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Summary. Learning concept descriptions from data is a complex multiobjective
task. The model induced by the learner should be accurate so that it can represent
precisely the data instances, complete, which means it can be generalizable to new
instances, and minimum, or easily readable. Learning Classifier Systems (LCSs) are a
family of learners whose primary search mechanism is a genetic algorithm. Along the
intense history of the field, the efforts of the community have been centered on the
design of LCSs that solved these goals efficiently, resulting in the proposal of multiple
systems. This paper revises the main LCS approaches and focuses on the analysis
of the different mechanisms designed to fulfill the learning goals. Some of these
mechanisms include implicit multiobjective learning mechanisms, while others use
explicit multiobjective evolutionary algorithms. The paper analyses the advantages
of using multiobjective evolutionary algorithms, especially in Pittsburgh LCSs, such
as controlling the so-called bloat effect, and offering the human expert a set of concept
description alternatives.

Key words: Learning Classifier Systems, Multiobjective Learning, Multiobjective
Evolutionar y Algorithms.

1 A Multiobjective Motivation

Classification is a central task in data mining and machine learning applications.
It consists of inducing a model that describes the target concept represented in a
dataset. The dataset is formed by a set of instances, where each instance is described
by a set of features and an associated class. The model describes the relation between
the features and the available classes, hence it can be used to explain the hidden
structure of the dataset and to classify newly collected instances whose associated
class is unknown.

Classification may be regarded as an inherently multiobjective task. Such a task
requires inducing a knowledge representation that represents the target concept com-
pletely and consistently. In many domains, the induced model should also be easily
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interpretable, which often means a compact representation, and take few computa-
tional resources especially in the exploitation stage but also in the training stage.
All these objectives are usually opposed and classification schemes try to balance
them heuristically.

Multiobjective learning is also present in learning classifier systems (LCSs). LCSs
evolve a model of the target concept by the use of genetic algorithms (GAs). Partic-
ularly, genetic algorithms search for a hypothesis or a set of hypotheses representing
the target concept. The hypotheses can be represented as rule sets, prototype sets,
or decision trees [42, 43, 13]. Two main approaches are defined under the LCS frame-
work. The so-called Michigan approach codifies a population of rules, where each
individual of the population represents a single rule; thus, a partial solution. The
whole population is needed to represent the whole target concept. The Pittsburgh
approach codifies a complete knowledge representation (either a ruleset, instance
set, or induction tree) in each individual. Thus, the best individual evolved is the
solution to the classification problem. In both cases, genetic algorithms are used as
search algorithms, seeking to optimize the multiobjective learning goals. In many
cases [63, 23, 4], the multiobjective goals are dealt implicitly by the interaction of
several components. In other cases [10, 45], the multiobjective goals are directly
codified in the fitness function.

The later case benefits from the fact that the search is performed by a genetic
algorithm and uses experience gained from the field of multiobjective evolutionary
algorithms to get a hypothesis optimizing simultaneously the learning goals. One of
the advantages associated with this approach is the improvement of the search in
the space of possible hypotheses, minimizing the probabilities of falling into local
minima. Moreover, the solution obtained is not only a single hypothesis, but a set
of compromise solutions representing different hypotheses along the Pareto front.
This offers the human expert the possibility of choosing among a set of alternatives.
Besides, this allows to explore the possibilities of combining different hypotheses,
which opens the area up to the field of ensemble classifiers [17].

This paper revises the main LCS approaches through the prism of multiobjec-
tive learning. First, we give a short history of LCS, summarizing early approaches
of LCSs which were significant and inspired nowadays competent LCSs. Then, we
focus our attention on the most successful systems of both the Michigan and Pitts-
burgh approaches. We focus on these types of systems separately, since they have
different types of difficulties to achieve the learning goals, due to their different
architecture. In Michigan LCSs, learning is centered on the evolution of a mini-
mum set of rules where each rule should be accurate and maximally general. We
revise how the XCS classifier system [63] achieves implicitly these goals, and com-
pare it with MOLeCS [10], a multiobjective learning classifier. In Pittsburgh LCSs,
learning implies a search through a space of rulesets, evolving an accurate, general,
and minimum ruleset. The use of variable-size individuals causes bloat [60], i.e., an
unnecessary growth of individuals without fitness improvement. Evolutionary multi-
objective algorithms are useful to limit this effect while achieving the learning goals.
Finally, we discuss open issues on multiobjective learning and directions for further
research.
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2 Learning Classifier Systems: A Short Overview

2.1 Cognition and Environment Interaction

The origins of the learning classifiers systems field can be placed within the work by
Holland on adaptive systems theory and his early proposals on schemata processors
[32]. This laid the basis for the first practical implementation of a classifier system
which was called CS-1 (Cognitive System Level One) [34]. CS-1 was devised as a
cognitive system capable of capturing the events from the environment and reacting
to them appropriately. Its architecture was composed of a set of receptors collecting
messages into a message list. These messages were matched against a set of rules
to decide which actions should be sent to the effectors. When reward was received
from the environment, an epochal algorithm distributed payoff into the list of active
rules that triggered that action. A genetic algorithm was run to discover new rules
by means of crossover and mutation.

The system inspired many approaches which were named under the framework
of the Michigan approach. The early Michigan approach can be summarized as hav-
ing the following properties. The system learns incrementally from the interaction
with the environment. It usually starts from a random population of rules which
is evaluated with a reinforcement learning scheme by means of a credit assignment
algorithm. The bucket brigade algorithm [34] was a classical credit assignment al-
gorithm, where the quality (strength) of rules is assigned according to the payoff
prediction, i.e., the payoff that the rule would receive from the environment if its
action was selected. The GA task is to discover new promising rules, while ensuring
the co-evolution of a diverse set of rules. The GA uses the strength calculated by
the credit assignment algorithm as the fitness of each rule, thus biasing the search
towards highly rewarded rules. The maintenance of different rules along the evolu-
tion is addressed by a non-generational scheme and the use of niching techniques
[29].

