74.68±7.71 71.20±8.69 70.65±8.15 70.71±8.43
#rules 8.8±1.4 6.6±0.8 6.6±0.8 1808.4± 86.5 2142.9± 78.4 3092.6±133.6 3137.1± 92.7

h-c1
Train 93.42±0.82 91.44±0.98 92.64±0.86 99.85±0.25 100.00±0.00 99.48±0.46 100.00±0.00
Test 80.18±7.04 79.96±6.84 80.28±6.48 76.40±6.69 79.58±6.52 77.67±6.80 68.90±8.60
#rules 9.3±1.5 6.9±1.1 7.4±1.2 2042.7± 69.2 2807.8± 89.6 2854.1± 99.6 2906.5± 68.2

h-h
Train 99.69±0.32 99.04±0.48 99.02±0.50 99.65±0.44 100.00±0.00 95.38±2.22 100.00±0.00
Test 95.53±4.40 95.65±4.39 95.79±3.25 78.65±9.02 76.59±6.90 79.44±7.69 70.82±6.93
#rules 6.1±0.7 6.3±0.5 6.0±0.2 2072.3±103.1 2686.2± 71.9 3090.8±135.8 2860.8± 67.5

ion
Train 98.24±0.46 96.77±0.63 96.78±0.59 99.94±0.19 99.68±0.41 99.71±0.32 99.78±0.34
Test 92.51±4.93 92.70±4.74 92.97±4.83 89.33±4.81 57.39±6.39 90.73±5.29 57.07±6.81
#rules 3.9±0.8 2.2±0.7 2.2±0.8 2934.6± 93.5 5613.1± 28.9 3479.2± 97.6 5685.4± 31.4

son
Train 97.00±0.96 96.62±1.19 96.25±1.17 100.00±0.00 100.00±0.00 99.89±0.30 100.00±0.00
Test 74.35±8.89 76.81±9.00 77.47±9.19 78.35±7.42 82.61±8.28 77.27±8.08 81.58±7.88
#rules 8.3±1.4 6.8±1.1 6.9±1.1 4958.9±119.8 4168.0±142.2 5148.2±107.0 4472.6± 89.8

wbcd
Train 99.05±0.27 97.82±0.50 97.85±0.47 99.84±0.24 100.00±0.00 97.68±0.89 99.94±0.13
Test 95.15±2.93 96.05±2.59 96.04±2.37 96.06±2.83 96.22±2.23 96.19±2.18 96.45±1.90
#rules 5.0±1.0 2.4±0.6 2.4±0.6 1562.3± 96.8 2131.1± 52.9 1107.9±143.5 3137.3± 81.8

wdbc
Train 98.60±0.45 97.59±0.68 97.57±0.78 99.98±0.09 100.00±0.00 99.84±0.22 99.85±0.24
Test 94.06±3.01 94.18±2.91 94.10±2.84 96.13±2.48 96.67±2.20 95.85±2.62 92.90±3.29
#rules 6.0±1.3 3.8±0.7 3.9±0.9 4104.1±111.5 5050.8± 50.9 4484.5± 85.5 5551.2± 87.7
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appears mediocre in the investigated data mining experiments explaining XCS’s poor performance
in these settings.

Performance in the credit-g problem (cr-g) indicates that over-fitting is unlikely but in order to
reach higher performance more specific initialization is helpful. Again, XCS reaches a much higher
train performance but test performance is hardly influenced.

XCS’s behavior in the glass problem (gls) is similar to that of credit-g. However, generalization
is more important as also indicated by the performance improvement in GAssist when using three
strata. Similar to the autos problem, XCS outperforms GAssist in the glass problem indicating
higher problem complexity which might partially stem from the large number of classes in the
problem.

XCS’s performance in heart-c1 (h-c1) is actually very similar to the performance in in heart-
h (h-h) suggesting that besides the problem of missing values in heart-h, XCS tends to strongly
over-fit the training data. GAssist does not suffer from this problem in these datasets.

Another interesting observation was made in the ionosphere problem (ion) in which the auto-
matic default rule detection mechanism in GAssist is actually able to discover that the minority
class results in a better problem performance. XCS tends to over-fit as indicated by the poor
performance and large population size when starting too specific.

On the other hand, in the sonar problem (son) a start from the specific side is actually beneficial
for XCS suggesting small special-case niches which can be separated only if the population is
initialized more specific. The more generalized representation of GAssist is not advantageous in
this dataset.

In the Wisconsin breast-cancer dataset (wbcd) performance of both systems is similar and the
problem appears to be generally easy as indicated by the small number of rules in both systems.

Finally, wdbc is another problem in which the complexity of the problem makes it hard for
GAssist to reach XCS’s performance level. XCS needs a large number of classifiers to solve the
problem but is able to evolve the appropriate set. Slight generalizations are possible. GAssist on
the other hand learns a very general—but slightly over–general solution.

4 Summary and Conclusions

In sum, both LCS systems showed that they are suitable for data-mining applications developing
very different problem solutions that nonetheless perform similarly well on the test sets. Addition-
ally, the comparison showed that regardless of offline (GAssist) or online (XCS) learning, LCSs are
suitable data-miners.

The results allowed us to infer problem properties as well as problem difficulties. We saw that
the current policy of handling missing values in XCS can affect performance negatively. Also,
while GAssist has the tendency to ignore additional problem complexity, XCS tends to over-fit the
training data more often (dependent on the nature of the data). Additionally, GAssist has slight
problems with handling many output classes as well as a huge search space suggesting the addition
of special covering operators that could ensure that each individual in GAssist differentiates at least
all classes in the problem at hand. On the other hand, XCS’s generalization tendency needs to be
revisited in the data-mining domain. Especially in smaller datasets, XCS clearly tends to over-fit
the data. Due to the small size of the datasets, the natural generalization pressure due to the
niche reproduction mechanism hardly applies and pressure towards syntactic generality appears to
become more important.

The insights gained from our study prepare the systems for a more general problem application
suggesting initial testing with each learning approach for suitability and appropriate initialization.
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XCS may need to be improved in terms of generalization to avoid over-fitting. GAssist may be
endowed with further covering mechanism to ensure that all problem classes are covered by each
individual and that it is able to detect additional small but significant problem subspaces.
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