The major problems that arise with traditional Michigan LCSs are the achieve-
ment of accurate generalizations and the co-evolution and maintenance of different
niches in the population. There is a delicate balance between competition of indi-
viduals, which compete to occupy its place in the population, and the co-operation
needed to achieve jointly a set of rules. This balance is difficult to maintain for
Michigan LCSs. The Boole classifier system [62] tried to balance this equilibrium
by the use of fitness sharing and a GA applied to the niches defined by the action
sets (sets of rules with similar conditions and the same action). COGIN [31] avoided
competition among rules by restricting new classifiers to cover instances not covered
by other classifiers of the population.

Despite the known difficulties, Michigan approaches succeeded in many applica-
tions. NEWBOOLE [16], which inherits from Boole, was tested in medical datasets
and its performance found competitive with respect to CN2 [22] and backpropa-
gation neural networks [57]. Additionally, NEWBOOLE obtained a compact and
interpretable ruleset. Further work on NEWBOOLE derived into EpiCS [35], which
was adapted to the requirements of epidemiologic databases with mechanisms for
risk assessment, and unequal distribution of classes, among others. Results are also
competitive when compared with other classifier schemes.
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2.2 Genetic Algorithm based Concept Learners

Coexisting with the early developments of Michigan LCSs, a parallel line of LCSs
was also under research named as the Pittsburgh approach. It emerged with LS-1
classifier system [58], which inspired a main classifier scheme called GABL [23].

The Pittsburgh approach can be characterized as a “classical” genetic algorithm,
whose individuals codify a set of rules (in fact, later approaches also introduced
other types of codifications). Each individual represents a whole ruleset; thus, a
complete solution to the learning problem. The main learning cycle usually operates
as in a generational genetic algorithm. The fitness of each individual is evaluated
as the performance of its ruleset as a whole, usually under a supervised learning
scheme. Fitness usually considers the classification accuracy of the ruleset against
the training set of samples.

The first approaches such as GABL considered only classification accuracy on
each individual’s fitness. Individuals were codified as fixed length rulesets, where
each rule was codified as a binary string. Posterior versions introduced incremental
learning (GABIL) and the use of two specific operators, adding alternatives and
dropping condition, to bias the search towards general rules and minimal rulesets
respectively.

In Pittsburgh LCSs each individual codifies a complete ruleset, so there is no
need for cooperation among individuals as in the Michigan approach. This way, the
operation of the GA is simpler; the GA converges to a single solution and niching
algorithms are not needed. However, since Pittsburgh LCSs search in the space of
possible rulesets, the search space is large and usually takes more computational
resources than the Michigan approach. Another difficulty is that few control can be
applied at the rule level; e.g., rule’s generalization, which may encourage the forma-
tion minimal rulesets, can hardly be tuned. The two additional GABIL’s operators
were designed with this purpose. GIL [36] was another proposal that included a large
set of operators acting at different levels, whose purpose was also gaining control
over the type of rules evolved, but at the expense of an increased parameterization.

The use of variable sized individuals allowed increased flexibility in Pittsburgh
LCSs, but caused excessive growth of individuals, with the inclusion of useless rules
inside the individuals or the evolution of overspecific rules. Some solutions added
parsimony pressures in the fitness function, as in [27] while others addressed these
issues from a multiobjective problem perspective [45]. Some recent developments
are GALE [39], and GAssist[4]. The later will be analyzed as an example of implicit
multiobjective learner. We will also study in detail some multiobjective evolutionary
learners, such as MOLS-GA and MOLS-ES [45].

2.3 Hybrid Approaches

Due to the known different difficulties of the Michigan and the Pittsburgh ap-
proaches, several hybrid systems were proposed such as REGAL and GA-MINER.
REGAL [28] uses a distributed architecture, composed of several local GAs evolving
separately a single rule covering a partial set of training examples, and a global GA
that forms the complete ruleset. The key point of the system relies on the distribu-
tion of examples and the combination of the partial solutions.
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GA-MINER [25] is a system designed for pattern discovery in large databases.
Each individual in the population has a single rule, but its evaluation is done in-
dependently from other rules in the population; so it does not need any credit
assignment algorithm. The formation of rulesets is performed using an incremental
update strategy based on heuristics. The main goal of GA-MINER is to find some
interesting patterns in the dataset, instead of fully covering the database as expected
in a classification task. Under this framework, the evolution of a complete ruleset is
not necessary and in fact, this is not guaranteed by the system.

2.4 Accuracy-based Approaches

XCS [63, 64] represents a major development of Michigan style LCSs. Previous
Michigan LCSs had identified difficulties to achieve accurate generalizations and
maintain a balanced co-evolution of different niches in the population. This led to
suboptimal rulesets that could hardly represent the target concept. XCS differs from
traditional LCSs on the definition of rule fitness, which is based on the accuracy of
the payoff prediction rather than on the prediction itself, and the use of a niche GA.
These aspects have resulted in a strong tendency to evolve accurate and maximally
general rules, favoring the achievement of knowledge representations that, besides
being complete and accurate, tend to be minimal [37].

Other accuracy-based approaches have been studied recently [11]. Particularly,
UCS (sUpervised Classifier System) shares many features with XCS, such as the
generalization mechanisms. The main difference is that UCS is designed specifically
for supervised learning problems. The experiments showed that UCS is more suitable
to classification problems with large spaces, specially those with high number of
classes or with highly unequal distribution of examples.

We will study XCS in more detail and compare it with MOLeCS, a multiobjective
Michigan LCS.

3 Multiobjective Optimization

Prior to the study of the different multiobjective mechanisms of the Michigan and
Pittsburgh LCSs, we briefly describe the notation we will use to refer to multiob-
jective issues.

In a multiobjective optimization problem (MOP) [61] a solution x ∈ Ω is rep-
resented as a vector of n decision variables x = (x1, . . . , xn), where Ω is the deci-
sion variable space. We want to optimize k objectives which are defined as fi(x),
with i = 1 . . . k. These objectives are grouped in a vector function denoted as
F (x) = (f1(x), . . . , fk(x)), where F (x) ∈ Λ. F is a function which maps points
from the decision variable space Ω to the objective function space Λ:

F : Ω 7−→ Λ

x 7−→ y = F (x)
(1)

Without loss of generality, we can define a MOP as the problem of minimizing
a set of objectives F (x) = (f1(x), . . . , fk(x)), subject to some constraints gi(x) ≤ 0,
i = 1, . . . , m. These constraints are necessary for problems where there are invalid
solutions in Ω.
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A solution that minimizes all the objectives and satisfies all constraints may not
exist. Sometimes, the minimization of a certain objective implies a degradation in
another objective. Then, there is not a global optimum that minimizes all the objec-
tives simultaneously. In this context, the concept of optimality must be redefined.
Vilfredo Pareto [53] introduced the concept of dominance and Pareto optimum to
deal with this issue.

In general terms, a vector u dominates another vector v, written as u ¹ v, if
and only if every component ui is less than or equal to vi, and at least there is one
component in u which is strictly less than the corresponding component in v. This
can be formulated as follows:

u ¹ v ⇐⇒ ∀i ∈ 1, . . . , k , ui ≤ vi ∧ ∃i ∈ 1, . . . , k : ui < vi (2)

The concept of Pareto optimality is based on the dominance definition. Thus, a
solution x ∈ Ω is Pareto optimal if there is not any other solution x′ ∈ Ω whose
objective vector u′ = F (x′) dominates u = F (x). In other words, a solution whose
objectives can not be improved simultaneously by any other solution is Pareto op-
timum.

The set of all solutions whose objective vectors are not dominated by any other
objective vector is called the Pareto optimal set P∗:

P∗ := {x1 | @ x2 : F(x2) ¹ F(x1)} (3)

Analogously, the set of all vectors u = F (x) such that x belongs to the Pareto
optimal set is called the Pareto Front PF∗:

PF∗ := {u = F(x) = (f1(x), . . . , fk(x)) | x ∈ P∗} (4)

4 Multiobjective Learning in Michigan style LCSs

Michigan style LCSs codify each individual as having a single rule. Thus, learning in
Michigan LCSs implies codifying the learning goals at the rule level. The approach is
to maximize accuracy and generality in each rule, which consequently could combine
into a consistent, complete and minimal ruleset. This section revises two particular
Michigan LCSs, representative of two different approaches. The first one, XCS, uses
an accuracy-based fitness, while generalization is achieved mainly by a niche GA
applied in a frequency basis. The later, MOLeCS, defines a multiobjective fitness
which directly guides the search process to optimize these goals.

4.1 XCS: Implicit multiobjective learning

Description of XCS

XCS [63, 64] represents the target concept in a set of rules. This ruleset is incremen-
tally evaluated by means of interacting with the environment, through a reinforce-
ment learning scheme, and is improved by a search mechanism based on a genetic
algorithm.

Each rule’s quality is estimated by a set of parameters. The main parameters
are: a) prediction, an estimate of the reward that the rule would receive from the
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environment, b) accuracy, the accuracy of the prediction and c) fitness, which is
based only on accuracy.

The basic training cycle performs as follows. At each time step, an input x is
presented to the system. Given x, the system builds a match set [M], which is formed
by all the classifiers in the population whose conditions are satisfied by the input
example. If no classifiers match, then the covering operator is triggered. It creates
new classifiers matching the current input.

During training, XCS explores the consequences of all classes for each input.
Therefore, given a match set [M], XCS selects randomly one of the classes proposed in
[M] and sends it to the environment. All classifiers proposing that class are classified
as belonging to the action set [A]. The environment returns a reward which is used to
update the parameters of the classifiers in [A], and then the GA may be triggered.
In test mode, XCS proposes the best class from those advocated in [M], and the
update and search mechanisms are disabled.

If we run XCS in training, the GA is triggered when the average time since
the last occurrence of the GA in the action set exceeds a threshold θGA. The GA
takes place in the action set, rather than in the whole population. It selects two
parents from the current [A] with probability proportional to fitness, and applies
crossover and mutation. The resulting offspring are introduced into the population.
If the population is full, a classifier is selected for deletion. The deletion probability
is proportional to the size of the action sets where the classifier has participated. If
the classifier is experienced and poorly fit, its deletion probability is increased by
an inverse proportion of its fitness.

XCS also uses subsumption as an additional mechanism to favor the general-
ization of rules. Whenever a classifier is created by the GA, it is checked for sub-
sumption with its parents before being inserted into the population. If one of the
classifier’s parents is sufficiently experienced, accurate, and more general than the
classifier, then the classifier is discarded, and the parent’s numerosity is increased.
This process is called GA subsumption.

Implicit Multiobjective Learning

XCS receives inputs from the instances available in the training set and receives
feedback of its classifications in the form of rewards. The environment is designed
to give a maximum reward if the system predicts the correct classification and a
minimum reward (usually zero) otherwise. XCS’s goal is to maximize the rewards
received from the environment and in doing so it tries to get a complete, consis-
tent and minimal representation of the target concept. We analyze the role of each
component in achieving this compound goal.

The role of covering is to enforce a complete coverage of the input space. When-
ever an input is not covered by any classifier, covering creates an initial classifier
from where XCS launches its learning and search mechanisms in that part of the
space.

The task of the reinforcement component is to evaluate the classifier’s parameters
from the reward received from the environment. This is done incrementally. For each
example, it computes the prediction error of the classifier, gets a measure of accuracy,
and then updates fitness based on this computed accuracy.

The search component is based on a genetic algorithm. Basing fitness on accuracy
makes the genetic algorithm to search for accurate rules. Generalization is stressed by
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the application of the GA to the niches defined by the action sets. This is explained
by Wilson’s generalization hypothesis [63]: given two accurate classifiers with one
of them matching a subset of the input states matched by the other, then the more
general one will win because it participates in more action sets and thus has more
reproductive opportunities. As a consequence, the more general classifier will tend
to displace the specific classifier, resulting in compact representations. Subsumption
is included to encourage generalization and compactness as well.

The niche GA is also designed to favor the maintenance of a diverse set of rules
which jointly represent the target concept. This is achieved through different mech-
anisms: a) the GA’s triggering mechanism, which tries to balance the application of
the GA among all the action sets, b) selection, which is applied locally to the action
sets, c) crossover, performing a kind of restricted mating, and d) the deletion algo-
rithm, which tends to delete resources from the most numerous action sets. In XCS,
the niches are defined by the action sets, which are formed by a set of classifiers
matching a common set of input states and a common class.

4.2 MOLeCS: Explicit Multiobjective Learning

From Multiobjective Rulesets to Multiobjective Rules

MOLeCS (MultiObjective Learning Classifier System) [10] is a Michigan style LCS
that evolves a ruleset describing the target concept by the use of multiobjective
evolutionary algorithms.

As a Michigan-style LCS, MOLeCS evolves a population of rules which jointly
represent the target concept. Thus, each individual is a rule and the whole ruleset
is formed by all individuals in the population. The system’s goal is to achieve a
complete, consistent and compact ruleset by means of multiobjective evolutionary
algorithms. However, these goals cannot be directly defined into the GA search,
since the GA search is performed at the rule level, not at the ruleset level. Therefore,
these goals are adapted to the mechanisms of a Michigan style LCS by defining two
objectives at the rule level: generalization and accuracy.

Each rule should maximize simultaneously generalization and accuracy. If fitness
was only based on accuracy, the GA search would be biased towards accurate but
too specific rules. This would result in an enhancement of the solution set (i.e.,
need of more rules) and also poor coverage of the feature space. On the contrary,
basing fitness on generality would result in low performance, in terms of classification
accuracy. The solution was to balance these two characteristics at the same time.
The hypothesis was that by guiding the search towards general and accurate rules
would result in minimum, complete and accurate set of rules.

Description of MOLeCS

Each individual in MOLeCS codifies a rule (classifier) of type: condition → class.
Each rule ri is evaluated against the available instances in the training dataset, and
two measures are computed:

generalization(ri) =
# covered examples (ri)

# examples in the training set
(5)
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accuracy(ri) =
# correctly classified examples (ri)

# covered examples (ri)
(6)

MOLeCS defines the multiobjective problem as the simultaneous maximization
of accuracy and generalization. Thus, the fitness of each rule is assigned according
to a multiobjective evaluation strategy. Several MOEA techniques were explored
in MOLeCS, being a method based on lexicographic ordering the most successful
one. Particularly, the approach taken was that of sorting the population according
to the accuracy objective and in case of rules equally accurate, sort them by the
generalization objective. The interpretation was that of searching for accurate rules
being as general as possible. Once sorted, fitness was assigned according to the
ranking. Other strategies based on Pareto dominance and the aggregating approach
were also considered but found less successful.

Once the fitness assignment phase is performed, the GA proceeds to the selection
and recombination stages. In each iteration, G individuals are selected with stochas-
tic universal sampling (SUS) [7]. Then, they undergo crossover with probability pc

and mutation with probability pm per allele. The resulting offspring are introduced
into the parental population. The replacement method was designed to achieve a
complete coverage of the feature space.

In fact, it was argued that promoting general classifiers was not sufficient to reach
a complete ruleset. The genetic algorithm could tend, due to the genetic drift [30],
to a single general and accurate classifier and usually one classifier does not suffice
to represent the whole target concept. Therefore, the system should enforce the co-
evolution of a set of diverse fit rules by niching mechanisms. Niching in MOLeCS is
performed in the replacement stage. Particularly, deterministic crowding is applied,
where the child replaces the most similar parent only if it has greater fitness.

Once the system has learned, it is used under an exploit or test phase. It works
as follows. An example coming from the test set is presented. Then, the system finds
the matching rules and applies the fittest rule to predict the associated class. As
explained before, in case of equally fit rules, the most accurate rule is chosen.

4.3 Results

XCS’s generalization hypothesis [64] explains that the accuracy-based fitness cou-
pled with the niche GA favor the evolution of compact rulesets consisting of the most
general accurate rules. Additionally, the optimally hypothesis [37] argues that XCS
tends to evolve minimum rulesets. These hypotheses are supported by theoretical
studies on the pressures induced by the interaction of XCS’s components [21, 19].
XCS has also demonstrated to be highly competitive with other machine learning
schemes such as induction trees, and nearest neighbors, among others, in real world
classification problems [65, 13]. Recent studies are investigating the domain of com-
petence of XCS in real world domains, i.e., to what kind of problems XCS is suited
and poorly suited to [12].

MOLeCS was tested in artificial classification problems, of type of multiplexer
and parity problems, often used in the LCS community, as well as in real world
datasets. The multiobjective evolutionary algorithms let the system evolve accu-
rate and maximally general rules which together formed compact representations. A
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comparison with a single-objective approach maximizing only each rule’s accuracy
demonstrated that the multiobjective optimization was necessary to overcome the
tendency of evolving too many specific rules which would lead the system towards
suboptimal solutions partly representing the target concept. Optimizing simulta-
neously generality and accuracy was a better approach than a single optimization
approach. However, giving the same importance to these objectives with techniques
such as Pareto ranking caused the system evolve overgeneral rules, preventing other
maximally general rules from being explored and maintained in the population. This
consequently resulted in poor accurate rulesets. The best approach taken was that
of introducing the decision preferences a priori, i.e., during the search process, so
that the algorithm could find accurate rules as general as possible. This led to the
evolution of nearly optimal rulesets, with results highly competitive with respect to
other LCSs such as XCS in real world datasets.

The main difficulty of MOLeCS was identified within the niching mechanisms.
MOLeCS presented difficulties to stabilize a niche population and obtain a diverse
set of rules which jointly represented a complete ruleset. Niching mechanisms such
as deterministic crowding were only useful for limited datasets which could be easily
represented by small rulesets. Switching towards implicit niching mechanisms such
as those of XCS, would include an extra generalization pressure, as it is explained by
Wilson’s generalization hypothesis. Having both an explicit pressure towards gen-
eralization by means of a multiobjective approach and an implicit generalization
pressure produced by the niche GA could break the delicate equilibrium of evolu-
tionary pressures inside LCSs and lead to overgeneral rules. However, this remains
an unexplored area that would benefit from further research.

5 Multiobjective Learning in Pittsburgh Style LCSs

The previous section presented how Michigan classifier systems evolve a population
of rules that classify a particular. However, the Pittsburgh style classifier systems
evolve a population of individuals, each of them a variable-length ruleset that rep-
resents a complete solution to the problem. Such an approach greatly simplifies the
evolutionary process. For instance, the fitness of each candidate individual can be
computed using the accuracy of the ruleset classifying the dataset. Then, the eval-
uated individuals undergo the traditional selection and recombination mechanisms.

Such simplicity, however, comes with a price to pay, the tradeoff among accu-
racy and generalization. As in Michigan approaches, Pittsburgh classifier systems
should provide compact and accurate individuals. The rest of this section revises
the implications of such a goal on Pittsburgh classifier systems and presents some
systems and results that exploit multiobjective optimization ideas to achieve it.

5.1 A Generalization Race?

Evolution of variable size individuals causes bloat [60]. The term, named within the
field of genetic programming (GP), refers to the code growth of individuals without
any fitness improvement.

Langdon [38] attributes bloat to two possible reasons, labeled as “fitness causes
bloat” and “natural code is protective”. The former refers to the fact that selection
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does not distinguish between individuals with the same fitness but different size.
Thus, for each individual with a given fitness, there is a large set (possibly infinite)
of individuals with the same fitness and larger codes. A search guided by fitness
becomes a random walk among individuals with different sizes and equivalent fit-
ness. The second cause of bloat considers that neutral code that does not influence
fitness tends to be protective, i.e., reduces the probability that the genetic operators
disrupt useful code. Thus, they do not improve fitness but their maintenance in the
population is favored by the genetic operators.

In Pittsburgh LCSs, bloat may arise in two different forms: (1) the addition of
useless rules, or (2) the evolution of over-specific rules. Without limitation on the
number of rules in the ruleset, the search space becomes too large, and solutions are
far from being optimal. Contributions to address this issue have been worked out
from both the GP field and the LCSs field.

Some of the approaches taken in the GP field consist of imposing a parsimony
pressure toward compact individuals (see for example, [59]) by varying fitness or
through specially tailored operators. Recently, an approach proposed by Bleuler,
Brack, Thiele, and Zitzler [15] uses a multiobjective evolutionary algorithm to opti-
mize two objectives: maximize fitness and minimize size. In their approach they use
the SPEA2 algorithm [68, 70, 69].

In Pittsburgh classifier systems, some approaches also used a parsimony pres-
sure, while others directly codified a multiobjective evolutionary approach. The next
sections detail them.

5.2 Implicit Multiobjective Learning

Parsimony Pressure

The classical approach to address bloat and multiobjective learning goals was to
introduce a parsimony pressure in the fitness function, in such a way that the fitness
of larger individuals was decreased [9, 3, 27]. For example, in [27] the bloat is con-
trolled by a step fitness function: when the number of rules of an individual exceeds
a certain maximum, its fitness is decreased abruptly. One problem of this approach
is to set this threshold value appropriately. Bacardit and Garrell [3] define a similar
fitness function, as well as a set of operators for the deletion of introns4 [49] (rules
that are not used in the classification) and a tournament-based selection operator
that considers the size of individuals. The authors argue that the bloat control has
an influence over the generalization capability of the solutions. It has been observed
that shorter rulesets tend to have more generalization capabilities [14, 3, 49].

Therefore, the use of a parsimony pressure has beneficial effects: it controls the
unlimited growth of individuals, increases the efficiency in the search process and
leads to solutions with better generalization. Nevertheless, the parsimony pressure
must be balanced appropriately. An excessive pressure toward small individuals
could result in premature convergence leading to compact solutions but with sub-
optimal fitness [49], or even in a total population failure (population collapses with

4 Non-coding segments. In GP literature this concept has also been termed non-
effective code [8].
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individuals of minimal size). Soule and Foster [59] showed that the effect of the par-
simony pressure can be measured by calculating explicitly the relationship between
the size and the performance of individuals within the population.

Based on these results, it seems that a multiobjective approach may overcome
some of these difficulties. The first step toward introducing multiobjective pressures
in Pittsburgh classifier systems is to use a linear combination of the accuracy of a
given individual and its generality –understood as inversely proportional to its size.
The next section revises an approach of this type, which is based on the minimum
description length principle [5].

GAssist

GAssist [5] is a Pittsburgh LCS descendant of GABIL. The system applies a near-
standard generational GA that evolves individuals that represent complete problem
solutions. An individual consists of an ordered, variable–length ruleset. Tournament
selection is used.

A special fitness function based on the Minimum Description Length (MDL)
principle [56] is used, balancing the accuracy and the complexity of an individual.
The MDL formulation used is defined as follows:

MDL = W · TL + EL (7)

where TL is for the complexity of the ruleset, which considers the number of rules
and the number of relevant attributes in each rule, and EL is a measure of the error of
the individual on the training set. W is a constant that adjusts the relation between
TL and EL. An adaptive mechanism is used to avoid domain-specific tuning of the
constant.

The system also uses a rule deletion operator to further control the bloat effect.
The algorithm deletes the rules that do not have been activated by any example, the
so-called introns. The authors argue that the growth of introns in the individuals is
protective, in the sense that they prevent the crossover operator from disrupting the
useful parts of the individual. However, as the code growths, the chances of improving
the fitness of the individual by recombination also decrease. Hence, removing part of
this useless code through an appropriate balance is beneficial to the search process.

A comparison of GAssist with XCS [2] showed similar performance in terms of
accuracy rate. However, the number of rules evolved by GAssist was much smaller
that the number of rules of XCS. The comparison of GAssist with XCS also arose a
certain difficulty of GAssist in handling multiple classes and huge search spaces. XCS
was found to overfit in some datasets, where the generalization pressure due to the
niche reproduction hardly applied because of data sparsity. Section 5.4 gives more
details by means of a comparison of these systems in a selected set of classification
problems.

5.3 Explicit Multiobjective Learning

By using a multiobjective evolutionary approach, we can explicitly search for a set
of rules that minimizes the misclassification error and the size (number of rules).
Besides controlling the number of rules (bloat) dynamically, this would allow the
formation of compromise hypotheses. This explicit tradeoff formation let us explore
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the generalization capabilities of the hypotheses that form the Pareto front. In cer-
tain environments like data mining, where the extraction of explanatory models is
desirable, high quality general solutions (in terms of accuracy out of sample, or
compactness of hypotheses) are useful. For instance, the presence of noise in the
dataset may lead to accurate but overfitted solutions. Maintaining a Pareto front
of compromise solutions we can identify the overfitted perturbations of high qual-
ity general hypotheses. Therefore, evolving a set of different compromise solutions
between accuracy and generalization, we can postpone the decision of picking the
“best ruleset” to the final user (decision maker), or combine them all using some
bagging technique [17, 41, 39].

Classification and Multiobjective Optimization

Multiobjective Evolutionary Algorithms can be applied to trade off between two
objectives: the accuracy of an individual, and its size.

Let’s define x as an individual that is a complete solution to the classification
problem; D the training dataset for the given problem; |D| number of instances in
D; miss(x,D) the number of incorrectly classified instances of D performed by x;
and finally, size(x) a measure of the current size of x (e.g. the number of rules it
contains). Using this notation, a multiobjective approach can be defined as follows:

minimize F (x) = (fe(x), fs(x)) (8)

fe(x) =
miss(x,D)

|D|
(9)

fs(x) = size(x) (10)

The misclassification error corresponds to the number of instances incorrectly
classified divided by the size of the training set. Searching for rulesets minimizing
the misclassification error means to search for rulesets covering correctly as many
instances as possible. Minimizing the number of rules of the ruleset seeks to search
for general and compact rulesets, which moreover avoid the bloat effect. In fact, this
is a simple multiobjective approach. Other types of proposals could include more
objectives such as measures of generalization of the rulesets, or coverage (number of
instances covered by a ruleset).

MOLS-GA

Some approaches have addressed learning rulesets in Pittsburgh LCS architectures
from a multiobjective perspective. MOLS-GA and MOLS-ES [45] are two exam-
ples. They represent two similar approaches to the multiobjective problem, being
different on whether they base the search mechanism on a GA (MOLS-GA) or an
evolution stratgey (MOLS-ES). Since they do not offer significant differences on the
multiobjective approach itself, we will center our study on MOLS-GA for being more
representative of Pittsburgh LCSs.

MOLS-GA codifies a population of individuals, where each individual represents
a complete representation of the target concept. The available knowledge representa-
tions are rulesets or instance sets [39, 42, 43]. If the problem’s attributes are nominal,
MOLS-GA uses rulesets, represented by the ternary alphabet (0, 1, #) often used in
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other LCSs [33, 29, 63]. Otherwise, if the problem is defined by continuous-valued
attributes, instance sets—based on a nearest neighbor classification—are used.

The GA learning cycle works as follows. First, the fitness of each individual
in the population is computed. This is done on a multiobjective basis, taking into
account the misclassification error and the size of each individual.

The individuals of the population are sorted in equivalent classes. These classes
are determined by the Pareto fronts that can be defined among the population.
That is, given a population of individuals I, the first equivalence class I0 is the set
of individuals which belongs to the evolved Pareto optimal set I0 = P∗(I). The
next equivalence class I1 is computed without considering the individuals in I0, as
I1 = P∗(I\I0), and so forth. Figure 1 shows an example of the different equivalence
classes that appear in a population at a given iteration. This plot is obtained with
the multiplexer (mux) problem. In this example, the population is classified into nine
different fronts. The left front is I0, which corresponds to the non-dominated vectors
of the population. The next front to the right represents I1 and so on.

Fig. 1. Sorted population fronts at a given iteration of MOLS in the mux problem
[45].

Once the population of individuals I is sorted, fitness values are assigned. Since
the evolution must bias the population toward non-dominated solutions, we impose
the constraint:

fitness(Ii) > fitness(Ii+1) (11)

Thus, the evolution will try to guide the population toward the left part of the plot,
i.e., the real Pareto front. The fitness of each individual depends on the front where
the individual belongs. That is, all the individuals of the same equivalence class
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Ii receive the same constant value (n − i)δ, where n is the number of equivalence
classes and δ is a constant. Moreover, in order to spread the population along the
Pareto front, a sharing function is applied. Thus, the final fitness of an individual j

in a given equivalence class Ii is:

fitness(Ii
j) =

(n − i)δ
∑

k∈I
φ(dIi

j
Ik

)
(12)

where φ(dIi
j
Ik

) is the sharing function [30]. The sharing function is computed using

the Euclidean distance between the multiobjective vectors. The radius of the sharing
function σsh was set to σsh = 0.1.

After individuals are evaluated, selection is applied using a tournament selection
algorithm [50, 6] with elitism. Elitism is often applied in evolutionary multiobjective
optimization algorithms and it usually consists of keeping the solutions of the Pareto
front evolved in each generation [61]. MOLS-GA performs similarly: it keeps all the
distinct solutions of the evolved Pareto front, and also a 30% of the individuals with
the lowest error. This guarantees that the best compromise solutions evolved so far
are not lost, as well as the solutions with the lowest error, which are important to
drive the evolution toward accurate solutions.

After selection, crossover and mutation are applied. Crossover is adapted from
two-point crossover to individuals of variable size; cut points can occur anywhere
inside the ruleset, but they should be equivalent in both parents so that valid off-
spring can be obtained. The mutation consists in generating a random new gene
value.

What is the Purpose of the Pareto Front?

The main purpose of the evolved Pareto front is to keep solutions with different
tradeoffs between error and size. Coevolving these compromise solutions, we can
delay the need of choosing a solution until the evolution is over and the evolved
Pareto front is provided. However, this decision is critical for achieving a high quality
generalization when tested with unseen instances of the target concept.

The decision maker has several hypotheses among which to choose, all provided
by the classification front. The decision maker can be a human or an expert system
with some knowledge about the problem. A typical approach is to select a solution
from the evolved Pareto front. Two strategies may be considered, as shown in figure
2. The first one (best-accuracy) chooses the solution x of the front with the best
accuracy, that is, the one that minimizes fe(x). On the other hand, the second one
(best-compromise) picks the hypothesis of the front that minimizes the objective
vector u = F (x). Thus, the selected solution is the one that balances equally both
objectives. In other words, the solution x that minimizes |F (x)| =

√

fe(x)2 + fs(x)2.
We could instead benefit from the combination of the multiple hypotheses ob-

tained in the evolved Pareto front. Such a technique is inspired in the bagging tech-
nique [17, 41], which consists of training several classifiers and combining them all
into an ensemble classifier. The bagging technique tends to reduce the deviation
among runs, and the combined solution often improves the generalization capability
of the individual solutions [39]. An adaptation of such an strategy to the combina-
tion of solutions from the Pareto front could give similar benefits as shown elsewhere
[40].
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Fig. 2. Decision maker strategies using (a) the solution with the lowest error (best
accuracy) and (b) the solution closer to the origin (best compromise).

5.4 Experiments and Results

Through a Pareto Front Glass

Figure 1 shows an example of how the sorting of a population of candidate solutions
produces a clear visualization of the tradeoff between accuracy and generality.

Such Pareto fronts arise an interesting property, as shown by Llorà and Goldberg
[44]. In the presence of noise in the dataset, the Pareto front presents a clear rupture
around the maximally general and accurate solutions. Such rupture point is achieved
around the minimal achievable error (MAE) [44] for the dataset at hand. The rupture
point indicates the place where the evolved Pareto front abruptly changes its slope.
The front that appears to the left of the rupture point is the result of the deviation of
the empirical MAE from its theoretical value. This has an interesting interpretation.
All the points that define this segment of the front are over-fitted solutions. This
means that they are learning some misleading noisy pattern or a solution too specific
to the current training dataset. If any of these solutions is tested using new instances
not previously shown in the training phase, they would produce a significant drop in
accuracy. Thus, this leads to a reduction of the generalization capabilities (in terms
of classification accuracy) of the solutions kept in that part of the front. Moreover,
these solutions are closer to the bloat phenomenon, because very small (misleading)
improvements require a large individual growth. All these problems disappear when
we force the theoretical and the empirical MAE to be the same.

Results

The work by Llorà, Goldberg, Traus, & Bernadó-Mansilla [45] evaluated the per-
formance of different multiobjective LCSs on nine different datasets, which are de-
scribed in Table 1. Two of them are artificial datasets. Mux is the eleven input multi-
plexer, widely used by the LCS community [63]. Led is the seven-segments problem
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Fig. 3. Evolved Pareto front by MOLS-GA in the LED problem [44].

[18], obtained from the UCI repository [47]. The remaining datasets also belong to
the UCI repository: bupa liver disorders (bpa), Wisconsin breast cancer (bre), glass
(gls), ionosphere (ion), iris (irs), primary tumor (prt), and sonar (son). These
datasets contain categorical and numeric attributes, as well as binary and n-ary
classification tasks.

We summarize some of the results published in [45], where two explicit multi-
objective Pittsburgh approaches are compared with other schemes. Particularly, we
compare MOLS-GA and MOLS-ES with GAssist and XCS. We also include a com-
parison with non-evolutionary schemes: IB1 [1], C4.5 [54, 55], and PART [26]. Their
algorithms were obtained from the Weka package [67] and ran with their default
configuration.

The results were obtained from stratified ten-fold cross-validations runs [48, 67]
using the different learning algorithms on the selected datasets. MOLS-GA used a
best-accuracy strategy for the test phase, whereas MOLS-ES used best-compromise.
Table 2 shows the classification accuracy obtained by each method. Observe that
LCSs in general are highly competitive with the non-evolutionary schemes. More-
over, MOLS-GA and MOLS-ES offer good classification accuracies when compared
with GAssist and XCS. There is not a clear winner in all the datasets. Instead, all
the methods seem to perform equivalently.

Table 3 shows the average and standard deviation of the number of rules obtained
by the LCS approaches. Observe that the three Pittsburgh-based methods offer
fairly simple rulesets, composed of 3 to 15 rules approximately. On the contrary,
XCS gets much larger rulesets. In fact, the ruleset evolved by Pittsburgh LCSs is
that obtained by the best individual of the population, while the ruleset obtained by
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XCS considers all the population. If we consider that GAssist evolves a population of
400 individuals, the number of explored rules is equivalent to that evolved by XCS.
Moreover, the ruleset of a Pittsburgh LCSs operates as an activation list; i.e., the
rules form a hierarchy going from the most general to the most specific ones. The first
rules tend to cover many examples (the general case), while the last rules codify the
exceptions to the general rule. XCS does not use such a hierarchy so that the number
of necessary rules is higher. Despite these issues, the final XCS’s ruleset should be
still further processed. Most of the rules are only product of the recent exploration
of the algorithm and are not relevant to performance. Other rules overlap partially
with others; therefore, they could be compacted. Research on reduction algorithms
and further processing of the evolved rules is being conducted by several authors
to get a ruleset easily interpretable to human experts [66, 24, 51]. In [51] some
reduction algorithms reported a reduction of 97% without a significant degradation
in classification accuracy. For example, the bpa ruleset could be reduced to 90 rules,
which is still higher that Pittsburgh LCSs, but more reasonable to human experts.

MOLS-GA is in average the method which gets smaller rulesets for similar values
of classification accuracy. This probably means that MOLS-GA evolves better Pareto
fronts than MOLS-ES. Figure 4 shows two examples for the bre and the prt datasets.
See that the first one belongs to the case where MOLS-ES gets better performance,
which corresponds to a better evolved Pareto front. The second plot corresponds to
the more general case where MOLS-GA obtains a better front, resulting in higher
performance. MOLS-GA also gets smaller rulesets than GAssist in average, which
means that the explicit multiobjective approach is effective to further reduce the
size of the ruleset.

Table 1. Summary of the datasets used in the experiments.

id Data set Size Missing Numeric Nominal Classes
values(%) Attributes Attributes

bpa Bupa Liver Disorders 345 0.0 6 - 2
bre Wisconsin Breast Cancer 699 0.3 9 - 2
gls Glass 214 0.0 9 - 6
ion Ionosphere 351 0.0 34 - 2
irs Iris 150 0.0 4 - 3
led Led (10% noise) 2000 0.0 - 7 10
mux Multiplexer (11 inputs) 2048 0.0 - 1 2
prt Primary Tumor 339 3.9 - 17 22
son Sonar 208 0.0 60 - 2

The Pareto fronts presented in figure 4 also suggest another interesting analysis
of the results. For instance, the front presented in figure 4(b) shows an interesting
resemblance to the fronts obtained in the noisy led problem (see figure 3). This
clearly points out to the presence of inconsistencies in the prt dataset that bounds
the MAE. However, further work on the usage of the MAE measure is still needed,
as well as exploring its connections to probably approximately correct models in the
computational learning theory field [48].
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Table 2. Comparison of classification accuracy on selected datasets. The table
shows the mean and standard deviation of each method on a stratified ten-fold
cross-validation experiment [45, 2].

id MOLS-GA MOLS-ES GAssist XCS C4.5 PART IB1

bpa 76.5±13.4 68.7±6.7 61.5±8.3 65.4±6.9 65.8±6.9 65.8±10.0 64.2±9.1
bre 96.0±1.1 96.1±2.2 95.9±2.5 96.7±2.5 95.4±1.6 95.3±2.2 95.9±1.5
gls 67.1±9.3 63.4±7.3 68.2±9.3 70.5±8.5 68.5±10.4 69.0±10.0 66.4±10.9
ion 91.5±3.6 92.8±2.7 92.4±5.0 89.6±3.1 89.8±0.5 90.6±0.9 90.9±3.8
irs 99.3±1.9 95.3±3.1 95.3±5.7 94.7±5.3 95.3±3.2 95.3±3.2 95.3±3.3
led 74.9±13.7 74.4±3.4 n.a. 74.5±0.2 74.9±0.2 75.1±0.3 74.3±3.7
mux 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 99.9±0.2 100.0±0.0 99.8±0.2
prt 51.2±15.8 40.6±5.7 47.8±8.1 39.8±6.6 41.6±6.4 41.6±6.4 42.5±6.3
son 90.8±9.1 71.6±12.5 77.2±8.9 77.5±3.6 71.5±0.5 73.5±2.2 83.6±9.6

Table 3. Comparison of ruleset sizes obtained by different methods on selected
datasets. The table shows the mean and standard deviation of each method on a
stratified ten-fold cross-validation experiment [45, 2].

id MOLS-GA MOLS-ES GAsssist XCS

bpa 10.1±0.3 15.1±4.0 7.2±1.2 2377.5±125.7
bre 9.4±1.5 8.5±1.6 11.7±2.6 2369.5±114,5
gls 4.2±0.4 12.2±2.7 8.8±1.4 2709±98.9
ion 6.9±0.3 12.8±3.8 2.1±0.3 4360±134.9
irs 2.7±0.1 5.8±1.1 4.3±0.9 730±75.8
led 14.9±0.8 14.7±2.0 n.a. 102.5±10.2
mux 10.0±0.3 12.7±1.9 11.2±0.5 640±45.5
prt 9.3±0.5 12.0±5.0 16.0±3.8 1784±45.8
son 11.6±0.5 13.1±4.0 8.3±1.4 4745±123.2

(a) bre problem (b) prt problem

Fig. 4. Pareto fronts achieved in real problems by MOLS-GA and MOLS-ES [45].
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6 Current research trends and further directions

Learning classifier systems address the complex multiobjective task either balancing
the learning goals implicitly or by means of evolutionary multiobjective algorithms
adapted to the particular architectures.

Within the field of Michigan LCSs, the best approach, XCS, does not use explicit
multiobjective evolutionary algorithms. The combination of accuracy-based fitness
and the niche GA, with the addition of other heuristic components, achieves the
appropriate balance to favor the creation and maintenance of maximally general
rules. In fact, the equilibrium is delicate and studies on pressures point out how
to balance this equilibrium through appropriate parameter settings. Despite this
difficult balance, it does not seem feasible to add explicit multiobjective algorithms
to further emphasize the generalization of rules, because this probably would favor
overgeneral rules. However, this still remains an unexplored research area which may
be analyzed to strength generalization in cases where this is scarcely favored by the
niche GA, such as in problems with unequal distribution of examples per class (see
for example [52]). Explicit multiobjective algorithms are also able to achieve accurate
and maximally general rules in other types of Michigan LCSs. The main difficulty
is found on the architecture rather than on the multiobjective evaluation itself.
The main problem is to stabilize different niches co-operating to form a complete
ruleset. More research on niching algorithms is needed, combined with restricted
mating methodologies.

A problem common in Michigan LCSs is the difficulty to control the number
of rules forming the final ruleset. For binary attributes, favoring generalization of
rules is enough to achieve a minimum ruleset. But for continuous attributes and
real-valued representations, Michigan LCSs tend to produce high number of rules
that overlap partially. Pittsburgh LCSs using some kind of pressure on the number
of maximum rules produce rulesets much reduced than those of Michigan LCSs.
Although some reduction algorithms have been designed in the Michigan frame-
work to get compact rulesets [20], they still provide larger rulesets. This imposes a
limitation to their interpretability by human experts. Stressing generalization and
favoring removal of useless rules during training could help evolving smaller rulesets.
This would also reduce the computational cost, since the system would maintain less
rules during training.

Within the Pittsburgh approach, implicit and explicit multiobjective approaches
are able to balance accuracy and generalization. Moreover, the explicit usage of
multiobjective techniques provides an output with a clear tradeoff among both ob-
jectives. A Pareto front provides a way of sorting the final population of candidate
solutions. Such a front may be explored for a particular solution, or just combined
to form an ensemble of classifiers, as it is currently being analyzed in [40]. Such
research also needs to face the readability of the final solution. Measures of rule
interpretability must be defined. Once the proper measure is ready, it can simply be
integrated in the evolutionary process as a third objective to be optimized. Many
domains, such as medical domains, specify the cost of misclassifying each of the
classes, instead of using a single measure of error. Multiobjective algorithms can
also be appropriate to balance the different types of misclassification errors and pro-
vide a set of alternatives. However, we should analyze whether the addition of more
objectives involves a harder search, and what kind of solutions can be evolved.
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Another key research area for Pittsburgh classifier systems is the identification
of overfitting situations from the evolved Pareto fronts, as pointed out in the pa-
per. However, such approach assumes that the global pressure toward accuracy and
generality will lead the rulesets towards the desired learning goals. This is a clearly
top-down approach. Recently, the work of Wilson in 1995 [63] and the major shift
in the way in which fitness was computed in the Michigan approach have been re-
visited by researchers. Accuracy has become a central element in the process of
computing the fitness of rules (or classifiers). Initial attempts to apply Wilson’s
ideas to Pittsburgh-style classifier systems are on their way [46]. When such ideas
are combined with estimation of distribution algorithms, a bottom-up approach to
Pittsburgh classifiers would start to emerge—as the compact classifier system (CCS)
has preliminary shown.
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10. E. Bernadó-Mansilla and J. M. Garrell. MOLeCS: Using Multiobjective Evolu-
tionary Algorithms for Learning. In Evolutionary Multi-Criterion Optimization,
First International Conference, EMO 2001, volume 1993 of LNCS, pages 696–
710. Springer Verlag, 2001.
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